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Avenida de las Granjas 682, Colonia Santa Catarina, 02250 México D.F., Mexico
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The trajectory tracking problem of a proton exchange membrane (PEM) fuel cell is considered. To solve this problem, an optimal
controller is proposed.The optimal technique has the objective that the system states should reach the desired trajectories while the
inputs are minimized.The proposed controller uses the Hamilton-Jacobi-Bellman method where its Riccati equation is considered
as an adaptive function. The effectiveness of the proposed technique is verified by two simulations.

1. Introduction

A fuel cell is an electrochemical device that converts chemical
energy stored in fuel into electricity. PEM fuel cells have
seen a great amount of development in recent years. Fuel
cell integrated to renewable energy systems offers many
socioeconomic benefits. Understanding the behavior of PEM
fuel cell stacks at varying loads is vital for the control of the
efficiency.

There is some research about controllers applied to PEM
fuel cells. In [1], a nonlinear-control strategy for PEM fuel
cells by using the exact linearization approach is presented. In
[2], a nonlinear controller is designed based on the proposed
model to prolong the stack life of the PEM fuel cells. In
[3], a higher-order sliding-mode supertwisting algorithm has
been designed to control a motor that drives a compressor
designed to feed the 33 kW fuel cell with air. Therefore, the
controllers design to improve the performance of the PEM
fuel cells would be of great importance; and none of the above
researches introduces an optimal controller.

There are some works about control. Fuzzy controls for
nonlinear systems are proposed in [4, 5]. In [6–10], robust
controls of nonlinear systems are introduced. The bang-
bang optimal control problem associated with hydraulic
systems is addressed in [11]. The research of [12] deals with
multiobjective optimization techniques for a class of hybrid

optimal control problems in mechanical systems. In [13,
14], optimal controls of robotics arms are considered. None
of the above studies is applied to PEM fuel cell; thereby,
in this study, an optimal controller of a PEM fuel cell is
introduced. The proposed controller uses the solution of
the Hamilton-Jacobi-Bellman equations where its Riccati
equation is considered as an adaptive function; that is, in
other papers, the Riccati equation is solved in an inverse
form using the final conditions, while in this paper, the
Riccati equation is solved in a forward form using the initial
conditions.

This paper is organized as follows. Section 2 presents
the modified PEM fuel cell dynamic model which includes
an external load. In Section 3, the optimal control of the
PEM fuel cell is designed. In Section 4, the optimal method
and dual proportional-derivative technique are compared by
two simulations. Section 5 presents conclusions and suggests
future research directions.

2. Modified PEM Fuel Cell Dynamic Model

In this section, the PEM fuel cell dynamic model of [1] is
described; it will be used in the following section for the
control design. Furthermore, the PEM fuel cell dynamic
model is modified to include an external load which makes
it more approximated with the real process.
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The following assumptions are applied to construct the
simplified dynamic model for the PEM fuel cell [1]. (1)
The gases are ideal. (2) The water management and the
humidification of system are not considered in this paper. (3)
The oxygen flow rate is determined by the hydrogen-oxygen
flow ratio from the reformer. (4) The stack temperature is
regulated 80∘C by using an independent cooling system. (5)
The Nernst equation is applied.

2.1. Modified PEM Fuel Cell Output Voltage Equation. The
output stack voltage 𝑉 defined as a function of the stack
current, reactant partial pressures, fuel cell temperature, and
membrane humidity, is as follows [1, 2, 15, 16]:

𝑉 = 𝐸 − 𝑉activation − 𝑉ohmic − 𝑉concentration, (1)

where 𝐸 = 𝑁(𝐸𝑜 + (𝑅𝑇/2𝐹) ln{𝑝H
2
(𝑝O
2
/𝑃std)
1/2

/𝑝H
2
O
𝐶
})

is the thermodynamic potential of the cell or reversible
voltage based on the Nernst equation, 𝑁 is the number of
cells in the stack, 𝐸𝑜 is the cell-open-circuit voltage, 𝑇 is
the operating temperature, 𝑝H

