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This paper is concerned with the optimal distributed impulsive controller design for globally exponential synchronization of
nonlinear dynamical networks with coupling delay. By the Lyapunov-Razumikhin method, a novel criterion is proposed to
guarantee the global exponential synchronization of the coupled delayed network with distributed impulsive control in terms of
matrix inequalities. The sum of coupling strengths of the distributed impulsive control is minimized to save the control effort.
Finally, the effectiveness of the proposed method has been demonstrated by some simulations.

1. Introduction

During the last decade, a great amount of effort has been
devoted to the study of synchronization of coupled networks
due to their applications inmany fields including secure com-
munication, neural networks [1], and information science [2–
10]. It is well known that there are three primary methods to
be used to study the synchronization of the coupled network,
that is, the Master Stability Function method, Lyapunov’s
direct method, and Connection Graph Stability method.
Based on these methods, many research results have been
reported on the synchronization from different points of
view. Bounded 𝐻

∞
synchronization and state estimation

for discrete time-varying stochastic complex networks over
a finite horizon have been investigated in [2]. A time-
varying complex dynamical networkmodel and its controlled
synchronization criteria have been considered in [5]. In [6],
pinning synchronization of directed and undirected complex
dynamical networks has been studied. An adaptive feedback
controller has been proposed in [3] to synchronize a general
complex dynamical network with delayed nodes.

In recent years, there are many control schemes that have
been introduced to realize the network synchronization. For
example, robust impulsive synchronization [11, 12], pinning

control [13], and adaptive control [14]. In impulsive control,
the impulse signal is input into the nodes only at impul-
sive instance. The essential benefit of the impulsive control
approach is derived from the fact that such control requires
much less information, computational power, and bandwidth
in sensing data communications in coupled networks and
increases the robustness against the disturbance. Hence, the
impulsive control is more effective comparedwith the control
approaches using continuous measurement. In [13, 15–17],
impulsive controllers for the stabilization or synchronization
of complex dynamical networks are applied. Considering
the impulsive effect as disturbance of the system, many
researchers have done investigation to analyze the bound of
the impulsive interval, parameter of the node, and topology
of the network [11, 18–22]. In these references, the impulsive
controller or disturbance only effect on the local sensor
or node and the coupling of the impulsive effect has not
been considered. However, in this paper, the distributed
impulsive controller is designed to synchronize the coupled
network not only based on its local measurement but also
on its neighboring measurement according to the topology
of distributed impulsive controller. Although the synchro-
nization of coupled networks has been investigated inten-
sively in recent years, however, to our best knowledge, the
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distributed impulsive control for nonlinear coupled networks
has received little attention, in particular the optimal of the
coupling strength. This motivates the current study.

In this paper, we aim to deal with the synchronization
of nonlinear coupled networks with time-varying delay via
distributed impulsive control and specify the minimum cou-
pling strengths of the corresponding links in the distributed
controller topology. The rest of the paper is organized as
follows. In Section 2, the problem we are considering is
described and some useful lemmas and definitions are pre-
sented. Section 3 provides the main results of this paper. The
distributed impulsive controller is designed to synchronize
the coupled networks with time-varying delay and the sum
of the coupling strength of the controller is minimum. An
example is presented in Section 4 and some simulations
are presented to illustrate the effectiveness of the proposed
methods. Finally, the conclusions are given in Section 5.

Notations. For vector 𝑥 = col(𝑥
1
, . . . , 𝑥

𝑛
) ∈ R𝑛 and matrix

𝐴 = (𝑎
𝑖𝑗
)
𝑛×𝑛

∈ R𝑛×𝑛, ‖ 𝑥 ‖ and ‖ 𝐴 ‖ denote 2-norms of
𝑥 and 𝐴, respectively. A real matrix 𝑃 > 0 (𝑃 < 0) denotes
𝑃 being a positive (negative) definite matrix, and 𝐴 > 𝐵

means 𝐴 − 𝐵 > 0. 𝑀⊤ denotes the transpose of matrix 𝑀.
The identity matrix of order𝑚 is denoted as 𝐼

𝑚
(or simply 𝐼 if

no confusion arises). Moreover, matrices are assumed to have
compatible dimensions if not explicitly stated. ∗ denotes the
symmetric block of a symmetric matrix, and diag{⋅} denotes
the block diagonal matrix. 𝜆max(𝑃) and 𝜆min(𝑃) are used to
denote the maximum and minimum eigenvalue of matrix 𝑃,
respectively. N is the set of all positive natural numbers.

