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We introduce a new generalized resolvent in a Banach space and discuss some of its properties. Using these properties, we obtain an
iterative scheme for finding a pointwhich is a fixed point of relativelyweak nonexpansivemapping and a zero ofmonotonemapping.
Furthermore, strong convergence of the scheme to a point which is a fixed point of relatively weak nonexpansive mapping and a
zero of monotone mapping is proved.

1. Preliminaries

Let 𝐸 be a real Banach space with dual 𝐸∗. We denote by 𝐽 the
normalized duality mapping from 𝐸 into 2𝐸

∗

, defined by

𝐽𝑥 := {𝑓
∗

∈ 𝐸
∗

: ⟨𝑥, 𝑓
∗

⟩ = ‖𝑥‖
2

=
󵄩󵄩󵄩󵄩𝑓
∗󵄩󵄩󵄩󵄩

2

} , (1)

where ⟨⋅, ⋅⟩ denotes the generalized duality pairing. It is well
known that if 𝐸∗ is strictly convex, then 𝐽 is single valued and
if 𝐸 is uniformly smooth, then 𝐽 is uniformly continuous on
bounded subsets of 𝐸. Moreover, if 𝐸 is a reflexive and strictly
convex Banach space with a strictly convex dual, then 𝐽−1 is
single valued, one-to-one, and surjective, and it is the duality
mapping from 𝐸∗ into 𝐸 and thus 𝐽𝐽−1 = 𝐼

𝐸
∗ = 𝐼
∗ and 𝐽−1𝐽 =

𝐼
𝐸
= 𝐼 (see [1]). We note that, in a Hilbert space 𝐻, 𝐽 is the

identity mapping.
Let 𝐸 be a smooth, reflexive, and strictly convex Banach

space. We define the function 𝑉
2
: 𝐸 × 𝐸 → 𝑅 by

𝑉
2
(𝑦, 𝑥) = ‖𝑥‖

2

− 2 ⟨𝐽𝑦, 𝑥⟩ +
󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩

2

, (2)

for all 𝑥 ∈ 𝐸, 𝑦 ∈ 𝐸. Let 𝐶 be a nonempty closed convex
subset of𝐸. For an arbitrary point 𝑥 of𝐸, consider the set {𝑧 ∈
𝐶 : 𝑉
2
(𝑧, 𝑥) = min

𝑦∈𝐶
𝑉
2
(𝑦, 𝑥)}. In 1996, Alber [2] introduced

generalized projection Π
𝐶
: 𝐸 → 𝐶 from Hilbert space to

uniformly convex and uniformly smooth Banach space:

𝑉
2
(Π
𝐶
𝑥, 𝑥) = min

𝑦∈𝐶

𝑉
2
(𝑦, 𝑥) . (3)

Such a mapping Π
𝐶
is called the generalized projection.

Applying the definitions of𝑉
2
and 𝐽, a functional𝑉 : 𝐸∗×

𝐸 → 𝑅 is defined by the following formula:

𝑉 (𝑥
∗

, 𝑦) = 𝑉
2
(𝐽
−1

𝑥
∗

, 𝑦) , ∀𝑥
∗

∈ 𝐸
∗

, 𝑦 ∈ 𝐸. (4)

In the following, we will make use of the following
lemmas.

Lemma 1 (see [3]). Let 𝐸 be a real smooth Banach space and
let 𝐴 : 𝐸 → 2

𝐸
∗

be a maximal monotone mapping; then𝐴−10
is a closed and convex subset of 𝐸 and the graph of 𝐴, 𝐺(𝐴),
is demiclosed in the following sense, for all 𝑥

𝑛
∈ 𝐷(𝐴) with

𝑥
𝑛
→ 𝑥 in 𝐸 and for all 𝑦

𝑛
∈ 𝐴𝑥
𝑛
with 𝑦

𝑛
→ 𝑦 in 𝐸 implying

that 𝑥 ∈ 𝐷(𝐴) and 𝑦 ∈ 𝐴𝑥.

