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Multilabel classification is often hindered by incompletely labeled training datasets; for some items of such dataset (or even for all of
them) some labels may be omitted. In this case, we cannot know if any item is labeled fully and correctly. When we train a classifier
directly on incompletely labeled dataset, it performs ineffectively. To overcome the problem, we added an extra step, training set
modification, before training a classifier. In this paper, we try two algorithms for training set modification: weighted k-nearest
neighbor (WkNN) and soft supervised learning (SoftSL). Both of these approaches are based on similarity measurements between
data vectors. We performed the experiments on AgingPortfolio (text dataset) and then rechecked on the Yeast (nontext genetic
data). We tried SVM and RF classifiers for the original datasets and then for the modified ones. For each dataset, our experiments
demonstrated that both classification algorithms performed considerably better when preceded by the training set modification
step.

1. Background and Significance

Multilabel classification with supervised machine learning is
a widespread problem in data analysis. However, very often,
we have to perform multilabel classification when we are not
guaranteed that our training set itself is perfectly preclassified.
This is especially actual in the the case of national biomedical
grants with ambiguous classification schemes. A particular
grant may belong to several classes or may be miscategorized
in the case of a keyword-based classification scheme.

An interesting illustration is the project titled “Levels
of Literacy of Men with Prostate Cancer.” This project may
be classified by an algorithm as “prostate cancer,” “cancer
biomarkers,” or “cancer education” whereas a researcher
would consider it appropriately in relation to literacy. This
kind of context makes the generation of training sets more
complicated and costly. Many experts need to collaborate

extensively in the selection of the full set of document cate-
gories from the large number available for classification. Since
such collaboration seldom happens, we end up assigning an
incomplete set of categories to the training set document.

When a document that is relevant to a particular class 𝐴
does not bear its label, it turns into a negative instance of class
𝐴 during the learning process. As a consequence, the deci-
sion rules are distorted and the classification performance
degrades.

With an increase in the amount of textual information in
the biomedical sphere, such problems become recurrent and
need our attention. For example, about half a million new
records are added each year on PubMed and thousands of
research initiatives funded by grants are conducted annually
around the world. Grant application abstracts are usually
made public and the IARP project adds over 250 thousand
new projects each year.
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Figure 1: Decision rules before and after missing label restoration.

In addition to classifying publication abstracts and grant
databases, methods described in this paper may be applied to
other classification tasks in biomedical sciences as well.

2. Objective

In this article, we address the problem of classification when
for each training object some proper labels may be omitted.
In order to understand the properties of incompletely labeled
training set and its impact on learning outcomes, let us
consider an artificial example.

Figure 1(a) shows the initial training set for themultilabel
classification task for 3 classes of points on the plane. In our
work, we used Support Vector Machine (SVM) classification,
which is a popular classical classificationmethodwith a broad
range of applications ranging from text to tumor selection [1]
gene expression classification [2] and mitotic cell modeling
[3] problems.

With the Binary Relevance [4] approach based on a linear
SVM, we can obtain the decision rules for the classes of
crosses, circles, and triangles. Please note that this is an
example of an error-free classification. Let us assume that
object a really belongs to “crosses” and “circles” and object a
belongs to “crosses” and “triangles”. But in real life the training
set is often incompletely labeled. Figure 1(a) shows us such
a situation, when object a is labeled only as “circle” (“cross”
is missed) and object b is labeled only as “triangle” (missed
“circle”).

In Figure 1(b), the missing tags and bold lines are added
and the newdecision rules for the classes of crosses and circles
after recovering lost tags are depicted. This example shows
that in the case of incompletely labeled dataset a decision
rule may be quite distorted and have a negative effect on the
classification performance.

In order to reduce the negative impact of incompletely
labeled datasets, we proposed a special approach based on
training set modification that reduces contradictions. After
applying the algorithm to a real collection of data, the results
of the Support Vector Machine (SVM) and Random Forest
(RF) classification schemes improved. Here, RF is known to

be one of the most effective machine learning techniques
[5–7].