2
, 𝑝O
2
, and 𝑝H

2
O
𝐶
are the

partial pressures of hydrogen, oxygen, and water gas inside
the cell, respectively, 𝑅 is the gas constant (8.3144 J/mol0K),
𝐹 is the Faraday constant (96439C/mol), 𝑃std is the standard
pressure (101325 Pa), and 𝑉activation is the voltage loss due to
the reactions of the electrodes surface. 𝑉ohmic is the ohmic
voltage drop from the resistances of proton flow in the
electrolyte. 𝑉concentration is the voltage loss from the reduction
of concentration gases or the transport of a mass of oxygen
and hydrogen. The equations are given as follows [2, 15, 16]:

𝑉activation = 𝑁
𝑅𝑇

2𝛼𝐹
ln(

𝑖 + 𝑖
𝑛

𝑖
0

) = 𝑁𝐶 ln(
𝑖 + 𝑖
𝑛

𝑖
0

) , (2)

𝑉ohmic = 𝑁𝑟𝑖, (3)

𝑉concentration = 𝑁𝑚𝑒
𝑛𝑖

, (4)

where 𝐶 = 𝑅𝑇/2𝛼𝐹, 𝑖 is the output current density, 𝑖
𝑛
is

the internal current density related to the internal current
losses, 𝑖

0
is the exchange current density related to activation

losses, 𝛼 is a charge transfer coefficient, 𝑟 is the area-specific
resistance related to resistive losses, and𝑚 and 𝑛 are constants
in the mass transfer voltage.

In this study, the output stack voltage𝑉 of (1) is modified
with the consideration of an external load as can be seen in
Figure 1.

It is described as follows:

𝑉 = 𝐸 − 𝑉activation − 𝑉ohmic − 𝑉concentration − 𝑉load, (5)

where𝑉activation,𝑉ohmic, and𝑉concentration are defined in (2), (3),
and (4), respectively, 𝑉load = 𝑅

𝑙
𝑖 is the load voltage, 𝑖 is the

output current density, and 𝑅
𝑙
is the load resistance.

2.2. State Equations. The partial pressures of hydrogen, oxy-
gen, and water on the cathode side are defined as the state
variables of the system, and the relationship between the inlet
and the outlet gases is as follows [1]:

Vactivation Vohmic Vconcentration

PEM fuel cell Load

E Vload

Figure 1: PEM fuel cell.
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From the ideal gas law, it is known that the partial pressure
of each gas is proportional to the amount of gas in the cell,
to which there are three relevant contributions depending on
the gas inlet flow rate, gas consumption, and gas outlet flow
rate. Thus, the state equations are [1]

𝑑𝑝H
2

𝑑𝑡
=
𝑅𝑇

𝑉
𝐴

[H
2,in − 2𝐾𝑟𝐴𝑐𝑖 − (H2,in − 2𝐾𝑟𝐴𝑐𝑖)

𝑝H
2

𝑝op
] ,

𝑑𝑝O
2

𝑑𝑡
=
𝑅𝑇

𝑉
𝐶

[O
2,in − 𝐾𝑟𝐴𝑐𝑖 − (O2,in − 𝐾𝑟𝐴𝑐𝑖)
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𝑝op
] ,

𝑑𝑝H
2
O
𝐶
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=
𝑅𝑇

𝑉
𝐶

[H
2
O
𝐶,in + 2𝐾𝑟𝐴𝑐𝑖 − (O2,in + 2𝐾𝑟𝐴𝑐𝑖)

𝑝H
2
O
𝐶

𝑝op
] ,

(8)

where𝐾
𝑟
= 𝑁/4𝐹,𝐴c is the cell active area, 𝑖 is defined in (2)–

(4), 𝑃op is the operating pressure,𝑉𝐴 is the anode volume,𝑉
𝐶

is the cathode volume, 𝑅 and 𝑇 are defined in (1), H
2,in, O2,in,

and H
2
O
𝐶,in are the inlet flow rates of the hydrogen, oxygen,

and water of the cathode, respectively, and 𝑝H
2
, 𝑝O
2
, and

𝑝H
2
O
𝐶
are the partial pressures of hydrogen, oxygen, and

water inside the cell, respectively.

