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An optimization control model and the corresponding computational method drawing the diffusion parameters of the nonlinear
problem for the drug releasing in the 2D-disc device were given in this paper. Firstly, based on the nonlinear diffusion equation
of the drug releasing in the 2D-disc device, we used the linear diffusion problem to discrete the nonlinear diffusion problem with
the discrete space and the discrete time. Then, by the separate variable method, the solution of the linear problem was given. Next,
the least square method based on the separate variable idea (LSMSV) was used to estimate the nonlinear appropriate diffusion
parameters. Finally, a numerical example was presented to show that the control model and the numerical method were valid for
computing the diffusion coefficient of the nonlinear problem for the drug releasing in the 2D-disc device.

1. Introduction

In engineering fields, there exist many diffusion processes in
many fields such as geomechanics engineering, biomedical
science, civil engineering, water pollution, and soil engi-
neering [1–5]. In order to simulate the diffusion processes
to obtain their merits, it is important to draw the effective
diffusiveness. There are many models for the simulation of
the diffusion processes. Most of them are the nonlinear or
linear models. For the linear models, most optimal control
problems governed by the diffusion equations arose in many
scientific and engineering applications such as the water
pollution problems and the drug releasing fields [6–10].There
are many various techniques for the identification for the
effective diffusiveness based on the linearmodels.These tech-
niques are based on either empirical or semiempirical models
from drug delivery mechanisms or on analytic solutions of
the diffusion equation in 2D or in the special cases [6–
8, 11, 12].

However, in the practice application, many diffusion
processes are subjected to the nonlinear partial differential
equations [6–12]. In order to illustrate the nonlinear diffusion
processes in many fields, many nonlinear models are applied
to estimate the properties. For many nonlinear diffusion
fields, the diffusion coefficients are the functions of the
diffusion concentration. Therefore, computing the diffusion
parameters is mainly to determinate the parameters of the
coefficient function called the diffusion parameters function.
The diffusion parameter function of the concentration is con-
sidered as themain element to control the diffusion processes.
Therefore, many researches were given to determine the
parameter function to illustrate the diffusion processes.Many
nonlinear optimal models drawing the diffusion parameters
depended on both the lab technology and the shape of the
container [9, 10, 12, 13]. In order to compute the diffusion
parameters, many scientists and mathematicians provided
some optimal methods to compute the diffusion parameters
[9, 10, 12]. Most of them cost a lot of computing time and
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computing memory. Even some of them such as the different
method or the finite element method cost more than one
week [9, 14]. Therefore, in order to save the computing time
and the computing memory, in our published papers, we
had provided some numerical methods based on the separate
variable method to compute the diffusion parameters of the
linear process in the sphere device. For these reasons, in this
paper, we will also propose a new numerical optimal method
(the least square method based on the separate variable
idea) to extract the diffusion parameters from the nonlinear
diffusion problems.

The next two sections will give the nonlinear diffusion
problem in the 2D-disc device based on the drug releasing
property and the discrete method. Section 3 is devoted to
providing the least square method based on the separate
variable idea for the optimal control model of the nonlin-
ear diffusion equation system governing the drug releasing
process. In Section 4, the numerical example is presented to
demonstrate the feasibility and the validity, the convergence
of the model, and computing method. Finally, we will discuss
the model and computing method and give the future work
for the different control model.

2. The Nonlinear Diffusion
Problem in the 2D-Disc Device and
the Discrete Linear Problem

Thenonlinear diffusion process in 2D-disc device is governed
by the following partial differential equation:

𝜕𝐶 (𝑥, 𝑦, 𝑡)

𝜕𝑡
− ∇ ⋅ (𝐷 (𝐶) ∇𝐶) = 0, 𝑡 > 0, (𝑥, 𝑦) ∈ Ω,

𝜕𝐶 (𝑥, 𝑦, 𝑡)

𝜕𝑛
= 0, 𝑡 > 0, (𝑥, 𝑦) ∈ 𝜕Ω,

𝐶 (𝑥, 𝑦, 0) = 𝐻 (𝑥, 𝑦) , (𝑥, 𝑦) ∈ Ω,

(1)

where the drug concentration is uniform in the device and
zero in liquid for the initial condition at 𝑡 = 0; that is,

𝐻(𝑥, 𝑦, 0) =

{{

{{

{

𝑀
0

𝑉
𝑑

, (𝑥, 𝑦) ∈ Ω
1
,

0, (𝑥, 𝑦) ∈ Ω \ Ω
1
;

(2)

𝑀
0 is the totalmass of the diffusionmaterial,𝑉

𝑑
is the volume

of Ω
1
, the diffusion coefficient 𝐷(𝐶) is the function of the

concentration, 𝐶(𝑥, 𝑦, 𝑡) is the drug releasing concentration,
Ω
1
is the small disc containing the drug, andΩ is the big disc

containing the liquid shown in Figure 1.
In order to solve the nonlinear diffusion process by

the separate variable method, it is necessary to use some
linear equations to replace the nonlinear equation (1). The
discretion process is given as follows.

