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The esterification of oleic acid in a continuous catalyst-free process using compressed ethanol was investigated in the present study.
Experiments were performed in a tubular reactor and variables investigated were temperature, pressure, and oleic acid to ethanol
molar ratio for different residence time. Results demonstrated that temperature, in the range of 473K to 573K, and pressure had a
positive effect on fatty acid ethyl esters (FAEE) production. In the experimental range investigated, high conversions can be obtained
at low ethanol concentrations in the reaction medium and it was observed that oleic acid to ethanol molar ratios greater than 1 : 6
show no significant increase in conversion. Nonnegligible reaction conversions (>90%) were achieved at 573K, 20MPa, oleic acid
to ethanol molar ratio of 1 : 6, and 20 minutes of residence time.

1. Introduction

Fatty acid, methyl or ethyl, esters can be usually obtained
from free fatty acid (FFA) esterification reaction, through
vegetable oils hydrolysis followed by the fatty acid esterifi-
cation or from direct vegetable oils transesterification [1].
The importance of examining the esterification reaction in a
more detailed manner is justified by the huge amount and
variety of vegetable oils worldwide available for biodiesel
production which may have a high percentage of FFA
making the conventional alkali-catalyzed transesterification
impracticable, since for this process the percentage of FFA
needs to be less than 0.5% [2]. Recent studies propose to
obtain esters in two reaction steps of substrates with high
acidity, consisting of two approaches: (a) esterification of FFA
and subsequent transesterification of triglycerides [3–5] or
(b) hydrolysis of triglycerides, followed by esterification of

fatty acids obtained [6–8]. In these approaches are commonly
used chemical catalysts (homogeneous or heterogeneous) or
enzymatic catalysts. More recently, the noncatalytic process
where is proposed the hydrolysis occurs primarily in subcriti-
cal water and subsequent esterification using a solvent in sub-
or supercritical [9, 10].

According to the current literature, catalyst-free reac-
tions at high temperature and pressure conditions pro-
vide improved phase solubility and decreased mass-transfer
limitations; the reaction rate increases significantly in the
supercritical state and, thus, the reaction is complete in
shorter periods and simpler separation and purification steps
[11, 12]. Some studies available in the literature reported
the biodiesel production from free fatty acids (FFA) by
noncatalytic method at sub- and supercritical conditions and
these studies reported batch reaction with methanol [13–18],
ethanol [19], and dimethyl carbonate [20] or reaction in
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continuous mode with ethanol [21] and methanol [22]. As it
can be verified, the use of compressed ethanol to FFA esterifi-
cation in continuousmode is little explored in the literature as
well as the effect of process variables: temperature, pressure,
and molar ratio. The obtention of these data is necessary for
understanding the kinetics of production of fatty acids esters
which are used to evaluate the continuous production of
biodiesel from oils with high acidity in pressurized medium.
Feedstock flexibility is the most important aspect to consider
for biodiesel production, since the cost of the raw materials
currently represents about 70% of the total production cost
[23].

In this sense, the present work attempts to contribute to
build a platform for biodiesel production in continuousmode
with alcohol at sub- and supercritical conditions exploring
key rawmaterials. Here, the main objective was to investigate
the noncatalytic esterification of oleic acid in continuous
mode. For this purpose were the effects of temperature
assessed in the range of 473K to 598K, pressure from 15MPa
to 20MPa, and oleic acid to ethanol molar ratio of 1 : 3 to 1 : 12
for different residence time.

2. Materials and Methods

2.1. Materials. Oleic acid (FMaia) and ethanol (JT Baker
99.8%) were used as substrates in the esterification reactions.
In step titration of samples ethanol 95wt% (Vetec), ethyl ether
(Nuclear), sodiumhydroxide (Nuclear), and phenolphthalein
indicator (Nuclear) were used. All other reagents and solvents
were of analytical grade.

2.2. Apparatus and Experimental Procedure. Esterification
reactions were carried out in duplicate using a tubular reactor
made of stainless steel tubing (316 L 1/4 in OD inner diameter
3.2mm) and stainless steel tubing (304 L 30.5mm OD inner
diameter 13mm HIP) packed with glass beads (4.5mm
diameter).The substrates were placed in a closed Erlenmeyer
and mixed by means of a mechanical stirring device and
then charged into the reaction system by a high-pressure
liquid pump. The reactor was placed in a furnace with
controlled temperature, monitored by three thermocouples
directly connected at the inlet and outlet of the reactor. The
system pressure was controlled by a back-pressure valve and
monitored by a pressure indicator. In this work the residence
timewas computed by dividing the void volume of the reactor
(mL) by the flow rate of substrates (mLmin−1) set in the
liquid pump. More details in relation to the experimental
apparatus can be found in the work of [24].