2. Preliminaries and Problem Formulation

We consider a dynamical network consisting of 𝑁 linearly
coupled oscillators. Each node of the network is an 𝑛-
dimensional dynamical system, which is described by

𝑥̇
𝑖
(𝑡) = 𝑓 (𝑥

𝑖
(𝑡)) +

𝑁

∑

𝑗=1

𝑎
𝑖𝑗
Γ𝑥
𝑗
(𝑡 − 𝜏 (𝑡)) + 𝑢

𝑖
(𝑡) ,

𝑖 = 1, 2, . . . , 𝑁,

(1)

where 𝑥
𝑖
(𝑡) = (𝑥

𝑖1
(𝑡), 𝑥
𝑖2
(𝑡), . . . , 𝑥

𝑖𝑛
(𝑡))
⊤

∈ R𝑛 is the state
of the 𝑖th oscillator, 𝑓(𝑥

𝑖
(𝑡)) ∈ R𝑛 → R𝑛 is a continuous

function, and there exists a unique continuous solution for
any initial condition. Suppose that the uniform Lipschitz
condition holds; that is, for any 𝑥, 𝑦 ∈ R𝑛. Then, there exists
a positive constant 𝐿 > 0 such that ‖𝑓(𝑥) − 𝑓(𝑦)‖ ≤ 𝐿‖𝑥 −

𝑦‖. Γ ∈ R𝑛×𝑛 is the inner-coupling matrix, and 𝑎
𝑖𝑗
is the

coupling strength from the 𝑗th oscillator to the 𝑖th oscillator,
where 𝑎

𝑖𝑗
> 0 means that the 𝑖th oscillator is coupled with

the 𝑗th oscillator directly and 𝑎
𝑖𝑗

= 0 means that the 𝑖th
oscillator is decoupled from the 𝑗th oscillator. Suppose that
the communication topology is strongly connected [23]. 𝜏(𝑡)
is the time delay between nodes which satisfies 𝜏(𝑡) ≤ 𝜏

[13, 24–26]. Moreover, 𝑢
𝑖
(𝑡) ∈ R𝑛 are the controllers designed

for the network.
The topology of the coupled networks in (1) is described

as a directed graph G = (V,E) of order 𝑁 with the set

of nodes V = {1, 2, . . . , 𝑁}, and the elements in V are
the oscillator’s indexes. E is a set of directed link sets, and
when oscillator 𝑖 is coupled with oscillator 𝑗 directly, there
is a directed link (𝑖, 𝑗) ∈ E from node 𝑗 to node 𝑖; that is,
E = {(𝑖, 𝑗) | 𝑎

𝑖𝑗
> 0, ∀𝑖, 𝑗 = 1, 2, . . . , 𝑁}. The set of neighbors

of vertex 𝑖 is denoted by N
𝑖
= {𝑗 ∈ V : (𝑖, 𝑗) ∈ E}. In the

following, we introduce some definitions and lemma that are
essential for the development of main results in this paper.

Definition 1. The coupled network (1) is said to be globally
exponentially synchronous if there exist constants 𝛾 > 0 and
𝜇 > 0, such that for any initial conditions the inequality

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑖
(𝑡) − 𝑥

𝑗
(𝑡)

󵄩󵄩󵄩󵄩󵄩

2

≤ 𝛾𝑒
−𝜇𝑡 (2)

holds for 𝑡 ≥ 0.

Definition 2. A coupling matrixA is defined as

A =

[
[
[
[
[
[
[
[
[
[
[
[

[

−

𝑁

∑

𝑗=2

𝑎
1𝑗

𝑎
12

⋅ ⋅ ⋅ 𝑎
1𝑁

𝑎
21

−

𝑁

∑

𝑗=1,𝑗 ̸= 2

𝑎
2𝑗

⋅ ⋅ ⋅ 𝑎
2𝑁

... d d d

𝑎
𝑁1

𝑎
𝑁2

⋅ ⋅ ⋅ −

𝑁−1

∑

𝑗=1

𝑎
𝑁𝑗

]
]
]
]
]
]
]
]
]
]
]
]

]

= ∑

(𝑖,𝑗)∈E

𝑎
𝑖𝑗
𝐴
𝑖𝑗
,

(3)

where 𝐴
𝑖𝑗

∈ R𝑁×𝑁 denotes the constant matrices corre-
sponding to the directed links (𝑖, 𝑗) and each𝐴

𝑖𝑗
only contains

two nonzero entries, that is, −1 at the 𝑖𝑖th entry and 1 at the
𝑖𝑗th entry. From Definition 2, the coupled network (1) can be
rewritten in a compact form:

𝑥̇ (𝑡) = 𝑓 (𝑥 (𝑡)) +A ⊗ Γ 𝑥 (𝑡 − 𝜏 (𝑡)) + 𝑢 (𝑡) , (4)

where 𝑥(𝑡) = (𝑥
⊤

1
(𝑡), 𝑥
⊤

2
(𝑡), . . . , 𝑥

⊤

𝑁
(𝑡))
⊤, 𝑓(𝑥(𝑡)) = (𝑓(𝑥

⊤

1
(𝑡)),

𝑓(𝑥
⊤

2
(𝑡)), . . . , 𝑓(𝑥

⊤

𝑁
(𝑡)))
⊤, and 𝑢(𝑡) = [𝑢

⊤

1
(𝑡), 𝑢
⊤

2
(𝑡), . . . ,

𝑢
⊤

𝑁
(𝑡)]
⊤. Define matrices 𝐺 and𝑊 as

𝐺 =

[
[
[
[

[

1 −1 0 ⋅ ⋅ ⋅ 0

0 d d d 0

... d 1 −1
...