Time Discretion. Setting Δ𝑡
𝑖
= 𝑡
𝑖+1
− 𝑡
𝑖
, 𝑖 = 1, 2, . . . , 𝑁, the

time [𝑇
0
, 𝑇
1
] of the diffusion process is divided into many

x

y

Figure 1: Large disc Ω containing liquid and small disc Ω
1

containing drug.

sections [𝑡
𝑖
, 𝑡
𝑖+1
] and the concentration 𝐶

𝑖
is computed in

[𝑡
𝑖
, 𝑡
𝑖+1
].

Space Discretion. Setting Δ𝑟
𝑗
= 𝑟
𝑗+1

− 𝑟
𝑗
, 𝑗 = 1, 2, . . . , 𝐾 −

1, 𝑅
1
= 𝑟
1
< 𝑟
2
< ⋅ ⋅ ⋅ < 𝑟

𝑘
= 𝑅
2
, the radius [𝑅

1
, 𝑅
2
] is divided

into many intervals and the diffusion concentration in the
section of [𝑟

1
, 𝑟
2
], [𝑟
2
, 𝑟
3
], . . ., [𝑟

𝑘−1
, 𝑟
𝑘
] is obtained. So the

nonlinear equation system (1) can be changed into (𝑘−1)∗𝑁
linear equations.

Using the linear diffusion processes to replace the non-
linear diffusion process in the time, it is easy to obtain the
following linear equation:

𝜕𝐶
𝑖

𝜕𝑡
= 𝐷 (𝐶

𝑖−1
) (
𝜕
2
𝐶
𝑖

𝜕𝑥2
+
𝜕
2
𝐶
𝑖

𝜕𝑦2
) . (3)

Using the polar coordinate system to replace (3), the
above equations can be changed as follows:

𝜕𝐶
𝑖

𝜕𝑡
= 𝐷 (𝐶

𝑖−1
) (
𝜕
2
𝐶
𝑖

𝜕𝑟2
+
1

𝑟

𝜕𝐶
𝑖

𝜕𝑟
) . (4)

From the above deduction, the nonlinear diffusion equa-
tion of the drug releasing in the section of [𝑡

𝑖
, 𝑡
𝑖+1
] and

[𝑟
𝑗
, 𝑟
𝑗+1
] can be obtained as follows:

𝜕𝐶
𝑖𝑗

𝜕𝑡
= 𝐷 (𝐶

(𝑖−1)𝑗
)(

𝜕
2
𝐶
𝑖𝑗

𝜕𝑟2
+
1

𝑟

𝜕𝐶
𝑖𝑗

𝜕𝑟
) ,

𝑖 = 1, 2, . . . , 𝑁, 𝑗 = 1, 2, . . . , 𝐾 − 1.

(5)

Because the length of the time and the range of space by
the discretion are very small, 𝐷(𝐶

𝑖−1,𝑗
) can be considered as

a constant in [𝑡
𝑖
, 𝑡
𝑖+1
] × [𝑟
𝑗
, 𝑟
𝑗+1
].
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In the section of [𝑡
𝑖
, 𝑡
𝑖+1
], the linear equations can be

represented as follows:

𝜕𝐶
𝑖𝑗

𝜕𝑡
= 𝐷 (𝐶

𝑖−1,𝑗
)(

𝜕
2
𝐶
𝑖𝑗

𝜕𝑟2
+
1

𝑟

𝜕𝐶
𝑖𝑗

𝜕𝑟
) , 𝑡

𝑖
≤ 𝑡 ≤ 𝑡

𝑖+1
,

𝑖 = 1, . . . , 𝑁, 0 < 𝑟 < 𝑟
𝑗+1
, 𝑗 = 1, . . . , 𝐾 − 1,

𝜕𝐶
𝑖𝑗

𝜕𝑟

𝑟=𝑟𝑗+1

= 0,

𝐶
𝑖𝑗
(𝑟, 𝑡
𝑖
) =

{{

{{

{

𝑀
𝑖−1,𝑗

𝑉
𝑑𝑗

, 0 < 𝑟 < 𝑟
𝑗
,

0, 𝑟
𝑗
< 𝑟 < 𝑟

𝑗+1
,

(6)

where 𝑉
𝑑𝑗
= 𝜋(𝑟
2

𝑗+1
− 𝑟
2

𝑗
). Therefore, the concentrations 𝐶

𝑖𝑗
of

this equation in [𝑡
𝑖
, 𝑡
𝑖+1
] × [𝑟
𝑗
, 𝑟
𝑗+1
] can be obtained and get

𝑀
𝑖𝑗
= ∫

2𝜋

0

∫

𝑟𝑗+1

𝑟𝑗

𝐶
𝑖 (𝑟, 𝜃, 𝑡) 𝑑𝑟 𝑑𝜃 − ∫

2𝜋

0

∫

𝑟𝑗

𝑟𝑗−1

𝐶
𝑖−1 (𝑟, 𝜃, 𝑡) 𝑑𝑟 𝑑𝜃,

𝑖 = 1, 2, . . . , 𝑁, 𝑗 = 1, 2, . . . , 𝐾.