To address the incompleteness of training sets, in this
paper we shall describe a new strategy for constructing
classification algorithms. On the one hand, the performance
of this strategy is evaluated using data collections from the
AgingPortfolio resource available on the Web [8]. On the
other hand, its effectiveness is confirmed by applying it to the
Yeast dataset described below.

Several methods like data cleaning [9], outlier detection
[10], reference object selection [11], and hybrid classifica-
tion algorithms [12] for improving performance have been
proposed for training set modification. To date, the ability
of these approaches to provide real text classification has
not been sufficiently studied. Furthermore, none of these
methods of training set modification is suitable for solving
classification problems with an incompletely labeled training
set.

3. Methods

The already-proposed algorithms are based on the following
three assumptions about totally new input classifier data.

(1) A large number of training set objects are assumed
to have an incomplete set of labels. By definition,
a complete set of labels is a set which leads to
a perfect consensus among experts regarding the
impossibility of further adding or removing a label
from a document in the data collection.

(2) Experts are not expected tomake an error in assigning
category labels to documents. That is to say, the
training set generation may involve errors of type
1 only (checking hypotheses of the type “object 𝑑
belongs to category label cl”).

(3) The compactness hypothesis is assumed to hold. This
means similar objects are likely to belong to the same
categories as compact subsets located in the object
space. The solution of a classification problem under
these assumptions requires that an algorithm treat
document relevancy on the basis of data geometry.
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We developed alternative approaches because the algo-
rithms for training set modification were not designed to
work with these assumptions. Then, we used the following
two detailed algorithms in our experiments:

(1) themethod based on a recent soft supervised learning
approach [13] (was labeled as “SoftSL”);

(2) weighted k-nearest neighbour classifier algorithm
(labeled as “WkNN” [14–16]).

These algorithms use the nearest neighbour set of a doc-
ument which is in line with our third assumption.

The first step in the modification of the training set
involves the generation of a set PC of document-category
relevancy pairs overlooked by the experts:

PC = {(𝑑, cl) | 𝜓 (𝑑, cl) = 1} , (1)

where 𝑑 is a document, cl is a class label (category), and 𝜓

is the function of our training set modification algorithm
(WkNN or SoftSL).

Consider

𝜓 (𝑑, cl)

= {
1 if our algorithm places document 𝑑 into class cl;
0 otherwise.

(2)

Then, two possible outcomes are considered:

(1) complete inclusion of PC into the training set (option
was denoted as “add”).

(2) exclusion of document 𝑑 from the negative examples
of the category cl for all relevancy pairs (𝑑, cl) ∈ PC
(option was denoted as “del”).

The modified training set will still contain the objects
which, according to the algorithm 𝜓, do not belong to the set
labeled by the expert. It is possible to find the next missing
labels in the documents of the training set.

3.1. SoftSL Algorithm for Finding Missing Labels. In this
section, we outline the application of a new graph algorithm
for Soft-supervised learning, also called SoftSL [13]. Each
document is represented by a vertex within a weighted undi-
rected graph and our proposed framework minimizes the
weighted Kullback-Leibler divergence between distributions
that encode the classmembership probabilities of each vertex.

The advantages of this graph algorithm include direct
applicability to the multilabel categorization problem as well
as improved performance compare to alternatives [14]. The
main idea of the SoftSL algorithm is the following.

Let𝐷 = {𝐷𝑙, 𝐷𝑢} be a set of labeled and unlabeled objects,
with

𝐷𝑙 = {(𝑥𝑖, 𝑦𝑖)}
𝑙

𝑖=1
; 𝐷𝑢 = {(𝑥𝑖)}

𝑛

𝑖=𝑙+1
, (3)

where 𝑥𝑖 is the input vector representing the objects to be
categorized and 𝑦𝑖 is the category label.

Let𝐺 = (𝑉, 𝐸) be a weighted undirected graph. Here,𝑉 =

1, . . . , 𝑛 where 𝑛 is the cardinality of 𝐷 and 𝐸 = 𝑉 × 𝑉, and
𝜔𝑖𝑗 is the weight of the edge linking objects 𝑖 and 𝑗.