0 ⋅ ⋅ ⋅ 0 1 −1

]
]
]
]

]

∈ R
𝑁−1×𝑁

,

𝑊 =

[
[
[
[
[
[

[

1 1 1 1

0 1 ⋅ ⋅ ⋅ 1

0 0 d
...

0 0 ⋅ ⋅ ⋅ 1

0 0 ⋅ ⋅ ⋅ 0

]
]
]
]
]
]

]

∈ R
𝑁×𝑁−1

,

(5)

which satisfies

𝐺𝑊 = 𝐼
𝑁−1

, A = A𝑊𝐺, 𝐺 ⊗ 𝐼
𝑚

[
[

[

𝑥
1

...
𝑥
𝑁

]
]

]

=
[
[

[

𝑒
1

...
𝑒
𝑁−1

]
]

]

,

(6)
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where 𝑒
𝑖
= 𝑥
𝑖
− 𝑥
𝑖+1

, 𝑖 = 1, . . . , 𝑁 − 1. By the multiplication of
𝐺 ⊗ 𝐼
𝑚
on (4), one has

̇𝑒 (𝑡) = 𝐹 (𝑥 (𝑡)) + ((𝐺A𝑊) ⊗ Γ) 𝑒 (𝑡 − 𝜏 (𝑡)) + 𝑢 (𝑡) , (7)

where

𝑒 (𝑡) =
[
[

[

̇𝑒
1
(𝑡)

...
̇𝑒
𝑁−1

(𝑡)

]
]

]

,

𝐹 (𝑥 (𝑡)) =
[
[

[

𝑓 (𝑥
1
) − 𝑓 (𝑥

2
)

...
𝑓 (𝑥
𝑁−1

) − 𝑓 (𝑥
𝑁
)

]
]

]

,

𝑒 (𝑡 − 𝜏 (𝑡)) =
[
[

[

𝑒
1
(𝑡 − 𝜏 (𝑡))

...
𝑒
𝑁−1

(𝑡 − 𝜏 (𝑡))

]
]

]

,

𝑢 (𝑡) =
[
[

[

𝑢
1
(𝑡) − 𝑢

2
(𝑡)

...
𝑢
𝑁−1

(𝑡) − 𝑢
𝑁
(𝑡)

]
]

]

.

(8)

In order to achieve synchronization of coupled network
(1) and inspired by the controller proposed in [27], a dis-
tributed impulsive controller for the 𝑖th node is designed as

𝑢
𝑖
(𝑡) =

∞

∑

𝑘=1

∑

𝑗∈N𝑖

V
𝑖𝑗
Γ (𝑥
𝑗
(𝑡) − 𝑥

𝑖
(𝑡)) 𝛿 (𝑡 − 𝑡

𝑘
) ,

𝑖 = 1, 2, . . . , 𝑁,

(9)

where V
𝑖𝑗
denotes the coupling strength corresponding to the

directed links (𝑖, 𝑗), which need to be designed.The impulsive
instant sequence {𝑡

𝑘
}
∞

0
satisfies 0 ≤ 𝑡

0
< 𝑡
1
< 𝑡
2
< ⋅ ⋅ ⋅ < 𝑡

𝑘
<

⋅ ⋅ ⋅ , lim
𝑘→∞

𝑡
𝑘
= ∞. 𝛿(⋅) is the Dirac impulsive function; that

is,𝛿(𝑡) = 0 for 𝑡 ̸= 0, and∫
∞

−∞

𝛿(𝑡)𝑑𝑡 = 1. Inmany applications,
the Dirac delta function is usually used to model an impulse.
Taking integral on both sides of (1) from 𝑡

𝑘
−ℎ to 𝑡

𝑘
+ℎ, where

ℎ → 0
+, one has

Δ𝑥
𝑖
(𝑡
𝑘
) = ∑

𝑗∈N𝑖

V
𝑖𝑗
Γ (𝑥
𝑗
(𝑡
𝑘
) − 𝑥
𝑖
(𝑡
𝑘
)) , (10)

where Δ𝑥
𝑖
(𝑡
𝑘
) = 𝑥
𝑖
(𝑡
+

𝑘
) − 𝑥
𝑖
(𝑡
−

𝑘
), lim
ℎ→0

+𝑥
𝑖
(𝑡
𝑘
− ℎ) = 𝑥

𝑖
(𝑡
−

𝑘
),

and lim
ℎ→0

+𝑥
𝑖
(𝑡
𝑘
+ ℎ) = 𝑥

𝑖
(𝑡
+

𝑘
), with discontinuity instants

0 ≤ 𝑡
0
< 𝑡
1
< 𝑡
2
< ⋅ ⋅ ⋅ < 𝑡

𝑘
< ⋅ ⋅ ⋅ . Without loss of generality,

it is assumed that 𝑥
𝑖
(𝑡
𝑘
) = 𝑥

𝑖
(𝑡
−

𝑘
) = lim

ℎ→0
+𝑥
𝑖
(𝑡
𝑘
− ℎ); that

is, 𝑥
𝑖
(𝑡) is left continuous at 𝑡 = 𝑡

𝑘
. Equation (10) implies that

the node 𝑖 will suddenly update its state variables not only
according to the state variables of itself but also its neighbors
at instant 𝑡

𝑘
.