2.3. The Final System. The water input H
2
O
𝐶,in is not con-

sidered in the state equations because it is not an input of
the process in most of the applications. Defining the states
as 𝑥
1
= 𝑝H

2
, 𝑥
2
= 𝑝O

2
, and 𝑥

3
= 𝑝H

2
O
𝐶
, the inputs as



Mathematical Problems in Engineering 3

𝑢
1
= H
2,in, 𝑢2 = O

2,in, and 𝑢3 = 𝑖 and the output as 𝑦 = 𝑉
give the following state space system:
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𝑐
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3
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𝑦 = 𝑁(𝐸
𝑜

+
𝑅𝑇

2𝐹
ln{

𝑥
1
(𝑥
2
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1/2
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3
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𝑢
3
+ 𝑖
𝑛

𝑖
0
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3
− 𝑁𝑚𝑒
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𝑙
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3
.

(9)

The nonlinear system (9) is rewritten as follows:

�̇� = 𝐴𝑥 + 𝐵𝑢 = 𝑓 (𝑥, 𝑢) ,

𝑦 = 𝑞 (𝑥, 𝑢) ,
(10)

where 𝐴 = [
𝑎1 0 0

0 𝑎2 0

0 0 𝑎3

] ∈ R3 × 3, 𝑎
1
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𝐴
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1
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3
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𝐶
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2
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𝑎
3
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𝐶
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2
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R3 × 3, 𝑏
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𝐴
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𝐴
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𝐴
𝑐
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= 𝑅𝑇/𝑉

𝐶
,

𝑏
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𝐶
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𝑐
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𝐶
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𝑥
3
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𝑇, 𝑢 = [𝑢

1
, 𝑢
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3
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𝑇, 𝑞(𝑥, 𝑢) = 𝑁(𝐸𝑜 + (𝑅𝑇/2𝐹)

ln{𝑥
1
(𝑥
2
/𝑃std)
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3
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)/𝑖
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3
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𝑅
𝑙
𝑢
3
.

Remark 1. The dynamic model is proposed by [1]. Notwith-
standing, the PEM fuel cell with an external load is proposed
in this study.

3. Optimal Control Applied to PEM Fuel Cell

In this section, the optimal control of the PEM fuel cell is
designed.

Define the reference model as follows:

�̇�
𝑑
= 𝐴𝑥
𝑑
, (11)

where 𝑥
𝑑
= [𝑥
𝑑,1
, 𝑥
𝑑,2
, 𝑥
𝑑,3
]
𝑇 is the desired reference and 𝐴

is defined in (10). Subtracting (11) from (10), the closed-loop
system is obtained as follows:

̇̃𝑥 = 𝐴𝑥 + 𝐵𝑢 = 𝑓 (𝑥, 𝑢) , (12)

where 𝑥 = 𝑥 − 𝑥
𝑑
is the tracking error and 𝑢, 𝐴, and 𝐵 are

defined in (10).
The following theorem presents the optimal control

applied to the PEM fuel cell.

Theorem 2. Consider the PEM fuel cell (10). Therefore, there
exists an optimal controller to follow a desired behavior given
as follows:

𝑢 = −𝑃
−1

[(
𝜕𝐴𝑥

𝜕𝑢
)

𝑇

𝑆𝑥 + 𝐵
𝑇

𝑆𝑥] , (13)

where 𝜕𝐴𝑥/𝜕𝑢 = [
𝜕𝑎11 𝜕𝑎12 𝜕𝑎13

𝜕𝑎21 𝜕𝑎22 𝜕𝑎23

𝜕𝑎31 𝜕𝑎32 𝜕𝑎33

] ∈ R3 × 3, 𝜕𝑎
11
= (𝑅𝑇/𝑉

𝐴
)

(−𝑥
1
/𝑝 op ), 𝜕𝑎12 = 0, 𝜕𝑎

13
= (𝑅𝑇/𝑉

𝐴
)(2𝐾
𝑟
𝐴
𝑐
(𝑥
1
/𝑝 op )),

𝜕𝑎
21

= 0, 𝜕𝑎
22

= (𝑅𝑇/𝑉
𝐶
)(−𝑥
2
/𝑝 op ), 𝜕𝑎23 = (𝑅𝑇/𝑉

𝐶
)