The weight of the edge is defined as

𝑤𝑖𝑗 = {
sim (𝑥𝑖, 𝑥𝑗) , if 𝑗 ∈ 𝐾 (𝑖) ;

0, if 𝑗 ∉ 𝐾 (𝑖) .
(4)

Here, sim(𝑥𝑖, 𝑥𝑗) is the measure of similarity between 𝑖th
and 𝑗th objects (e.g., cosine measure), and𝐾(𝑖) is the set of k
nearest neighbours of object 𝑥𝑖.

Each object is associated with a set of probabilities
𝑝𝑖 = (𝑝

𝑡

𝑖
)
𝑚

𝑡=1
of belonging to each of the 𝑚 classes 𝐿 =

{cl𝑖}
𝑚

𝑖=1
. According to information from 𝐷𝑙, we determined

the probabilities {𝑟𝑖 = (𝑟
𝑡

𝑖
)
𝑚

𝑡=1
}
𝑙

𝑖=1
that documents {𝑥𝑖}

𝑙

𝑖=1

belong for each of m classes, thus 𝑟𝑡
𝑖
> 0 if (𝑑𝑖, cl𝑡) ∈ 𝐷𝑙. Each

labeled object also has a known set of probabilities 𝑟𝑖, assigned
by the experts.Our intention is tominimize themisalignment
function 𝐶1(𝑝) over sets of probabilities:

𝐶1 (𝑝) =

𝑙

∑

𝑖=1

𝐷KL (𝑟𝑖, 𝑝𝑖)

+ 𝜇

𝑛

∑

𝑖=1

∑

𝑗∈𝐾(𝑖)

𝜔𝑖𝑗𝐷KL (𝑝𝑖, 𝑝𝑗) − ]
𝑛

∑

𝑖=1

𝐻(𝑝𝑖) ,

𝐷KL (𝑝𝑖, 𝑝𝑗)
def
=

𝑚

∑

𝑡=1

𝑝
𝑡

𝑖
log𝑝𝑡
𝑗
,

𝐻 (𝑝𝑖)
def
=

𝑚

∑

𝑡=1

𝑝
𝑡

𝑖
log𝑝𝑡
𝑖
,

(5)

where 𝐷KL(𝑝𝑖, 𝑝𝑗) means Kullback-Leibler distance and
𝐻(𝑝𝑖)means entropy.

𝜇 and ] are the parameters of the algorithm, defining
contribution of each term into 𝐶1(𝑝). The meanings of all
terms are listed below.

(1) The first term in the expression of𝐶1 shows how close
the generated probabilities are to the ones assigned by
the experts.

(2) The second term accounts for the graph geometry and
guarantees that the objects close to one another on the
graph will have similar probability distributions over
classes.

(3) The third term is included in case other terms in the
expression are not contradictory. Its purpose is to pro-
duce a regular and uniform probability distribution
over classes.

Numerically, the problem is solved using Alternating
Minimization (AM) [13]. Note that𝐷𝑢 is absent in the case of
unlabeled data.Theminimization of the objectivemin𝑝𝐶1(𝑝)
leads to the set of probabilities 𝑝𝑖 = {𝑝

1

𝑖
, . . . , 𝑝

𝑚

𝑖
} for each

document 𝑑𝑖 ∈ 𝐷. We introduce a threshold 𝑇 ∈ [0, 1]

to assign additional categories relevant to each document if
𝑝
𝑗

𝑖
⩾ 𝑇 then 𝑑𝑖 ∈ cl𝑗.
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3.2. Weighted kNN Algorithm for Finding Missing Labels. In
this section, we shall briefly describe the weighted k-nearest
neighbour algorithm [17] that is capable of directly solving
the multilabel categorization problem.

Let 𝜌(𝑑, 𝑑) be a distance function between the docu-
ments 𝑑 and 𝑑. The function which assigns document 𝑑 to
class label cl ∈ 𝐿 is then defined as

𝑆 (𝑑, cl) =
∑
𝑑∈kNN(𝑑) 𝜌 (𝑑, 𝑑


) 𝐼 (𝑑

, cl)

∑
𝑑∈kNN(𝑑) 𝜌 (𝑑, 𝑑

)
,

𝐼 (𝑑

, cl) = {

1, if 𝑑 ∈ cl
0 otherwise.