Samples were collected periodically in a glass vial placed
at the reactor outlet after reaching the steady state condition,
that is, after a reactor space-time had been elapsed at least
three times.

2.3. Analysis of Free Fatty Acid (FFA). Samples were first
submitted to ethanol and water evaporation to constant
weight in a vacuum oven. The percentage of free fatty acid
was determined based on the method Ca 5a-40 [25], which
is based on acid-base titration using as titrant methanol solu-
tion of potassium hydroxide (KOH) previously standardized.

Since each sample was performed in duplicate, data were
subjected to one way ANOVA and Tukey test (𝑃 > 0.05)
evaluating differences in treatment means. The free fatty acid
content of the sample is defined as follows:

FFA content (mg/100mg) = 282𝑀𝑉
10𝑚

, (1)

where𝑀 is the molar concentration of KOH,𝑉 is the volume
of KOH used in the titration process, and 𝑚 is the sample
weight.

Once the FFA content is determined, the oleic acid (OA)
conversion can be calculated as follows:

AO conversion (%) =
FFA
0

− FFA
𝑡

FFA
0

, (2)

where FFA
𝑡

and FFA
0

are free fatty acid content at residence
time and initial time, respectively (mg of FFA/100mg of
sample).

3. Results and Discussion

3.1. Effect of Oleic Acid to Ethanol Molar Ratio. To evaluate
the effect of oleic acid to ethanol molar ratio, experiments
were performed at 573K and 598K in the range of 1 : 3 to
1 : 12 with results presented in Figure 1. Increasing the molar
ratio oleic acid : ethanol of 1 : 3 to 1 : 6 resulted in increased
oleic acid conversion. At 573K, 20MPa, and 20 minutes of
residence time, ∼84% of conversion was obtained at oleic
acid to ethanol molar ratio of 1 : 3 and ∼92% at oleic acid
to ethanol molar ratio of 1 : 6. In catalyst-free reactions an
increase of alcohol in the reaction medium should provide
greater contact between substrates, thus favoring reaction
conversion. Besides, an excess of reactant could also shift
the reaction to ethyl esters formation [11]. Alenezi et al. [14]
reported that the increase in molar ratio FFA :methanol of
1 : 0.7 to 1 : 3 increased yield of esters obtained by noncat-
alytic esterification of FFA at batch mode with supercritical
methanol of 50% to 90% at 543K, 10MPa, and 20min of
residence time. The positive effect of molar ratio on the
esterification of oleic acid and methanol was also reported
by Ding et al. [16] that reported, at 583K and 20 minutes of
reaction, yields of 70% and 90% for oleic acid to methanol
molar ratio of 1 : 1 and 1 : 4, respectively. Cho et al. [18]
reported the esterification of palm fatty acid distillate (PFAD)
with methanol in a semibatch reaction and obtained at
563K/0.86MPa and 25 minutes about 30% and 60% of
conversion for methanol flow rate of 1.2 g/min and 3.6 g/min,
respectively.

The increase of the ethanol concentration in the reaction
medium, in experiments with molar ratios of 1 : 9 and 1 : 12,
does not significantly increase the conversion of reaction (𝑃 >
0.05). For the supercritical esterification of oleic acid with
dimethyl carbonate conducted in a batch-type reactor, Ilham
and Saka [20] observed that values of molar ratio above 1 : 6
(oleic acid : dimethyl carbonate) did not cause an increase of
the conversion, being reported at 373K/9MPa and 15min of
residence time conversions of ∼88% at 1 : 6 to 1 : 40. A similar
effect is reported by Ding et al. [16] in the range of oleic acid
to methanol molar ratio of 1 : 4 to 1 : 18.
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Figure 1: Effect of molar ratio on the conversion of oleic acid to pressure 20MPa and temperature: 573 K (a) and 598K (b).

0

20

40

60

80

100

Residence time (min)
20 25 30

O
A

 co
nv

er
sio

n 
(w

t %
)

15MPa
20MPa

(a)

0

20

40

60

80

100

Residence time (min)
20 25 30

O
A

 co
nv

er
sio

n 
(w

t %
)

15MPa
20MPa

(b)

Figure 2: Effect of pressure on the conversion of oleic acid in molar ratio 1 : 6 and temperature: 523 K (a) and 548K (b).