(7)

If 𝑖 = 0 and 𝑗 = 1, 𝐶
01
(𝑟, 𝜃, 0) = 𝐻(𝑟, 𝜃, 0).

To solve (𝐾 − 1) × 𝑁 linear equations, by the separation
variable method, we can get the solutions of the nonlinear
diffusion equation as follows:

𝐶
𝑖𝑗
=
𝑀
𝑖𝑗

𝑉
𝑑𝑗

+

∞

∑

𝑛=1

2𝑀
𝑖𝑗
𝑟
𝑗

𝑉
𝑑𝑗
𝑟
𝑗+1
𝜇
𝑛
𝐽
0

2
(𝜇
𝑛
)
𝐽
1
(
𝑟
𝑗
𝜇
𝑛

𝑟
𝑗+1

)

× exp(−𝐷(𝐶
(𝑖−1)𝑗

)(
𝜇
𝑛

𝑟
𝑗+1

)

2

𝑡
𝑖
)𝐽
0
(
𝜇
𝑛

𝑟
𝑗+1

𝑟) ,

𝑖 = 1, 2, . . . , 𝑁, 𝑗 = 1, 2, . . . , 𝐾,

(8)

𝐶
𝑖
=

𝑁

∑

𝑗=1

𝑖

∑

𝑙=1

𝐶
𝑙𝑗
(𝑟, 𝜃, 𝑡) , 𝑟 ∈ (𝑟

𝑗
, 𝑟
𝑗+1
) , 𝑖 = 1, 2, . . . , 𝐾. (9)

Equation (9) can be changed into the following formula:

𝐶
𝑖
=

𝑁

∑

𝑗=1

(

𝑖

∑

𝑙=1

(
𝑀
𝑙𝑗

𝑉
𝑑

+

∞

∑

𝑛=1

2𝑀
𝑙𝑗
𝑟
𝑗

𝑉
𝑑
𝑟
𝑗+1
𝜇
(1)

𝑛 𝐽
2

0
(𝜇
(1)

𝑛 )
𝐽
1
(
𝑟
𝑗
𝜇
𝑛

𝑟
𝑗+1

)

× exp(−𝐷(𝐶
(𝑙−1)𝑗

)(
𝜇
𝑛

𝑟
𝑗+1

)

2

𝑡
𝑙
)

× 𝐽
0
(
𝜇
𝑛

𝑟
𝑗+1

𝑟))) ,

𝑟 ∈ (𝑟
2
, 𝑟
𝐾
) , 𝑖 = 1, 2, . . . , 𝐾 − 1,

(10)

where 𝜇(1)
𝑛
(𝑛 = 1, 2, . . .) are the positive roots of 𝐽

1
(𝑥) and

Γ(𝑚 + 1) = 𝑚!,𝑚 is the positive integer and

𝐽
1
(𝜇
𝑛
) =

∞

∑

𝑚=0

(−1)
𝑚 1

Γ (𝑚 + 1) Γ (𝑚 + 2)
(
𝜇
𝑛

2
)

2𝑚+1

,

𝐽
0
(
𝜇
𝑛

𝑅
2

𝑟) =

∞

∑

𝑚=0

(−1)
𝑚 1

Γ (𝑚 + 1) Γ (𝑚 + 1)
(
𝜇
𝑛
𝑟

2𝑅
2

)

2𝑚

.

(11)

3. Control Problem Drawing Nonlinear
Diffusion Parameters

Problem 1. Search the coefficient functions𝐷(𝑎
1
, . . . , 𝑎

𝐿
, 𝐶) to

satisfy

min
𝐷>0

{(𝑀
𝑇1
−𝑀
0

𝑇1
)
2

+ (𝑀
𝑇2
−𝑀
0

𝑇2
)
2

+ ⋅ ⋅ ⋅ + (𝑀
𝑇𝑒
−𝑀
0

𝑇𝑒
)
2

} ,

(12)

where 𝑀0
𝑇1
,𝑀
0

𝑇2
, . . . ,𝑀

0

𝑇𝑒
are the given experimental data

and𝑀
𝑇1
,𝑀
𝑇2
, . . . ,𝑀

𝑇𝑒
are the computed data by the follow-

ing equations:

𝑀
𝑇𝑖
=

𝐾

∑

𝑡𝑘≤𝑇𝑖 ,𝑗=2

𝑀
𝑘𝑗
. (13)

4. Least Square Method Based on
Separate Variable Method for
Solving Optimal Control Problem

Let

𝐸 (𝐷) = (𝑀
𝑇1
−𝑀
0

𝑇1
)
2

+ (𝑀
𝑇2
−𝑀
0

𝑇2
)
2

+ ⋅ ⋅ ⋅ + (𝑀
𝑇𝑒
−𝑀
0

𝑇𝑒
)
2

= (𝑀 −𝑀
∗
)
𝑇
(𝑀 −𝑀

∗
) ,

(14)

where 𝑀 = (𝑀
𝑇1
(𝑎
1
, . . . , 𝑎

𝐿
), 𝑀

𝑇2
(𝑎
1
, . . . , 𝑎

𝐿
), . . .,

𝑀
𝑇𝑒
(𝑎
1
, . . . , 𝑎

𝐿
))
𝑇, and𝑀∗ = (𝑀0

𝑇1
,𝑀
0

𝑇2
, . . . ,𝑀

0

𝑇𝑒
)
𝑇.