Since the distributed controller can use the original
topology of the coupled network andwill not cause additional
effort in building new links, the topology of the distributed
controller is designed as the same with the coupled network

(1). Hence, the coupling matrix of the distributed impulsive
controller can be defined as

V =

[
[
[
[
[
[
[
[
[
[
[
[

[

−

𝑁

∑

𝑗=2

V
1𝑗

V
12

⋅ ⋅ ⋅ V
1𝑁

V
21

−

𝑁

∑

𝑗=1,𝑗 ̸= 2

V
2𝑗

⋅ ⋅ ⋅ V
2𝑁

... d d d

V
𝑁1

V
𝑁2

⋅ ⋅ ⋅ −

𝑁−1

∑

𝑗=1

V
𝑁𝑗

]
]
]
]
]
]
]
]
]
]
]
]

]

= ∑

(𝑖,𝑗)∈E

V
𝑖𝑗
𝐴
𝑖𝑗
,

(11)

where 𝐴
𝑖𝑗

∈ R𝑁×𝑁 is defined in (3). Then, one can rewrite
(10) into a compact form:

Δ𝑥 (𝑡
𝑘
) = (V ⊗ Γ) 𝑥 (𝑡

𝑘
) , (12)

where Δ𝑥
⊤

(𝑡
𝑘
) = (Δ𝑥

1
(𝑡
𝑘
), Δ𝑥
2
(𝑡
𝑘
), . . . , Δ𝑥

𝑁
(𝑡
𝑘
))
⊤, 𝑥⊤(𝑡

𝑘
) =

(𝑥
1
(𝑡
𝑘
), 𝑥
2
(𝑡
𝑘
), . . . , 𝑥

𝑁
(𝑡
𝑘
))
⊤. By the multiplication of 𝐺 ⊗ 𝐼

𝑚

on (12), one has

Δ𝑒 (𝑡
𝑘
) = ((𝐺V𝑊) ⊗ Γ) 𝑒 (𝑡

𝑘
) , (13)

where Δ𝑒(𝑡
𝑘
) = (Δ𝑒

⊤

1
(𝑡
𝑘
), Δ𝑒
⊤

2
(𝑡
𝑘
), . . . , Δ𝑒

⊤

𝑁−1
(𝑡
𝑘
))
⊤, 𝑒(𝑡
𝑘
) =

(𝑒
⊤

1
(𝑡
𝑘
), 𝑒
⊤

2
(𝑡
𝑘
), . . . , 𝑒

⊤

𝑁−1
(𝑡
𝑘
))
⊤, Δ𝑒
𝑖
(𝑡
𝑘
) = Δ𝑥

𝑖
(𝑡
𝑘
) − Δ𝑥

𝑖+1
(𝑡
𝑘
),

and 𝑒
𝑖
(𝑡
𝑘
) = 𝑥
𝑖
(𝑡
𝑘
) − 𝑥
𝑖+1

(𝑡
𝑘
), 𝑖 = 1, 2, . . . , 𝑁 − 1.

From (7) and (13), the impulsively controlled error system
can be described by the following impulsive differential
equation:

̇𝑒 (𝑡) = 𝐹 (𝑥 (𝑡)) + ((𝐺A𝑊) ⊗ Γ) 𝑒 (𝑡 − 𝜏 (𝑡)) , 𝑡 ̸= 𝑡
𝑘
,

Δ𝑒 (𝑡
𝑘
) = ((𝐺V𝑊) ⊗ Γ) 𝑒 (𝑡

𝑘
) ,

𝑒 (𝑡
0
+ 𝜃) = 𝜙 (𝜃) , −𝜏 ≤ 𝜃 ≤ 0,

(14)

where 𝜙 ∈ C([−𝜏, 0],R𝑛).

Lemma 3 (see [28]). For matrices 𝐴, 𝐵, 𝐶, and 𝐷 with
appropriate dimensions, one has

(𝐴 ⊗ 𝐵)
⊤

= 𝐴
⊤

⊗ 𝐵
⊤

,

𝐴 ⊗ (𝐵 + 𝐶) = 𝐴 ⊗ 𝐵 + 𝐴 ⊗ 𝐶,

(𝐴 ⊗ 𝐵) (𝐶 ⊗ 𝐷) = 𝐴𝐶 ⊗ 𝐵𝐷,

(𝐴 ⊗ 𝐵)
−1

= 𝐴
−1

⊗ 𝐵
−1

.