(6)

Here, kNN(𝑑) is the set of k nearest neighbours of
document 𝑑 in the training set.

We introduce a threshold 𝑇 such that if 𝑆(𝑑, cl) ⩾ 𝑇 then
𝑑 ∈ cl. Then, the algorithm counts 𝑆(𝑑, cl) for all possible
(𝑑, cl) combinations. When 𝑆(𝑑, cl) ⩾ 𝑇, every combination
is considered to be a missing label and used to modify the
training set.

3.3. Support Vector Machine. We will use the Linear Support
Vector Machine as a classification algorithm in this case.
Since SVM is mainly a binary classifier, the Binary Relevance
approach is therefore chosen to address multilabel problems.
This method implies training a separate decision rule 𝑤𝑙𝑥 +
𝑏𝑙 > 0 for every category 𝑙 ∈ 𝐿. More details are available
in our previous work on methods for structuring scientific
knowledge [18]. In our study, as the implementation of SVM
we used Weka binding of the LIBLINEAR library [19].

3.4. Random Forest. Random Forest is an ensemble of
machine learning methods which combines tree predictors.
In this combination, each tree depends on the values of
a random vector sampled independently. All trees in the
forest have the same distribution. More details about this
method can be found in [20, 21]. In our study, we used the
implementation of Random Forest fromWeka [22].

4. Experimental Results

In this section, we describe how did we perform text classifi-
cation experiments. We applied the classification algorithms
to initial (unmodified) training sets as well as to the training
sets modified with “add” or “del” methods.

We shall first discuss the scheme of training set transfor-
mation and its usefulness. Then, we shall present the process
of data generation. Finally, we shall consider the performance
measures used in the experiments, experimental setting, and
the results of the parameter estimation and final validation.

4.1. Training Set Modification. Training set modification step
is described in detail in Section 3 (methods). However, it is
important to notice that, in both cases, documents that do
not belong to set PC according to the relevance algorithm 𝜓

(too far from documents labeled to the given category) are
still retained in the training set. The reason for this choice is

that we assume that experts are not supposed to make any
mistake of type II (when they give a document an odd label):
only the absence of proper label is supposed to encounter.

The omission of the relevance pair (𝑑, 𝐴) in the training
set makes document 𝑑move into the set of negative examples
for learning a classifier for the class 𝐴. This problem alters
the decision rule and negatively affects performance. The
proposed set modification scheme is designed to avoid such
problems during the training session of the classifier.

4.2. Datasets and Data Preprocessing

4.2.1. AgingPortfolio Dataset. The first experiment was car-
ried out using data from the AgingPortfolio information
resource [18, 23]. The AgingPortfolio system includes a
database of projects related to aging and is funded by
the National Institutes of Health (NIH) and the European
Commission (ECCORDIS).This database currently contains
more than one million projects. Each of its records written
in English, displays information related to the author’s name,
title, a brief description of the motivation, and research
objectives, the name of the organization, and the funding
period of the project. Some projects contain additional
keywords with an average description in 100 words. In this
experiment, we used only the title, a brief description, and
tag fields.

A taxonomy contains 335 categories with 6 hierarchical
levels used for document classification. A detailed informa-
tion about the taxonomy is available on the International
aging research portfolio Web site [23]. Biomedical experts
manually put the category labels on the document training
and test sets. In the process, they used a special procedure
for labeling the document test set. Two sets of categories,
carefully selected by different experts, were assigned to each
document of the test set. Then, a combination of these cate-
gories was used to achieve amore complete category labeling.
Different participants like the AgingPortfolio resource users,
created the training set with little control. A visual inspection
suggests that the training set contained a significant number
of projects with incomplete sets of category labels. The same
conclusion is also achieved by comparing the average number
of categories per project. This average is 4.4 in the sample set
compared to 9.79 in the more thoroughly designed test set.
The total number of projects was 3 246 for the training set,
183 for the development set, and 1 000 for the test sets.

Throughout our study, we used the vector model of text
representation. The list of keywords and their combinations
from the TerMine [24] system (National Centre for Text
Mining or NaCTeM) provided the terms used in our study.
The method used in this system combines linguistic and
statistical information of candidate terms.