For an initial diffusion parameter point 𝐷
1
(𝑎
1
, . . . , 𝑎

𝐿
),

Problem 1 can be solved iteratively by the following deduc-
tion. If 𝑎𝑖

1
, . . . , 𝑎

𝑖

𝐿
are the 𝑖th approximation and 𝛿𝑎𝑖

1
, . . . , 𝛿𝑎

𝑖

𝐿

are the 𝑖th increment of 𝑎
1
, . . . , 𝑎

𝐿
, respectively, in each step,

an increment 𝛿𝐷
𝑖
(𝛿𝑎
𝑖

1
, . . . , 𝛿𝑎

𝑖

𝐿
) will be computed as follows.

To minimize 𝐸(𝐷
𝑖
+ 𝛿𝐷
𝑖
) with 𝛿𝐷

𝑖
(𝛿𝑎
𝑖

1
, . . . , 𝛿𝑎

𝑖

𝐿
), let 𝑋 =

(𝑥
1
, . . . , 𝑥

𝐿
) = (𝑎

1
, . . . , 𝑎

𝐿
), 𝑓
𝑇𝑖
(𝑋) = 𝑀

𝑇𝑖
− 𝑀
0

𝑇𝑖
, 𝐹(𝑋) =

𝐸(𝐷), so 𝐹(𝑋) = 𝐸(𝑋) and 𝛿𝐷(𝛿𝑋) = 𝛿𝐷
𝑖
(𝛿𝑎
𝑖

1
, . . . , 𝛿𝑎

𝑖

𝐿
). If

set

𝑓
𝑖
(𝑋) = 𝑀

𝑇𝑖
−𝑀
0

𝑇𝑖

= ∫

2𝜋

0

∫

𝑟𝑁

𝑟2

𝐶
𝑇𝑖
(𝑟, 𝜃, 𝑇

𝑖
) 𝑑𝑟 𝑑𝜃 −𝑀

0

𝑖
𝑖 = 1, 2, . . . , 𝑒,

(15)
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where

𝐶
𝑇𝑖
=

𝑁

∑

𝑗=2

max{𝑙≤𝑇𝑖}

∑

𝑙=1

𝐶
𝑙𝑗 (𝑟, 𝜃, 𝑡) , 𝑟 ∈ (𝑟

𝑗
, 𝑟
𝑗+1
) , 𝑖 = 1, 2, . . . , 𝑒,

(16)

equation (15) can be written in the following form:

𝐹 (𝑥) =

𝑒

∑

𝑖=1

𝑓
2

𝑖
(𝑋) . (17)

To solve this problem, suppose 𝑋
(𝑘)

is the 𝑘th approxi-
mation and let the function 𝑓

𝑖
(𝑋) be the Taylor expansion

function at 𝑋
(𝑘)
; the minimal point 𝑋

(𝑘+1)
and the (𝑘 + 1)th

approximation can be computed by the iterative method.The
iterative formula is deduced in detail as follows.

Set

𝜙
𝑖
(𝑋) = 𝑓

𝑖
(𝑋
(𝑘)
) + ∇𝑓

𝑖
(𝑋
(𝑘)
)
𝑇
(𝑋 − 𝑋

(𝑘)
)

= ∇𝑓
𝑖
(𝑋
(𝑘)
)
𝑇
𝑋 − [∇𝑓

𝑖
(𝑋
(𝑘)
)
𝑇
𝑋
(𝑘)
− 𝑓
𝑖
(𝑋
(𝑘)
)] ,

𝑖 = 1, 2, . . . , 𝑒,

(18)

𝜙 (𝑋) =

𝑒

∑

𝑖=1

𝜙
2

𝑖
(𝑋) . (19)

We use 𝜙(𝑋) to replace 𝐹(𝑋) and compute the minimal
point of 𝜙(𝑋) to estimate the function 𝐹(𝑋). The least square
problem: min𝜙(𝑋) can be solved as follows. Set

𝐴 =
[
[
[

[

∇𝑓
1
(𝑋
(𝑘)
)
𝑇

...
∇𝑓
𝑒
(𝑋
(𝑘)
)
𝑇

]
]
]

]

=

[
[
[
[
[
[
[

[

𝜕𝑓
1
(𝑋
(𝑘)
)

𝜕𝑥
1

⋅ ⋅ ⋅
𝜕𝑓
1
(𝑋
(𝑘)
)

𝜕𝑥
𝐿

...
...