(15)

In the following section, the exponential synchronization
of coupled networks with distributed impulsive control is
investigated based on this model.

3. Main Results

In this section, a novel contradiction method is proposed to
analyze the global exponential synchronization of system (1)
to obtain an optimal distributed impulsive control law.
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Theorem 4. Let 𝜌 = sup
𝑘∈N{𝑡𝑘 − 𝑡

𝑘−1
} < ∞, given positive

scalars 𝛼, and 0 < 𝛾 < 1, if there exists matrix 𝑃 > 0, matrix
V, and positive scalar 𝜀, such that the following inequalities

[
[
[

[

𝜀𝐿 + (
𝛼

𝛾
+
ln 𝛾

𝜌
)𝑃 𝑃 ((𝐺A𝑊) ⊗ Γ) 𝑃

∗ −𝛼𝑃 0

∗ ∗ −𝜀𝐼

]
]
]

]

< 0, (16)

[
−𝛾𝑃 (𝐼 + (𝐺V𝑊) ⊗ Γ)

⊤

𝑃

∗ −𝑃
] < 0, (17)

hold; then the coupled network (1) can achieve global exponen-
tial synchronization.

Proof. In the following, for convenience, we assume 𝑡
0
= 0.

For 𝜙 ∈ C([−𝜏, 0],R𝑛), we denote the solution 𝑒(𝑡, 𝑡
0
, 𝜙) of

(14) by 𝑒(𝑡). Consider a Lyapunov function candidate for the
error dynamic system (14) as

𝑉 (𝑡) = 𝑒
⊤

(𝑡) 𝑃𝑒 (𝑡) , (18)

where𝑃 > 0. Calculating theDini derivative of𝑉(𝑡) along the
solution of the system (14) for 𝑡 ∈ (𝑡

𝑘−1
, 𝑡
𝑘
], 𝑘 ∈ N, one has

𝐷𝑉 (𝑡) = 2𝑒
⊤

(𝑡) 𝑃 (𝐹 (𝑥 (𝑡)) + ((𝐺A𝑊) ⊗ Γ) 𝑒 (𝑡 − 𝜏 (𝑡)))

≤ 𝑒
⊤

(𝑡) (
1

𝜀
𝑃
2

+ 𝜀𝐿) 𝑒 (𝑡)

+ 2𝑒
⊤

(𝑡) 𝑃 ((𝐺A𝑊) ⊗ Γ) 𝑒 (𝑡 − 𝜏 (𝑡)) ,

(19)

where 𝐿 = 𝐼
𝑁−1

⊗ 𝐿
2. Noting that 0 < 𝛾 < 1 and inequality

(16), there exist positive scalars ℎ, 𝜇, and 𝜀, where ℎ + 𝛾 < 1,
such that the following linear matrix inequality is satisfied:

[
[
[

[

𝜀𝐿 + (
𝛼

𝛾
+
ln (𝛾 + ℎ)

𝜌
+ 𝜇)𝑃 𝑃 ((𝐺A𝑊) ⊗ Γ) 𝑃

∗ −𝛼𝑒
−𝜇𝜏

𝑃 0

∗ ∗ −𝜀𝐼

]
]
]

]

< 0.

(20)

From (17), one has

(𝐼 + (𝐺V𝑊) ⊗ Γ)
⊤

𝑃 (𝐼 + (𝐺V𝑊) ⊗ Γ) − 𝛾𝑃 < 0. (21)

Hence,

𝑉 (𝑡
+

𝑘
) = 𝑒
⊤

(𝑡
+

𝑘
) 𝑃𝑒 (𝑡

+

𝑘
)

= 𝑒
⊤

(𝑡
𝑘
) (𝐼 + (𝐺V𝑊) ⊗ Γ)

⊤

× 𝑃 (𝐼 + (𝐺V𝑊) ⊗ Γ) 𝑒 (𝑡
𝑘
)

≤ 𝛾𝑒
⊤

(𝑡
𝑘
) 𝑃𝑒 (𝑡

𝑘
) = 𝛾𝑉 (𝑡

𝑘
) .

(22)

LetW(𝑡) = 𝑒
𝜇𝑡

𝑉(𝑡); then

Ẇ (𝑡) = 𝜇𝑒
𝜇𝑡

𝑉 (𝑡) + 𝑒
𝜇𝑡

𝑉 (𝑡) , 𝑡 ∈ [𝑡
𝑘−1

, 𝑡
𝑘
) , 𝑘 ∈ N. (23)

Let ] > 𝜆max(𝑃)/𝛾𝜆min(𝑃) be a fixed number. In the
following, we will prove thatW(𝑡) < 𝜆min(𝑃)]‖𝜙‖

2, 𝑡 ≥ 𝑡
0
−𝜏.