Later, we conducted the analysis and processing of the
set of keyword combinations. Whenever the short keyword
combinations were present in longer ones, the latter were
split into shorter ones. The algorithms and the code used
for the keyword combinations decomposition are available
from theAgingPortfolioWeb site [8]. According to the results
of our previous experiments, the new vectorization method
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provided a 3% increase by the 𝐹1-measure compared to the
general “bag-of-words” model. We assigned feature weights
according to the TFIDF rule in the BM25 formulation [25, 26]
and then normalized vectors representing the documents in
the Euclidean metric of 𝑛-dimensional space.

4.2.2. Yeast Dataset. Yeast dataset [27] is a biomedical dataset
of Yeast genes divided into 14 different functional classes.
Each instance in the dataset is a gene, represented by a vector
whose features are the microarray expression levels under
various conditions. We used it to reveal, if our methods are
suitable for the classification of genetic information as well as
for textual data.

Let us describe the methods for an incomplete dataset
modeling. Since the dataset is well annotated andwidely used,
the objects (genes) have complete sets of category labels. By
random deletion of labels from documents, wemade amodel
of the incomplete sets of labels in the training set. Parameter
𝑝 was introduced as the fraction of deleted labels.

We deleted labels using the following conditions:

(1) for each class, 𝑝 represents the fraction of deleted
labels.We keep the distribution of labels by categories
after modeling the incomplete sets of labels;

(2) the number of objects in the training set remains the
same. At least one label is preserved after the label
deletion process.

No preprocessing step was necessary because the data is
supplied already prepared as a matrix of numbers [27].

4.3. Performance Measurements. The following characteris-
tics were used to evaluate and compare different classification
algorithms:

(i) Microaveraged precision, recall, and𝐹1-measure [27];
(ii) CROC curves and their AUC values computed for

selected categories [28]. CROC curve is a modifi-
cation of a ROC curve, where 𝑥 axis is rescaled
as 𝑥new(𝑥). We used a standard exponent scaling
𝑥new(𝑥) = (1 − 𝑒

−𝛼𝑥
)/(1 − 𝑒

−𝛼
) with 𝛼 = 7.

4.4. Experimental Setup. Theprocedures for selecting impor-
tant parameters of the algorithms outlined are described next.

4.4.1. Parameters for SVM

AgingPortfolio Dataset. The following SVM parameters were
tuned for each decision rule:

(i) cost parameter 𝐶 controls a trade-off between maxi-
mization of the separation margin and minimization
of the total error [15];

(ii) parameter 𝑏𝑙 that plays the role of a classification thre-
shold in the decision rule.

We performed a parameter tuning by using a sliding
control method with 5-fold cross-validation according to

the following strategy.The 𝐶-parameter was varied on a grid,
followed by 𝑏𝑙-parameter (for every value of 𝐶) tuning for
every category. A set PC = {(𝐶, 𝑏𝑙)}𝑙∈𝐿 of parameter pairs
was considered optimal if it maximized the 𝐹1-measure with
averaging over documents.While𝐶 has the same value for all
categories, the 𝑏𝑙 threshold parameter was tuned (for a given
value of 𝐶) for each class label 𝑙 ∈ 𝐿.

Yeast Dataset. In experiments with the Yeast dataset, the
selection of SVM parameters was not performed (i.e., 𝐶 = 1,
𝑏𝑙 = 0 for all values of 𝑙 ∈ 𝐿).

4.4.2. Parameters for RF. The 30 solution trees were used to
build the Random Forest. The number of inputs to consider
while splitting a tree node is the square root of features’
number. The procedure was done according to the [29] Leo
Breiman, who developed the Random Forest Algorithm.

4.4.3. AgingPortfolio Dataset. Parameters 𝑘 and𝑇were tuned
on a grid as follows. We prepared a validation set 𝐷dev
of 183 documents as in the case of the test set. The per-
formance metrics for SVM classifiers trained on modified
document sets were then evaluated on 𝐷dev. A combination
of parameters was considered optimal if it maximized the 𝐹1-
measure. Parameter 𝜇 of the SoftSL algorithm was tuned on
a grid keeping 𝑘 fixed at its optimal value. A fixed category
assignment threshold of 𝑇 = 0.005 is used for the SoftSL
training set modification algorithm. We used ] = 0, since
all documents in the experiments contained some category
labels and regularization was unnecessary.