𝜕𝑓
𝑒
(𝑋
(𝑘)
)

𝜕𝑥
1

⋅ ⋅ ⋅
𝜕𝑓
𝑒
(𝑋
(𝑘)
)

𝜕𝑥
𝐿

]
]
]
]
]
]
]

]

, (20)

𝐵 =
[
[
[

[

∇𝑓
1
(𝑋
(𝑘)
)
𝑇
𝑋
(𝑘)
− 𝑓
1
(𝑋
(𝑘)
)

...
∇𝑓
𝑒
(𝑋
(𝑘)
)
𝑇
𝑋
(𝑘)
− 𝑓
𝑒
(𝑋
(𝑘)
)

]
]
]

]

= 𝐴𝑋
(𝑘)
− 𝑓
(𝑘)
,

𝑓
(𝑘)
=

[
[
[
[

[

𝑓
1
(𝑋
(𝑘)
)

𝑓
2
(𝑋
(𝑘)
)

...
𝑓
𝑒
(𝑋
(𝑘)
)

]
]
]
]

]

,

𝜕𝑓
𝑖
(𝑋
(𝑘)
)

𝜕𝑥
𝑙

= ∫

𝑟𝑁

𝑟2

∫

2𝜋

0

𝑁

∑

𝑗=1

𝑙≤𝑇𝑖

∑

𝑙=1

(
𝑀
𝑙𝑗

𝑉
𝑑

+

∞

∑

𝑛=1

2𝑀
𝑙𝑗
𝑟
𝑗

𝑉
𝑑
𝑟
𝑗+1
𝜇
(1)

𝑛 𝐽
2

0
(𝜇
(1)

𝑛 )

× 𝐽
1
(
𝑟
𝑗
𝜇
𝑛

𝑟
𝑗+1

)

× exp( − 𝐷(𝑋
(𝑘)
, 𝐶
(𝑙−1),𝑗

)

× (
𝜇
𝑛

𝑟
𝑗+1

)

2

𝑡
𝑙
)

× 𝐽
0
(
𝜇
𝑛

𝑟
𝑗+1

𝑟)
𝜕𝐷 (𝑋

(𝑘),
𝐶
𝑙−1,𝑗

)

𝜕𝑥
𝑙

× (
𝜇
𝑛

𝑟
𝑗+1

)

2

𝑡
𝑙
)𝑑𝜃𝑑𝑟.

(21)

Equation (19) can be written as

𝜙 (𝑋) = (𝐴𝑋 − 𝐵)
𝑇
(𝐴𝑋 − 𝐵) = 𝑋

𝑇
𝐴
𝑇
𝐴𝑋 − 2𝐵

𝑇
𝐴𝑋 + 𝐵

𝑇
𝐵.

(22)

In order to search the stable point of 𝜙(𝑋), set

∇𝜙 (𝑋) = 2𝐴
𝑇
𝐴𝑋 − 2𝐴

𝑇
𝐵 = 0. (23)

Taking 𝐴 and 𝐵 into the above formula, there is

𝐴
𝑇
𝐴𝑋 = 𝐴

𝑇
(𝐴𝑋
(𝑘)
− 𝑓
(𝑘)
) . (24)

Moving the right 𝐴Τ𝐴𝑋
(𝑘)

to the left hand in the above
equation, the following equation can be obtained:

𝐴
𝑇
𝐴 (𝑋 − 𝑋

(𝑘)
) = −𝐴

𝑇
𝑓
(𝑘)
. (25)

Obviously, this is a linear algebraic equation about the
function value and the first order partial derivative 𝑓

𝑖
(𝑋
(𝑘)
)

at the point 𝑋
(𝑘)
. If matrix 𝐴 is the full column rank, 𝐴𝑇𝐴 is

a symmetry positive matrix. Therefore, there exists (𝐴𝑇𝐴)−1.
We can get the stable point of 𝜙(𝑋) by (19)

𝑋
(𝑘+1)

= 𝑋
(𝑘)
− (𝐴
𝑇
𝐴)
−1

𝐴
𝑇
𝑓
(𝑘)
. (26)

Set 𝑋
(𝑘+1)

as the (𝑘 + 1)th approximation of stable point
𝐹(𝑋).

Algorithm 2 (diffusion parameter of nonlinear process).
Step 1. Give the initial point 𝑋

(1)
= (𝑎
1,(1)

, . . . , 𝑎
𝑛,(1)

) and set
𝑡
1
= 0, 𝑀

1
= 0, 𝑘 = 1, 𝑓

1
(𝑋
(𝑘)
) = 0 and the control error

𝜀 > 0, go to Step 2.