Note that

W (𝑡
0
+ 𝜃) ≤ 𝜆max (𝑃)

󵄩󵄩󵄩󵄩𝜙
󵄩󵄩󵄩󵄩

2

< 𝛾𝜆min (𝑃) ]
󵄩󵄩󵄩󵄩𝜙

󵄩󵄩󵄩󵄩

2

< 𝜆min (𝑃) ]
󵄩󵄩󵄩󵄩𝜙

󵄩󵄩󵄩󵄩

2

,

(24)

for −𝜏 ≤ 𝜃 ≤ 0. We will first prove that

W (𝑡) < 𝜆min (𝑃) ]
󵄩󵄩󵄩󵄩𝜙

󵄩󵄩󵄩󵄩

2

, for 𝑡 ∈ (𝑡
0
, 𝑡
1
) , (25)

via contradiction. Suppose this is not the case; that is, there
exists a 𝑡 ∈ (𝑡

0
, 𝑡
1
) such that W(𝑡) ≥ 𝜆min(𝑃)]‖𝜙‖

2. Set 𝑡∗ =

inf{𝑡 ∈ (𝑡
0
, 𝑡
1
) : W(𝑡) ≥ 𝜆min(𝑃)]‖𝜙‖

2

}; then one has

W (𝑡
∗

) = 𝜆min (𝑃) ]
󵄩󵄩󵄩󵄩𝜙

󵄩󵄩󵄩󵄩

2

, 𝑡
∗

∈ (𝑡
0
, 𝑡
1
) . (26)

Noticing (24), one has W(𝑡
0
) < 𝛾𝜆min(𝑃)]‖𝜙‖

2. Set 𝑡 =

sup{𝑡 ∈ (𝑡
0
, 𝑡
∗

) : W(𝑡) ≤ 𝛾𝜆min(𝑃)]‖𝜙‖
2

}; then one has

W (𝑡) = 𝛾𝜆min (𝑃) ]
󵄩󵄩󵄩󵄩𝜙

󵄩󵄩󵄩󵄩

2

, 𝑡 ∈ (𝑡
0
, 𝑡
∗

) , (27)

W (𝑡) ≥ 𝛾𝜆min (𝑃) ]
󵄩󵄩󵄩󵄩𝜙

󵄩󵄩󵄩󵄩

2

≥ 𝛾W (𝑡 + 𝜃) ,

𝜃 ∈ [−𝜏, 0] for 𝑡 ∈ (𝑡, 𝑡
∗

) .

(28)

Hence, one has that, for 𝑡 ∈ (𝑡, 𝑡
∗

),

Ẇ (𝑡)

≤ 𝜇𝑒
𝜇𝑡

𝑉 (𝑡) + 𝑒
𝜇𝑡

𝑉̇ (𝑡)

+ (
𝛼

𝛾
W (𝑡) − 𝛼W (𝑡 − 𝜏 (𝑡)))

≤ 𝑒
𝜇𝑡

(𝑒
⊤

(𝑡) 𝜇𝑃𝑒 (𝑡))

+ 𝑒
𝜇𝑡

(𝑒
⊤

(𝑡) (
1

𝜀
𝑃
2

+ 𝜀𝐿) 𝑒 (𝑡) + 2𝑒
⊤

(𝑡)

× 𝑃 ((𝐺A𝑊) ⊗ Γ) 𝑒 (𝑡 − 𝜏 (𝑡)) )

+ 𝑒
𝜇𝑡

(
𝛼

𝛾
𝑒
⊤

(𝑡) 𝑃𝑒 (𝑡) − 𝛼𝑒
−𝜇𝜏

𝑒
⊤

(𝑡 − 𝜏 (𝑡)) 𝑃𝑒 (𝑡 − 𝜏 (𝑡)))

≤ 𝑒
𝜇𝑡

𝜉
⊤

(𝑡)

×[

[

1

𝜀
𝑃
2

+ 𝜀𝐿 + (
𝛼

𝛾
+
ln (𝛾 + ℎ)

𝜌
+ 𝜇)𝑃 𝑃 ((𝐺A𝑊) ⊗ Γ)

∗ −𝛼𝑒
−𝜇𝜏

𝑃

]

]

× 𝜉 (𝑡) + 𝛾
1
W (𝑡) ,

(29)

where 𝛾
1
= − ln(𝛾+ℎ)/𝜌, 𝜉⊤(𝑡) = [𝑒

⊤

(𝑡), 𝑒
⊤

(𝑡−𝜏(𝑡))]. Noticing
(20), one has

Ẇ (𝑡) ≤ 𝛾
1
W (𝑡) , 𝑡 ∈ [𝑡, 𝑡

∗

] ; (30)
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then

W (𝑡
∗

) ≤ W (𝑡) 𝑒
𝛾1(𝑡
∗
−𝑡)

< 𝛾𝜆min (𝑃) ]
󵄩󵄩󵄩󵄩𝜙

󵄩󵄩󵄩󵄩

2

𝑒
𝛾1𝜌; (31)

the last inequality is derived by using (27) and 𝑡−𝑡
∗

< 𝜌. Since
𝛾𝑒
𝛾1𝜌 < 1, inequality (31) becomes

W (𝑡
∗

) < 𝜆min (𝑃) ]
󵄩󵄩󵄩󵄩𝜙

󵄩󵄩󵄩󵄩

2

, (32)

which contradict to (26). Nowwe have proved that inequality
(25) holds. Next, we assume that

W (𝑡) < 𝜆min (𝑃) ]
󵄩󵄩󵄩󵄩𝜙

󵄩󵄩󵄩󵄩

2

, for 𝑡 ∈ [𝑡
0
− 𝜏, 𝑡
𝑚
] , 𝑚 ∈ N.