(𝐾
𝑟
𝐴
𝑐
(𝑥
2
/𝑝 op )), 𝜕𝑎31 = 0, 𝜕𝑎

32
= (𝑅𝑇/𝑉

𝐶
)(−𝑥
3
/𝑝 op ),

𝜕𝑎
33
= (𝑅𝑇/𝑉

𝐶
)(−2𝐾

𝑟
𝐴
𝑐
(𝑥
3
/𝑝 op )), 𝑃 ∈ R3 × 3 is a constant

and positive definite matrix, 𝑥 is the system tracking error
defined in (12), 𝑆 = diag (𝑠

𝑖
) ∈ R3 × 3 is a positive definite

matrix, 𝑠
1
, 𝑠
2
, and 𝑠

3
are positive scalar varying with time

parameters, and an adaptive equation is given as follows:

̇𝑆 = −𝑆𝐴 − 𝐴
𝑇

𝑆 − 𝑄 + 𝑆𝐵𝑃
−1

𝐵
𝑇

𝑆 + 𝑆𝐵𝑃
−1

(
𝜕𝐴𝑥

𝜕𝑢
)

𝑇

𝑆. (14)

Proof. According to the optimal control technique [17, 18], a
quadratic performance index is defined as

𝐽 =
1

2
𝐻 (𝑥
𝑓
) +

1

2
∫
𝑡𝑓

𝑡𝑜

𝑔 (𝑥, 𝑢) 𝑑𝑡, (15)

where 𝑔(𝑥, 𝑢) is the average function and𝐻(𝑥
𝑓
) is a function

of the final time. The Hamiltonian is defined as follows [17,
18]:

ℎ (𝑥, 𝑢, 𝜆) = 𝑔 (𝑥, 𝑢) + 𝜆
𝑇

𝑓 (𝑥, 𝑢) , (16)

where 𝜆 = [𝜆
1
, 𝜆
2
, 𝜆
3
]
𝑇. The equations to obtain the optimal

control with the Hamilton-Jacobi-Bellman method are as
follows [17, 18]:

0 =
𝜕ℎ (𝑥, 𝑢, 𝜆)

𝜕𝑢
,

�̇� = −
𝜕ℎ (𝑥, 𝑢, 𝜆)

𝜕𝑥
.

(17)

Define the following quadratic performance index for the
Hamilton-Jacobi-Bellman of this system [17, 18]:

𝐽 =
1

2
𝑥
𝑓

𝑇

𝐻𝑥
𝑓
+
1

2
∫
𝑡𝑓

𝑡𝑜

(𝑥
𝑇

𝑄𝑥 + 𝑢
𝑇

𝑃𝑢) 𝑑𝑡, (18)

where 0 ≤ 𝐻 ∈ R3 × 3, 0 < 𝑄 ∈ R3 × 3, 𝑢 is the system input
defined in (10), and 𝑥

𝑓
is the final tracking error. Using (12)

and (18), the Hamiltonian is

ℎ (𝑥, 𝑢, 𝜆) =
1

2
𝑥
𝑇

𝑄𝑥 + 𝑢
𝑇

𝑃𝑢 + 𝜆
𝑇

[𝐴𝑥 + 𝐵𝑢] , (19)

where𝐴 and 𝐵 are defined in (10). Applying the first equation
of (17) to the Hamiltonian (19), it gives the following optimal
control function:

𝑢 = −𝑃
−1

[(
𝜕𝐴𝑥

𝜕𝑢
)

𝑇

𝜆 + 𝐵
𝑇

𝜆] , (20)
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Table 1: Parameters of a PEM fuel cell.