3.2. Effect of Pressure. The effect of pressure on the esterifica-
tion reaction was evaluated adopting the oleic acid to ethanol
molar ratio of 1 : 6 and temperatures of 523K and 548K, with
results shown in Figure 2. As shown in Figure 2 an increase
in pressure had a positive effect on the FAEE yield. At 523K
and 20min of residence time, 85% of conversion is obtained
at 20MPa and∼75%at 15MPa.At 548K and residence time of
30min, 93% of conversion is obtained at 20MPa and 86% at
15MPa.The systempressuremayhave a great influence on the
properties of a supercritical fluid near its critical point, such
as density, hydrogen bound intensity, and viscosity. When
the pressure was slightly higher than the critical pressure of
ethanol (∼6.4MPa), the yield was lower than at high pressure

for both pressures [26]. The best reaction conversion was
obtained at 20MPa, consistent with the results reported in
the literature for supercritical transesterification of vegetable
oils in continuous mode [12, 26, 27].

3.3. Effect of Temperature and Residence Time. The effect of
temperature and residence time in the noncatalytic ester-
ification was evaluated keeping the oleic acid to ethanol
molar ratio fixed at 1 : 6, pressure at 20MPa, varying the
temperature from 473K to 598K, and residence time of 10 to
40 minutes. Figure 3 shows the OA conversion as a function
of the temperature and residence time. As can be seen in
Figure 3, the conversion increases with temperature in the
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Figure 3: Effect of temperature on the conversion of oleic acid in
molar ratio 1 : 6 and a pressure of 20MPa.

range of 473K to 573K and no significant difference between
the results obtained at 573K and 598K (𝑃 > 0.05) was
observed. For example, at 473K after 10min of reaction was
obtained ∼70% of conversion, while ∼88% was reached for
the same time for supercritical treatment at 573K.

Yujaroen et al. [13] evaluated the effect of temperature
on the reaction of palm fatty acid distillate (PFAD) using
supercritical methanol and reported, at PFAD to methanol
molar ratio of 1 : 6, 10–15MPa, and 30min of reaction, 62%
and 85% of conversion for 523K and 563K, respectively. Ding
et al. [16], in the esterification of oleic acid in a batch reactor at
10min reaction time and using oleic acid to methanol molar
ratio of 1 : 9, have obtained about 60%and∼85%of conversion
for 523K and 563K, respectively. The authors point out
that increasing the temperature above 583K does not cause
a significant increase in the conversion. For reactions in
continuousmode, Tsai et al. [22]mentioned the positive effect
of temperature in the range of 493.2 K to 533.2 K on the OA
conversion for esterification performed in a tubular reactor at
10MPa, 10min, and oleic acid tomethanol molar ratio of 1 : 5,
with conversions of 80% and ∼95% at 493.2 K and 533.2 K,
respectively.

It can be seen from Figure 3 that an increase in residence
time of 10 to 30 minutes leads to a sharp enhancement
of reaction conversions for temperatures of 573K to 548K.
Ding et al. [16] reported, at 573K, 10–15MPa, and oleic
acid to methanol molar ratio of 1 : 6, OA conversion of
64% and ∼95% for reaction time of 10min and 30min,
respectively. For higher temperatures the residence time will
not show a significant effect on the OA conversion. This
behavior is evidence that the reaction at higher temperature
and residence timemore than 30minutes reached thermody-
namic equilibrium.

When comparing the experimental data obtained in this
work with the literature results [12, 21], it can be seen

that esterification reaction occurs with a higher rate than
the transesterification reaction, resulting in higher yields
in lower operational conditions. Thus, vegetable oils with
high acid present as feedstock with potential for biodiesel
production using a solvent in sub- or supercritical conditions.
In recent work of the group, it may be observed that the
content of free fatty acids influences the esters yield. Doná
et al. [24] reported higher yields in the reaction of methyl
acetate withMacaúba oil (39.62wt% of FFA) when compared
with the use of soybean oil (0.1 wt% of FFA). The use of
Jatropha oil (10.1 wt% of FFA) in the production of ethyl esters
is presented in the study of Silva et al. [26] reported with
high yields when compared with the results of Andrade [28]
for using soybean oil under the same operating conditions.
Schulte [29] reported the esterification of tall oil fatty acids,
obtained by hydrolysis, at 573K and 1650 psia using a
methanol to feedstock ratio of 10 : 1, and showed esters yield
of 82.3% from these free fatty acids, which is slightly higher
than the yield obtained from the treatment of tall oil at these
conditions (78.9%).

4. Conclusions

Results obtained in the present work show that high con-
version can be achieved for the noncatalytic reaction of
oleic acid with compressed ethanol. In the experimental
range investigated, temperature and pressure had a positive
effect on reaction conversion. The results show that high
conversions of oleic acid can be obtained with low ethanol
concentrations in the reaction medium and low residence
times.
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