(33)

We want to prove that

W (𝑡) < 𝜆min (𝑃) ]
󵄩󵄩󵄩󵄩𝜙

󵄩󵄩󵄩󵄩

2

, for 𝑡 ∈ (𝑡
𝑚
, 𝑡
𝑚+1

] . (34)

Suppose this is not the case; that is, there exists a 𝑡 ∈ (𝑡
𝑚
, 𝑡
𝑚+1

]

such that

W (𝑡) ≥ 𝜆min (𝑃) ]
󵄩󵄩󵄩󵄩𝜙

󵄩󵄩󵄩󵄩

2

. (35)

Set 𝑡∗ = inf{𝑡 ∈ (𝑡
𝑚
, 𝑡
𝑚+1

] : W(𝑡) ≥ 𝜆min(𝑃)]‖𝜙‖
2

}; then

W (𝑡
∗

) = 𝜆min (𝑃) ]
󵄩󵄩󵄩󵄩𝜙

󵄩󵄩󵄩󵄩

2

. (36)

From (22) and (33), we have

W (𝑡
+

𝑚
) ≤ 𝛾W (𝑡

𝑚
) < 𝛾𝜆min (𝑃) ]

󵄩󵄩󵄩󵄩𝜙
󵄩󵄩󵄩󵄩

2

. (37)

Set 𝑡 = sup{𝑡 ∈ (𝑡
𝑚
, 𝑡
∗

] : W(𝑡) ≤ 𝛾𝜆min(𝑃)]‖𝜙‖
2; thenW(𝑡) =

𝛾𝜆min(𝑃)]‖𝜙‖
2, and W(𝑡) ≥ 𝛾𝜆min(𝑃)]‖𝜙‖

2

≥ 𝛾W(𝑡 + 𝜃) for
𝑡 ∈ [𝑡, 𝑡

∗

]. One has

Ẇ (𝑡)

≤ 𝜇𝑒
𝜇𝑡

𝑉 (𝑡) + 𝑒
𝜇𝑡

𝑉̇ (𝑡) + (
𝛼

𝛾
W (𝑡) − 𝛼W (𝑡 − 𝜏 (𝑡)))

≤ 𝑒
𝜇𝑡

𝜉
⊤

(𝑡)

×[

[

1

𝜀
𝑃
2

+ 𝜀𝐿 + (
𝛼

𝛾
+
ln (𝛾 + ℎ)

𝜌
+ 𝜇)𝑃 𝑃 ((𝐺A𝑊) ⊗ Γ)

∗ −𝛼𝑒
−𝜇𝜏

𝑃

]

]

× 𝜉 (𝑡) + 𝛾
1
W (𝑡)

≤ 𝛾
1
W (𝑡) ,

(38)

for 𝑡 ∈ [𝑡, 𝑡
∗

]. Hence,

W (𝑡
∗

) ≤ W (𝑡) 𝑒
𝛾1(𝑡
∗
−𝑡)

≤ 𝛾𝜆min (𝑃) ]
󵄩󵄩󵄩󵄩𝜙

󵄩󵄩󵄩󵄩

2

𝑒
𝛾1𝜌

< 𝜆min (𝑃) ]
󵄩󵄩󵄩󵄩𝜙

󵄩󵄩󵄩󵄩

2

,

(39)

which yields a contradiction to (36). Therefore, inequality
(34) holds. By mathematical induction we have

W (𝑡) < 𝜆min (𝑃) ]
󵄩󵄩󵄩󵄩𝜙

󵄩󵄩󵄩󵄩

2

, for 𝑡 ≥ 𝑡
0
. (40)

On the other hand, note that 𝑉(𝑡) ≥ 𝜆min(𝑃)‖𝑒(𝑡)‖
2; one has

󵄩󵄩󵄩󵄩𝑒(𝑡, 𝑡0, 𝜙)
󵄩󵄩󵄩󵄩

2

< ]󵄩󵄩󵄩󵄩𝜙
󵄩󵄩󵄩󵄩

2

𝑒
−𝜇(𝑡−𝑡0); (41)

thus from Definition 1, the coupled network (1) is globally
synchronized under the distributed controller (9).