Step 2. Compute the drug concentration 𝑀
𝑖𝑗
(𝑋
(𝑘)
) and

𝐶
𝑖𝑗
(𝑋
(𝑘)
) at 𝑡
𝑖
in [𝑟
𝑗
, 𝑟
𝑗+1
] by the formula (7) and (8), obtain the

mass in all sections [𝑟
𝑗
, 𝑟
𝑗+1
] at the time 𝑡

𝑖
, and go to Step 3.



Mathematical Problems in Engineering 5

Table 1: Diffusion qualities at the different times with diffusion parameters (0.0003 and 0.0003).

Time (second) 𝑀 Time (second) 𝑀 Time (second) 𝑀

0 0 160 50.0660 300 65.0085
20 42.1695 180 52.2352 320 67.0014
40 42.2755 200 54.4820 340 68.9612
60 42.7675 220 56.6823 360 70.8841
80 43.7504 240 58.8197 1000 95.6678
100 45.5094 260 60.9205 2000 97.1432
120 47.8335 280 62.9829 3000 97.1432

Table 2: The different errors and optimization value based on initial value (0.0001 and 0.0001).

Iterated number Total error 𝛿𝑎 𝛿𝑏 Optimization value (𝑎, 𝑏)
1 2.9804 × 104 −3.0152 × 10−4 1.1501 × 10−3 (−2.0152 × 10−4, 1.2502 × 10−3)
2 8.2626 × 103 1.4436 × 10−5 1.7564 × 10−4 (−1.8708 × 10−4, 1.4258 × 10−3)
3 2.9995 × 103 1.3370 × 10−4 −2.3741 × 10−4 (−5.3387 × 10−4, 1.1884 × 10−3)
4 9.03742 × 102 1.5343 × 10−4 −3.6483 × 10−4 (1.0004 × 10−4, 8.2360 × 10−4)
5 2.3343 × 102 1.1775 × 10−4 −3.0877 × 10−4 (2.1779 × 10−4, 5.1482 × 10−4)
6 4.6960 × 10 6.0218 × 10−5 −1.6193 × 10−4 (2.7801 × 10−4, 3.5290 × 10−4)
7 5.0935 1.7408 × 10−5 −4.3911 × 10−5 (2.9542 × 10−4, 3.0898 × 10−4)
8 4.0114 3.1408 × 10−6 −6.1503 × 10−6 (2.9856× 10−4, 3.0283 × 10−4)

Step 3. Compute the mass 𝑀
𝑇𝑖
(𝑋
(𝐾)
), 𝑖 = 1, 2, . . . , 𝑒. at the

outer containerΩ \ Ω
1
by the formula (13); go to Step 4.

Step 4. According to the formula (15), compute 𝑓
𝑖
(𝑋
(𝑘)
) =

𝑀
𝑇𝑖
(𝑋
(𝑘)
) − 𝑀

0

𝑇𝑖
; get the vector: 𝑓

(𝑘)
=
[
[

[

𝑓1(𝑋(𝑘))

𝑓2(𝑋(𝑘))

...
𝑓𝑒(𝑋(𝑘))

]
]

]

. Compute

the first order partial derivative 𝑎
𝑖𝑗
= 𝜕𝑓
𝑖
(𝑋
(𝑘)
)/𝜕𝑥
𝑗
, 𝑖 =

1, 2, . . . , 𝑒, 𝑗 = 1, 2, . . . , 𝐿 by formula (21). Get the matrix
𝐴
𝑘
= (𝑎
𝑖𝑗
)
𝑒×𝐿

by the formula (20); go to Step 5.

Step 5. Compute 𝑋
(𝑘+1)

= 𝑋
(𝑘)
− (𝐴
𝑇
𝐴
𝑘
)
−1

𝐴
𝑇
𝑓
(𝑘)
; go to

Step 6.

Step 6. If ‖𝑋
(𝑘+1)

− 𝑋
(𝑘)
‖
𝐿
2 ≤ 𝜀, set 𝑋∗ = 𝑋

(𝑘+1)
and get

the optimum coefficient (𝑎
1
, . . . , 𝑎

𝐿
) = 𝑋

∗, go to Step 7;
otherwise, let 𝑘 = 𝑘 + 1, go to Step 2.

Step 7. Output the optimal diffusion (𝑎
1
, . . . , 𝑎

𝐿
) and stop the

algorithm.

5. The Numerical Example

To investigate the feasibility and the validity of the proposed
scheme, a numerical example is given in this section. The
cylinder device for the drug releasing is divided into the
large and small cylinder structures where the small container
includes the drug and the large container is filled with the
liquid. The radius of small and large cylinder devices are
0.4800 dm and 2.8399 dm, respectively, and there is 100 g of
drug in small disc vessel.When 𝑡 = 0, the inner concentration
is 138.1553 g/dm2 and the outer is 0 g/dm2. After some

diffusion process in a period of time, the inner and outer
concentration will be equal and be 3.9468 g/dm2; it is

𝐶 (𝑟, 0) =

{{

{{

{

𝑀
0

𝜋𝑅2
1

= 138.1553, 0 < 𝑟 < 𝑅
1
,

0, 𝑅
1
< 𝑟 < 𝑅

2
,

𝐶 (𝑟, 𝑇
𝑒
) = 3.9468 0 < 𝑟 < 𝑅

2
.