4.4.4. Yeast Dataset. Themethod for selecting the parameters
for the Yeast dataset is the same as in the AgingPortfolio.𝐷dev
was composed of 300 (20% of 1 500) randomly selected genes
for training. The SoftSL training set modification algorithm
was not used for this dataset.

4.5. A Comparison of Methods

4.5.1. AgingPortfolio. We evaluated the general performance
based on a total of 62 categories that contained at least 30
documents in the training set and at least 7 documents in
the test set. The results for precision, recall and 𝐹1-measure
are presented in Table 1. It is evident that a parameter tuning
significantly boosts both precision and recall.

Also, all of our training set modification methods pay
lower precision for higher recall values. If we consider 𝐹1
measure as a general quality function, such trade-offmay look
quiet reasonable, especially for add+WkNNmethod.

The average numbers of training set categories per doc-
ument and documents per category are listed in Table 2. As
we can see, the SoftSL approach alters the training set more
significantly. As a result, a larger number of relevancy tags
are added. This is consistent with higher recall and lower
precision values of add+SoftSL and del+SoftSL as compared
to WkNN-based methods in Table 1.

Figure 2 compares CROC curves for representative cate-
gories of AgingPortfolio dataset computed for SVM without
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Table 1: Microaveraged precision, recall, and 𝐹1-measure (𝐹1),
obtained on AgingPortfilio dataset with different classification
methods.

Method Precision Recall 𝐹1

SVM with fixed parameters 0.8649 0.1983 0.2977
SVM with parameter tuning 0.7727 0.3302 0.4159
SVM, del+WkNN 0.5538 0.4452 0.4439
SVM, add+WkNN 0.4664 0.5684 0.4707
SVM, del+SoftSL 0.2132 0.6914 0.3259
SVM, add+SoftSL 0.3850 0.5639 0.4576

Table 2: Average number of categories per document and docu-
ments per category in AgingPortfolio training set before and after
modification.

Modification method Categories per doc. Docs. in category
No modification 4.4 45.09
Add+WkNN 15.15 155.14
Add+SoftSL 16.6 168.87

training set modifications, SVM with del+WkNN modifi-
cation, and SVM with add+WkNN modification. We can
notice that SVM classification with incorporate training set
modification outperforms simple SVM classification.

AUC values calculated for the del+WkNN curves are
generally only slightly lower, and in some cases even exceed
the corresponding values for add+WkNN.A similar situation
can be seen in Figure 3 where CROC curves are compared
with SVM, del+SoftSL and add+SoftSL.

CROC curves for add+WkNN and add+SoftSL SVM
classifiers are compared in Figure 4. It is difficult to determine
a “winner here.” In most of the cases, the results are pretty
equivalent. Sometimes add+WkNN looks slightly worse than
add+SoftSL and sometimes add+WkNN has a good advan-
tage against add+SoftSL.

Additional data relevant to the algorithm comparison is
presented in Tables 3, 4, 5, and 6. There are precision, recall
and 𝐹1 measure for different categories taken with different
methods. These results are more relief: it can be seen that
add+WkNN outperforms the other methods.

Some values of the metrics of the Random Forest Clas-
sification experiments are provided in Table 7. The results
in Table 7 show that the modification of the training sets
improves the classification performance in this case as well.

4.5.2. Yeast Dataset: The Comparison of the Experimental
Results. The dataset is made of 2 417 examples. Each object
is related to one or more of the 14 labels (1st FunCat level)
with 4.2 labels per example in average. The standard method
[30] is used to separate the objects into training and test sets
so that the first kind of sets contains 1500 examples and the
second contains 917.

The method for modeling the incomplete dataset and the
comparison is described above in Section 4.2.2. We created
6 different training sets by deleting a varying fraction (𝑝) of
document-class pairs. The concrete document-class pairs for
deletion were selected randomly.