Lemma 2 (see [2]). Let 𝐶 be a nonempty closed and convex
subset of a real reflexive, strictly convex, and smooth Banach
space 𝐸 and let 𝑥 ∈ 𝐸. Then, 𝑦 ∈ 𝐶 and

𝑉
2
(𝑦, Π
𝐶
𝑥) + ≤ 𝑉

2
(Π
𝐶
𝑥, 𝑥) ≤ 𝑉

2
(𝑦, 𝑥) . (5)
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Lemma 3 (see [2]). Let 𝐶 be a convex subset of a real smooth
Banach space 𝐸. Let 𝑥 ∈ 𝐸 and 𝑥

0
∈ 𝐶. Then, 𝑉

2
(𝑥
0
, 𝑥) =

inf{𝑉
2
(𝑧, 𝑥) : 𝑧 ∈ 𝐶} if and only if

⟨𝑧 − 𝑥
0
, 𝐽𝑥
0
− 𝐽𝑥⟩ ≥ 0. (6)

Lemma 4 (see [4]). Let 𝐸 be a real smooth and uniformly
convex Banach space and let {𝑥

𝑛
} and {𝑦

𝑛
} be two sequences

of 𝐸. If either {𝑥
𝑛
} or {𝑦

𝑛
} is bounded and 𝑉

2
(𝑥
𝑛
, 𝑦
𝑛
) → 0 as

𝑛 → ∞, then 𝑥
𝑛
− 𝑦
𝑛
→ 0, as 𝑛 → ∞.

Let𝐸∗ be a smooth Banach space and let𝐷∗ be a nonempty
closed convex subset of𝐸∗. Amapping𝑅∗ : 𝐷∗ → 𝐷

∗ is called
generalized nonexpansive if 𝐹(𝑅∗) ̸=Ø and

𝑉(𝑅
∗

𝑥
∗

, 𝐽
−1

𝑦
∗

) ≤ 𝑉 (𝑥
∗

, 𝐽
−1

𝑦
∗

) ,

∀𝑥
∗

∈ 𝐷
∗

, 𝑦
∗

∈ 𝐹 (𝑅
∗

) ,

(7)

where 𝐹(𝑅∗) is the set of fixed points of 𝑅∗.
Let𝐶 be a nonempty closed convex subset of 𝐸, and let 𝑇 be

a mapping from𝐶 into itself. We denote by 𝐹(𝑇) the set of fixed
points of 𝑇. A point of 𝑝 in 𝐶 is said to be a strong asymptotic
fixed point of 𝑇 if 𝐶 contains a sequence {𝑥

𝑛
} which converges

strongly to 𝑝 such that the strong lim
𝑛→∞

(𝑇𝑥
𝑛
− 𝑥
𝑛
) = 0. The

set of strong asymptotic fixed points of 𝑇 will be denoted by
𝐹(𝑇). A mapping 𝑇 from 𝐶 into itself is called weak relatively
nonexpansive if 𝐹(𝑇) = 𝐹(𝑇) and 𝑉

2
(𝑝, 𝑇𝑥) ≤ 𝑉

2
(𝑝, 𝑥) for all

𝑥 ∈ 𝐶 and 𝑝 ∈ 𝐹(𝑇) (see [5]).
Let 𝐸 be a smooth Banach space and let 𝐶 be a nonempty

closed convex subset of 𝐸. A mapping 𝑅 : 𝐶 → 𝐶 is called
generalized nonexpansive if 𝐹(𝑅) ̸=Ø and

𝑉
2
(𝑅𝑥, 𝑦) ≤ 𝑉

2
(𝑥, 𝑦) , ∀𝑥 ∈ 𝐶, 𝑦 ∈ 𝐹 (𝑅) , (8)

where 𝐹(𝑅) is the set of fixed points of 𝑅. Let 𝐸 be a reflexive
and smooth Banach space and let 𝐵 ⊂ 𝐸∗ × 𝐸 be a maximal
monotone operator. For each 𝜆 > 0 and 𝑥 ∈ 𝐸, Ibaraki and
Takahashi [6] considered the set

𝐽
𝜆
𝑥 := {𝑧 ∈ 𝐸 : 𝑥 ∈ 𝑧 + 𝜆𝐵𝐽 (𝑧)} . (9)

Such a 𝐽
𝜆
is called the generalized resolvent and is denoted by

𝐽
𝜆
= (𝐼 + 𝜆𝐵𝐽)

−1

. (10)

By sunny nonexpansive retractions, they discussed the existence
of a retraction 𝑅

𝐶
of 𝐸 onto 𝐶 such that, for any 𝑥 ∈ 𝐸,

⟨𝑥 − 𝑅
𝐶
𝑥, 𝐽 (𝑅

𝐶
𝑥) − 𝐽 (𝑦)⟩ ≥ 0, ∀𝑦 ∈ 𝐶, (11)

where 𝐸 is a smooth Banach space and 𝐶 is nonempty closed
subset of 𝐸 (see [7]).