Parameter Value
𝑉
𝐴

6.495 cm2

𝐴
𝐶

136.7 cm2

𝑉
𝐶

12.96 cm2

𝑁 35
𝑃op 101 × 103 Pa
𝑇 353∘K
𝐸
𝑜 1.3 V
𝑅 8.3144 J/mol∘K
𝐹 96485C/mol
𝑃std 101325 Pa

where 𝜆 is obtained by applying the second equation of (17)
to the Hamiltonian (19) given as follows:

�̇� = −𝑄𝑥 − 𝐴
𝑇

𝜆. (21)

Define 𝜆 as follows:

𝜆 = 𝑆𝑥. (22)

Substituting (22) into (20), it gives the optimal control func-
tion (13). Substituting (22) and (13) into (21) and considering
�̇� = ̇𝑆𝑥 + 𝑆 ̇̃𝑥 and (12), it gives the adaptive equation (14).

Remark 3. First, the process starts with the initial conditions
of𝑥 and 𝑆; the adaptive equation (14) is solved at a time to find
̇𝑆; then, the optimal control function (13) is solved at a time to

find 𝑢; later, the fuel cell dynamic model (10) is solved to find
�̇�.Then, the process starts again.The above-described process
is directly solved using the software Simulink of MATLAB.
𝑡
𝑓
is free in the numerical simulations because it can take

different valueswithout the requirement to remake additional
calculus.

4. Simulations

In this study, the dual proportional derivative control with
nonlinear compensation of [19] called PD and the optimal
control called Optimal are compared by two simulations.The
objective is that the plant states reach a desired trajectory;
that is, the states 𝑥

1
, 𝑥
2
, and 𝑥

3
of (10) should reach the

desired trajectories 𝑥
𝑑,1
, 𝑥
𝑑,2
, and 𝑥

𝑑,3
. The dual PD control

is used because it yields good results for both continuous and
noncontinuous set points [19].

The root mean square error (RMSE) is used for the
controllers comparison; it is given as follows [13, 14, 20]:

RMSE = ( 1
𝑇
∫
𝑇

0

𝑒
2

𝑑𝜏)

1/2

, (23)

where 𝑒2 = 𝑥2
1

+ 𝑥2
2

+ 𝑥2
3

is the tracking error and 𝑒2 = 𝑢2
1

+

𝑢2
2

+ 𝑢2
3

is the control function.
The parameters of the PEM fuel cell are given in Table 1

[1, 2].
The other parameters are 𝛼 = 0.58, 𝑖

0
= 1×10−4mA/cm2,

𝑖
𝑛
= 1×10−4mA/cm2, 𝑟 = 3.85×10−4 kΩcm2,𝑚 = 3×10−6 V,

and 𝑛 = 8 × 10−3 cm2/mA.
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Figure 2: Trajectory tracking of the states.

Table 2: Results for states and controls.

Methods RMSE for states RMSE for controls
Optimal 0.0479 0.1395
PD 0.0932 0.2603

Table 3: Results for states and controls.

Methods RMSE for states RMSE for controls
Optimal 0.3103 2.3623
PD 0.4804 3.6732

4.1. Example 1. The dynamic model for the PEM fuel cell is
given by (10) with 𝑁 = 35, 𝑅

𝑙
= 1Ω, states 𝑥

1
= 𝑝H

2
, 𝑥
2
=

𝑝O
2
, and𝑥

3
= 𝑝H
2
O
𝐶
, inputs 𝑢

1
= H
2,in, 𝑢2 = O

2,in, and 𝑢3 =
𝑖, and output 𝑦 = 𝑉, 𝑥

1,0
= 𝑥
2,0
= 𝑥
3,0
= 1Pa being the initial

conditions for the states;𝑥
𝑑,1
= 𝑥
𝑑,2
= 𝑥
𝑑,3
= 2+0.5 sin(𝜋𝑡)Pa

from 0 s to 4 s are the desired references.
The gains of the PD technique are 𝐾

𝑝
= diag(𝑘

𝑝,𝑗
), 𝑘
𝑝,1
=

2 × 10−1, 𝑘
𝑝,2
= 2 × 10−1, 𝑘

𝑝,3
= 5, 𝐾

𝑑
= diag(𝑘

𝑑,𝑗
), 𝑘
𝑑,1
=

2 × 10−3, 𝑘
𝑑,2
= 4 × 10−3, and 𝑘

𝑝,3
= 5 × 10−2.