Table 3: Microaveraged results for category “experimental tech-
niques: in vivo methods” (AgingPortfilio dataset).

Method Precision Recall 𝐹1

SVM only 0.6 0.12 0.2
With del+WkNN 0.7879 0.26 0.391
With add+WkNN 0.66 0.33 0.44
With del+SoftSL 0.2140 0.64 0.3208
With add+SoftSL 0.4653 0.47 0.4677

Table 4: Microaveraged results for category “cancer and related
diseases: malignant neoplasms including in situ” (AgingPortfilio
dataset).

Method Precision Recall 𝐹1

SVM only 0.4444 0.4 0.4211
with del+WkNN 0.1277 0.9 0.2236
with add+WkNN 0.24 0.9 0.3789
with del+SoftSL 0.0549 1.0 0.1040
with add+SoftSL 0.1032 0.975 0.1866

Table 5: Microaveraged results for category “aging mechanisms by
anatomy: cell level” (AgingPortfilio dataset).

Method Precision Recall 𝐹1

SVM only 0.5167 0.3827 0.4397
With del+WkNN 0.5946 0.2716 0.3729
With add+WkNN 0.4123 0.5802 0.4821
With del+SoftSL 0.5342 0.4815 0.5065
With add+SoftSL 0.4182 0.5679 0.4817

Table 6: Microaveraged results for category “aging mechanisms by
anatomy: cell level: cellular substructures” (AgingPortfilio dataset).

Method Precision Recall 𝐹
1

SVM only 0.52 0.2167 0.3059
With del+WkNN 1.0 0.0167 0.0328
With add+WkNN 0.4493 0.5167 0.4806
With del+SoftSL 0.75 0.15 0.25
With add+SoftSL 0.3667 0.55 0.44

Table 7: Microaveraged results for AgingPortfolio dataset obtained
with Random Forest Classification with different training set modi-
fications.

Method Precision Recall 𝐹
1

RF only 0.4738 0.2033 0.2467
With del+WkNN 0.4852 0.2507 0.2870
With add+WkNN 0.3058 0.4255 0.3194

Weproceeded some classification experiments before and
after modifying the training set. To compare the methods, we
also included the classification results obtained by the SVM
or RF on the original nonmodified training set with the com-
plete set of labels (𝑝 = 0). Here, 𝑝 ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6}

is used.
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Figure 2: CROC curves for different categories of AgingPortfoliio (SVM classification with WkNN analysis).

The results of SVM classification with add+WkNN
training set modification, presented in Table 9, show that
this modification significantly improves the 𝐹1 measure in
comparison with raw SVM results (Table 8).

A Notable Fact. Add+WkNN slightly reduced the precision
on low 𝑝, but in the worst cases, with 𝑝 = 0.3 and 𝑝 = 0.4 the
precision even rose up. However, the significant improve of
recall in all cases is a good trade-off. Recall also significantly

improved when the RF algorithmwas used in addition to this
method (Tables 10 and 11).

5. Discussion

Our experiments have shown that the direct application
of SVM or RF gives unsatisfactory results for incompletely
labeled datasets (i.e., when for each document in our
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Figure 3: CROC curves for different categories of AgingPortfoliio (SVM classification with SoftSL analysis).

training set some correct labels may be omitted). The case
of incompletely labeled dataset strikingly differs from the
PU-learning (learning with only positive and unlabeled data)
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.91
.9914, http://dl.acm.org/citation.cfm?id=1401920 approach:
in case of PU training some of dataset items are considered
fully labeled, and the other items are not labeled at all.

To overcome the problem, we proposed two different
procedures for training set modification, WkNN and SoftSL.

Both of these approaches are intended to restore the missing
document labels using different similarity measurements
between each given document and other documents with
similar labels.

We trained both SVM and RF on several incompletely
labeled datasets with pretraining label restoration, and with-
out it. According to our experimental results, the label
restorationmethods were able to improve the performance of
both SVM and RF. In our opinion, WkNN works better than
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Figure 4: Comparison of WkNN and SoftSL analysis with SVM classification: CROC curves for different categories of AgingPortfolio.