Remark 5. Theorem 4 outlines the principle of determining
the distributed controller gains. However, it does not provide
an optimal coupling strength. Next, the sum of all coupling
strengths is minimized by solving the following optimisation
problem:

min
𝑃,V𝑖𝑗

∑

(𝑖,𝑗)∈E

V
𝑖𝑗

subject to (16) , (17) .

(42)

Remark 6. When the coupled network (1) is given, then
the coupling strength 𝑎

𝑖𝑗
is known; consequently, 𝐴

𝑖𝑗
is also

known. The topology of the distributed controller can be
designed as the same with coupled network (1). Only the
coupling strength V

𝑖𝑗
needs to be determined. Our aim is to

optimize the coupling strength of the controller and make
the sumof all coupling strengths ∑

(𝑖,𝑗)∈E V
𝑖𝑗
beingminimized.

Since 𝑃 and V are unknown matrices, inequality (17) is not
linear matrix inequality and cannot be solved efficiently. We
will propose the following algorithm to find a suboptimal
solution of the V

𝑖𝑗
.

Step 1. Let the positive matrix 𝑃 = 𝐼, and let 𝛽 be a small
positive scalar.

Step 2. Solve the linear matrix inequality (17); one will have
V
𝑖𝑗
.

Step 3. Using the value of V
𝑖𝑗

obtained by Step 2, take
a positive matrix 𝑃that is to be determined. Solving the
optimization problem as follows:

max
𝑃

𝛿

[
[
[

[

𝜀𝐿 + (
𝛼

𝛾
+
ln 𝛾

𝜌
)𝑃 𝑃 ((𝐺A𝑊) ⊗ Γ) 𝑃

∗ −𝛼𝑃 0

∗ 0 −𝜀𝐼

]
]
]

]

< 0,

𝑙 = 1, 2, . . . , 𝑟,

[
−𝛾𝑃 (𝐼 + (𝐺V𝑊) ⊗ Γ)

⊤

𝑃

∗ −𝑃
] < −𝛿𝐼,

(43)

where 𝛿 is positive scalar.

Step 4. If 𝛿 > 𝛽, then go back to Step 2; else, terminate the
algorithm.

Thus we can obtain the coupling strength V
𝑖𝑗
with the

smallest coupling sum ∑
(𝑖,𝑗)∈E V

𝑖𝑗
by this iterative algorithm.
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4. Illustrative Example

In this section, a numerical example of global exponential
synchronization of a coupled network with 5 Lorenz oscil-
lators is provided to illustrate the design procedure of the
proposed distributed impulsive controller. The functions of
Lorenz oscillators are given by

𝑓 (𝑥
𝑖
) =

[
[

[

−10𝑥
𝑖1
+ 10𝑥

𝑖2

28𝑥
𝑖1
− 𝑥
𝑖2
− 𝑥
𝑖1
𝑥
𝑖3

𝑥
𝑖1
𝑥
𝑖2
−

1

3
𝑥
𝑖3

]
]

]

, 𝑖 = 1, 2, 3, 4, 5, (44)

with 𝑥
𝑖
= [𝑥
𝑖1

𝑥
𝑖2

𝑥
𝑖3
]
⊤. Let 𝐿 = 10; the inner-coupling

matrix is given by Γ = 𝐼 and the coupling delay is set as
0.1 sin(𝑡). The coupling matrix of the given coupled network
is given by

A = 0.1 ∗

[
[
[
[
[

[

−1 0 1 0 0

0 −1 0 1 0

0 1 −1 0 0

0 1 0 −1 0

0 0 1 0 −1

]
]
]
]
]

]

; (45)

then the coupling matrix of distributed controller can be
designed as follows:

V =

[
[
[
[
[

[

−V
13

0 V
13

0 0

0 −V
24

0 V
24

0

0 V
32

−V
32

0 0

0 V
42

0 −V
42

0

0 0 V
53

0 −V
53

]
]
]
]
]

]

, (46)

such that the sum of coupling strengths∑
(𝑖,𝑗)∈E V

𝑖𝑗
is as small

as possible. Let 𝛼 = 1, 𝜌 = 0.01, and 𝛾 = 0.7. Solving
matrix inequalities (16) and (17) by the method proposed
in Remark 5, we have min∑

(𝑖,𝑗)∈E V
𝑖𝑗

= 1.98. The states of
the coupled network without control and with distributed
impulsive control are shown in Figures 1 and 2, respectively.
FromFigure 2, we find that the coupled network (1) is globally
exponentially synchronous under the distributed controller.

5. Conclusion

In this paper, we have studied the distributed impulsive
controller design for globally exponential synchronization of
nonlinear networks with coupling delay.The sum of coupling
strengths of the distributed impulsive control is minimized to
save the control effort. Some criteria have been derived based
on Lyapunov-Razumikhin method to guarantee the global
exponential synchronization of the coupled network with
distributed impulsive control in terms of matrix inequalities.
A numerical example has been presented to demonstrate
the usefulness and effectiveness of the proposed approach.
Further research directions would include the investigation
on more general nonlinear systems.
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