Optimal is given by (13), (14) with parameters 𝑃 =

diag(1) ∈ R3 × 3, 𝑄 = diag(0.1) ∈ R3 × 3, 𝑆
0
= diag(𝑠

,𝑗,𝑜
) ∈

R3 × 3, 𝑠
1,𝑜
= 1.2 × 10−3, 𝑠

2,𝑜
= 2.5 × 10−3, and 𝑠

3,𝑜
= 2.5; 𝑆

0

is the initial condition of 𝑆.
Figures 2, 3, and 4 show the trajectory tracking, control

function, and output for Optimal and PD techniques applied
to the PEM fuel cell, respectively. Table 2 shows the RMSE for
the tracking error and control function.

From Figure 2, it can be seen that Optimal achieves better
accuracy when compared with PD because the signals for
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the first follow better the reference signals than for the other.
From Figures 3 and 4, it can be seen that Optimal is better
than PD because the first reaches smaller inputs than the
other. From Table 2, it can be observed that Optimal achieves
better accuracy when compared with PD because the RMSE
is smaller for the first than for the other.

4.2. Example 2. The dynamic model for the PEM fuel cell is
given by (10) with 𝑁 = 35, 𝑅

𝑙
= 1Ω, states 𝑥

1
= 𝑝H

2
, 𝑥
2
=

𝑝O
2
, and 𝑥

3
= 𝑝H

2
O
𝐶
, inputs 𝑢

1
= H
2,in, 𝑢2 = O

2,in, and
𝑢
3
= 𝑖, and output 𝑦 = 𝑉, 𝑥

1,0
= 𝑥
2,0
= 𝑥
3,0
= 2Pa being the
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Figure 5: Trajectory tracking of the states.

initial conditions for the states; 𝑥
𝑑,1
= 𝑥
𝑑,2
= 𝑥
𝑑,3
= 4Pa from

0 s to 1 s, 𝑥
𝑑,1
= 𝑥
𝑑,2
= 𝑥
𝑑,3
= 5Pa from 1 s to 2 s, 𝑥

𝑑,1
= 𝑥
𝑑,2
=

𝑥
𝑑,3
= 3Pa from 2 s to 3 s, and 𝑥

𝑑,1
= 𝑥
𝑑,2
= 𝑥
𝑑,3
= 2Pa from

3 s to 4 s are the desired references.
The gains of the PD technique are 𝐾

𝑝
= diag(𝑘

𝑝,𝑗
), 𝑘
𝑝,1
=

2 × 10−1, 𝑘
𝑝,2
= 2 × 10−1, 𝑘

𝑝,3
= 5, 𝐾

𝑑
= diag(𝑘

𝑑,𝑗
), 𝑘
𝑑,1
=

2 × 10
−3, 𝑘
𝑑,2
= 2 × 10

−3, and 𝑘
𝑝,3
= 5 × 10

−2.
Optimal is given by (13), (14) with parameters 𝑃 =

diag(1) ∈ R3 × 3, 𝑄 = diag(0.1) ∈ R3 × 3, 𝑆
0
= diag(𝑠

,𝑗,𝑜
) ∈

R3 × 3, 𝑠
1,𝑜
= 1.2 × 10−3, 𝑠

2,𝑜
= 2.5 × 10−3, and 𝑠

3,𝑜
= 2.5; 𝑆

0
is

the initial condition of 𝑆.
Figures 5, 6, and 7 show the trajectory tracking, control

function, and output for Optimal and PD techniques applied
to the PEM fuel cell, respectively. Table 3 shows the RMSE for
the tracking error and control function.

From Figure 5, it can be seen that Optimal achieves better
accuracy when compared with PD because the signals for
the first follow better the reference signals than for the other.
From Figures 6 and 7, it can be seen that Optimal is better
than PD because the first reaches smaller inputs than the
other. From Table 3, it can be observed that Optimal achieves
better accuracy when compared with PD because the RMSE
is smaller for the first than for the other.

5. Conclusion

In this paper, the optimal controller applied to the PEM fuel
cell was presented. The simulations showed that the optimal
controller achieves better performance when compared with
dual proportional-derivative technique for the trajectory
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tracking and inputs minimization. As a future work, some
parameters in the controller will be approximated using the
intelligent systems [21–26].
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