(27)

In the numerical example, suppose𝐷(𝐶) = 𝑎𝐶 + 𝑏 where
𝑎 and 𝑏 are the unknown constants. We firstly suppose the
given diffusion parameter (𝑎, 𝑏) to be (0.0003, 0.0003) then
compute the diffusion process to obtain the computed data
as the experiment data of the concentration shown in Table 1.
Next, the above optimal model and the optimal method
to estimate the diffusion parameter based on the optimal
control model with the separation variable method of the
drug releasing in the 2D-disc device are used to illustrate
the feasibility and the validity of the LMSV for the nonlinear
diffusion process. The following formula is given to compute
the total error in order to estimate the convergence rate:

total error (𝑘) =
𝑒

∑

𝑗=1

(𝑀
𝑇𝑗
−𝑀
0

𝑇𝑗𝑘
)
2

,

𝛿𝑎 = 𝑎
𝑘
− 𝑎
𝑘−1
, 𝛿𝑏 = 𝑏

𝑘
− 𝑏
𝑘−1
.

(28)

Supposing the space interval to be 0.012 dm and the time
interval 20 seconds; getting 25 terms in the Bessel function
and by the least square method algorithm, the optimal points
and their error values in each optimal step are given in
the Table 2. In order to illustrate the convergence of the
least square algorithm, the optimal increment 𝛿𝑎, 𝛿𝑏 and the
optimal values (𝑎, 𝑏) of the diffusion parameter are depicted
in Figures 2, 3 and 4.
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Figure 2: The overall error with iterative times on the initial value
for (0.0001 and 0.0001).

In order to illustrate the convergence of the algorithm
for diffusion parameter of nonlinear process by the least
square method by separate variables (LSMSV), we discuss
the convergence data as follows: from the second column
in Table 2 and Figure 3, the increments 𝛿𝑎 converges very
fast because their values become from −3.0152 × 10−4 to
3.1408 × 10−6 and from Table 2 and Figure 4 𝛿𝑏 varies from
1.1501 × 10−3 to −6.1503 × 10−6. From the last column in
Table 2, the optimized values 𝑎, 𝑏 also become very fast from
(−2.0152 × 10−4, 1.2502 × 10−3) to (2.9856 × 10−4, 3.0283 ×
10
−4) by only eight iterated steps. Therefore, from Table 2

and the error value in Figures 2, 3 and 4, the data show the
error and the increment 𝛿𝑎, 𝛿𝑏 convergent stately. It is easy
to illustrate the convergence of the algorithm for diffusion
parameter of nonlinear process by least square method by
separate variables idea.

In order to test the convergent velocity, we obtain the
computing time for the optimal parameters by the algorithm
in the numerical examples. The computing time is 1 minute
and 56 seconds by the algorithm for diffusion parameter of
nonlinear process. In order to test the merits of the algorithm
for diffusion parameter of nonlinear process by LSMSV, it is
hard for us to use the algorithm in the paper [9] to compute
the parameter values because the computed time is very long.
In addition, from the computing processes, it is also easy to
understand why the computing velocity becomes very high.
Because the algorithm in this paper only computes some
of the polynomial functions in each iteration to cost only
less than 2 minutes, however, the algorithm in [9] needs
to solve millions linear algebra equations in each iteration
for the nonlinear diffusion process to cost more than one
day. Therefore, from the computing convergent time and the
computational theory, we can obtain the conclusion that the
convergent velocity of algorithm for diffusion parameter of
nonlinear process by LSMSV is very fast.
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Figure 3: The error value of 𝑎 on the initial value for (0.0001 and
0.0001).
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Figure 4: The error value of 𝑏 on the initial value for (0.0001 and
0.0001).

In order to estimate the validity of the algorithm
for diffusion parameter of nonlinear process by LSMSV,
the total error values between the experiment values and the
computed values in this paper are shown in Figure 5 and the
first column in Table 2. The optimal computed drug mass
depending on the different optimal diffusion parameters and
the experiment mass are depicted in Figure 6. From the first
column in Table 2, the errors of the optimized values 𝑎, 𝑏 and
the parameters are only 0.0156 × 10−4 and 0.213 × 10−4, the
error between the optimal computed drug mass 100 g and
the experiment mass data 97.1432 g is only 2.8568 g, and the
relative error of the mass is only 2.9%.The error result shows
the algorithm for diffusion parameter of nonlinear process
by LSMSV being valid to extract the diffusion parameter
of the drug releasing in the disc devices for the nonlinear
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Figure 5: The optimization increments of (𝑎, 𝑏).
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Figure 6: Computed data in each iteration and experimental data.

diffusion process. From Figures 5 and 6 and the last optimal
diffusion parameter value (2.9856 × 10−4, 3.0283 × 10−4),
the algorithm is valid to extract the diffusion parameter of
the drug releasing for the nonlinear diffusion process in the
2D-disc devices. From the numerical example, comparing the
data of all iterative steps of the optimization values and the
experimental data, it is easy to get the conclusion that the
algorithm is the convergence and effectiveness to extract the
diffusion parameters of the nonlinear drug releasing in the
2D-disc devices.