SoftSL: it has a better 𝐹1-measure than SoftSL, and, at last, it
is simpler to implement.

Furthermore, the comparison of CROC curves for the
different methods demonstrated that the classifiers perform
slightly worse for some categories and better for others. This
pattern appears for classifiers trained on document sets where
elements, identified as relevant, are removed from the nega-
tive examples. These observations can be attributed to better
tuning of the classification threshold as additional relevant

documents are added. This is a particularly important aspect
for categories containing a small number of documentswhere
additional information about a given category allows better
selection of the classification threshold.

One more problem is the evaluation of the incompletely
labeled dataset classification results and performance, since
the labels in the test set are incomplete as well. One way to
overcome this problem is to perform the additional manual
post factum validation: any document classification result
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Table 8: Microaveraged results for SVM, trained on “incompletely
labeled” Yeast dataset (with different fraction of deleted labels 𝑝).

𝑝 parameter Precision Recall 𝐹1

0 0.7176 0.5707 0.6358
0.1 0.7337 0.5233 0.6109
0.2 0.7354 0.4056 0.5229
0.3 0.6260 0.2442 0.3513
0.4 0.3544 0.1191 0.1783
0.5 0 0 0
0.6 0 0 0

Table 9: Microaveraged results for SVM, trained on “incompletely
labeled” Yeast dataset (with different fraction of deleted labels 𝑝)
with add+WkNN label restoration. Optimal WkNN parameters 𝑘
and 𝑇 are acquired via grid search.

𝑝 parameter Optimal 𝑘 Optimal 𝑇 Precision Recall 𝐹1

0 — — — — —
0.1 10 0.3 0.6582 0.6847 0.6712
0.2 10 0.25 0.6525 0.6811 0.6665
0.3 10 0.15 0.6357 0.7137 0.6725
0.4 10 0.1 0.6604 0.669 0.6648
0.5 10 0.05 0.6225 0.7259 0.6702
0.6 10 0.05 0.6248 0.7261 0.6716

Table 10: Microaveraged results for RF, trained on “incompletely
labeled” Yeast dataset (with different fraction of deleted labels 𝑝).

𝑝 parameter Precision Recall 𝐹1

0 0.6340 0.5087 0.5315
0.1 0.6081 0.4613 0.4959
0.2 0.5693 0.3648 0.4133
0.3 0.5788 0.3240 0.3873
0.4 0.5068 0.2471 0.3094
0.5 0.5194 0.2431 0.3104
0.6 0.4354 0.1621 0.2224

Table 11: Microaveraged results for RF, trained on “incompletely
labeled” Yeast dataset (with different fraction of deleted labels 𝑝)
with add+WkNN label restoration. Optimal WkNN parameters 𝑘
and 𝑇 are acquired via grid search.

𝑝 parameter Optimal 𝑘 Optimal 𝑇 Precision Recall 𝐹1

0 — — — — —
0.1 10 0.3 0.5940 0.7120 0.6224
0.2 10 0.25 0.5626 0.7462 0.6146
0.3 10 0.15 0.5282 0.7992 0.6095
0.4 10 0.10 0.5223 0.7648 0.5940
0.5 10 0.05 0.4672 0.8388 0.5726
0.6 15 0.05 0.4547 0.8695 0.5707

should be reviewed by the experts in order to reveal if it was
assigned any odd labels. Otherwise, the observed results are
guaranteed to be lower than the real ones.

Another way to evaluate the classification results and
performance is to artificially “deplete” a completely-labeled
dataset. We did it with the Yeast dataset. Our experiments
with the modification methods applied to artificially par-
tially delabeled Yeast biological dataset confirmed that our
approach significantly improves classification performance of
SVM on incompletely labeled datasets.

Moreover, the experimental results presented in
Section 4.5.2 prove a notable aspect. When we artificially
made an incompletely labeled training set and then used
our label restoration techniques on it, the 𝐹1 measure for
SVM classification was even greater, then for the original,
completely-labeled set.

Hence, we are confident that combining the WkNN
training set modification procedure with the SVM or RF
algorithms will be practically useful to scientists and analysts
when addressing the problem of incompletely labeled train-
ing sets.
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