6. Conclusion

In this paper, we propose an optimal method to extract
the diffusion parameters of the nonlinear diffusion process
of the drug releasing in the 2D-disc device based on the
separation variable method with discrete time and discrete
space. The numerical result given in the previous section
demonstrates the feasibility and validity of this algorithm
for diffusion parameter of nonlinear process by LSMSV. The
effectiveness of this optimal control model to estimate the
diffusion parameters for the nonlinear drug releasing in
the 2D-disc device is also discussed. How to establish the
theorem of the algorithm is our future work.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

This work is supported by National Natural Science Founda-
tion of China (NSFC) Grants (no. 11072041 and 61202496),
by State Key Laboratory of Simulation and Regulation
of Water Cycle in River Basin (IWHRSKL201205), by
State Key Laboratory of Structural Analysis for Industrial
Equipment, Dalian University of Technology (GZ1005), by
China Postdoctoral Science Foundation (20100480944 and
2012T50692), and by Hunan Provincial Natural Science
Foundation of China (13JJ3070, 13JJ2031).

References

[1] J. Siepmann, A. Ainaoui, J. M. Vergnaud, and R. Bodmeier,
“Calculation of the dimensions of drug-polymer devices based
on diffusion parameters,” Journal of Pharmaceutical Sciences,
vol. 87, no. 7, pp. 827–832, 1998.

[2] G. J. Crawford, C. R. Hicks, X. Lou et al., “The Chirila
Keratoprosthesis: phase I human clinical trial,” Ophthalmology,
vol. 109, no. 5, pp. 883–889, 2002.

[3] S.Wang and X. Lou, “Novel mathematicsl models for extracting
effective drug diffusivity of porous PHEMA hydrogels: from a
planar matrix into a finite external volume,” in Proceeding of the
ICEAM, Changsha, China, May 2011.

[4] M. Grassi and G. Grassi, “Mathematical modelling and con-
trolled drug delivery: matrix systems,” Current Drug Delivery,
vol. 2, no. 1, pp. 97–116, 2005.

[5] X. Lou, S. Vijayasekaran, R. Sugiharti, and T. Robertson, “Mor-
phological and topographic effects on calcification tendency of
pHEMAhydrogels,” Biomaterials, vol. 26, no. 29, pp. 5808–5871,
2005.

[6] M. B. Mellott, K. Searcy, and M. V. Pishko, “Release of protein
from highly cross-linked hydrogels of poly(ethylene glycol)
diacrylate fabricated by UV polymerization,” Biomaterials, vol.
22, no. 9, pp. 929–941, 2001.

[7] J. Zhu and Q. Zeng, “A mathematical theoretical frame for
control of air pollution,” Science in China. Series D, vol. 32, pp.
864–870, 2002.



8 Mathematical Problems in Engineering

[8] P. E. Price Jr., S. Wang, and I. H. Romdhane, “Extracting
effective diffusionparameters fromdrying experiments,”AIChE
Journal, vol. 43, no. 8, pp. 1925–1934, 1997.

[9] Y. Li, Z. Xiang, and S. Wang, “Identifying time-dependent
drug diffusion parameters in the Cylindrical tube by the finite
difference method,” in Proceeding of the ICEAM, Changsha,
China, May 2011.

[10] D. Parra-Guevara and Y. N. Skiba, “Elements of the mathemat-
ical modeling in the control of pollutants emissions,” Ecological
Modelling, vol. 167, no. 3, pp. 263–275, 2003.

[11] J. C. Fu, C. Hagemeir, and D. L. Moyer, “An unified mathemat-
ical model for diffusion from drug polymer composite tablets,”
Journal of Biomedical Materials Research, vol. 10, no. 5, pp. 743–
758, 1976.

[12] A. Hukka, “The effective diffusion coefficient and mass transfer
coefficient of nordic softwoods as calculated from direct drying
experiments,” Holzforschung, vol. 53, no. 5, pp. 534–540, 1999.

[13] C. R. Hicks, G. J. Crawford, X. Lou, D. T. Tan et al., “Cornea
replacement using a synthetic hydrogel cornea, AlphaCor:
device, preliminary outcomes and complications,” Eye, vol. 17,
pp. 385–392, 2003.

[14] Y. Li, Z. Xiang, X. Xiang, and S. Wang, “A computer algorithm
for optimizing to extract effective diffusion coefficients of drug
delivery from cylinders,” Information Technology Journal, vol. 9,
no. 8, pp. 1647–1652, 2010.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