In [7], Zegeye and Shahzad studied the following iterative
scheme for finding a zero point of amaximal stronglymonotone

mapping 𝐴 in a real uniformly smooth and uniformly convex
Banach space 𝐸. Then the sequence {𝑥

𝑛
} generated by

𝑥
0
∈ 𝐾, 𝑐ℎ𝑜𝑠𝑒𝑛𝑎𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦,

𝑦
𝑛
= 𝐽
−1

(𝐽𝑥
𝑛
− 𝛼
𝑛
𝐴𝑥
𝑛
) ,

𝑧
𝑛
= 𝑇𝑦
𝑛
,

𝐻
0
= {V ∈ 𝐾 : 𝜙 (V, 𝑧

0
) ≤ 𝜙 (V, 𝑦

0
) ≤ 𝜙 (V, 𝑥

0
)} ,

𝐻
𝑛
= {V ∈ 𝐻

𝑛−1
∩𝑊
𝑛−1
: 𝜙 (V, 𝑧

𝑛
)

≤ 𝜙 (V, 𝑦
𝑛
) ≤ 𝜙 (V, 𝑥

𝑛
)} ,

𝑊
0
= 𝐸,

𝑊
𝑛
= {V ∈ 𝐻

𝑛−1
∩𝑊
𝑛−1
:

⟨𝑥
𝑛
− V, 𝐽𝑥

0
− 𝐽𝑥
𝑛
⟩ ≥ 0} ,

𝑥
𝑛+1
= ∏

𝐻
𝑛
∩𝑊
𝑛

(𝑥
0
) , 𝑛 ≥ 1

(12)

converges strongly to Π
𝐴
−1
0∩𝐹(𝑇)

(𝑥
0
), where Π

𝐴
−1
0∩𝐹(𝑇)

is the
generalized projection from 𝐸 onto 𝐴−10 ∩ 𝐹(𝑇).

In this paper, motivated by Alber [2], Ibaraki and Taka-
hashi [6], and Zegeye and Shahzad [7], we first introduce the
generalized resolvent and discuss its properties. Secondly, we
give an iterative scheme for finding a point which is a fixed
point of relatively weak nonexpansive mapping and a zero of
monotone mapping. Finally, we show its convergence.

2. The Generalized Resolvent 𝐽∗
𝜆
and

Some of Its Properties

Let 𝐸∗ be a reflexive and smooth Banach space and let 𝐵 ⊂
𝐸 × 𝐸
∗ be a maximal monotone operator. For each 𝜆 > 0 and

𝑥 ∈ 𝐸, consider the set:

𝐽
∗

𝜆
𝑥
∗

:= {𝑧
∗

∈ 𝐸
∗

: 𝑥
∗

∈ 𝑧
∗

+ 𝜆𝐵𝐽
−1

(𝑧
∗

)} . (13)

If 𝑧∗
1
+ 𝜆𝑤

∗

1
= 𝑥
∗, 𝑧∗
2
+ 𝜆𝑤

∗

2
= 𝑥
∗, 𝑤∗
1
∈ 𝐵𝐽

−1

(𝑧
∗

1
),

𝑤
∗

2
∈ 𝐵𝐽
−1

(𝑧
∗

2
), then we have from themonotonicity of 𝐵 that

⟨𝑤
∗

1
− 𝑤
∗

2
, 𝐽
−1

(𝑧
∗

1
) − 𝐽
−1

(𝑧
∗

2
)⟩ ≥ 0, (14)

and hence

⟨
𝑥
∗

− 𝑧
∗

1

𝜆
−
𝑥
∗

− 𝑧
∗

2

𝜆
, 𝐽
−1

(𝑧
∗

1
) − 𝐽
−1

(𝑧
∗

2
)⟩ ≥ 0. (15)

So, we obtain

⟨𝑥
∗

− 𝑧
∗

1
− (𝑥
∗

− 𝑧
∗

2
) , 𝐽
−1

(𝑧
∗

1
) − 𝐽
−1

(𝑧
∗

2
)⟩ ≥ 0, (16)

and hence

⟨𝑧
∗

2
− 𝑧
∗

1
, 𝐽
−1

(𝑧
∗

1
) − 𝐽
−1

(𝑧
∗

2
)⟩ ≥ 0. (17)
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This implies 𝑧∗
1
= 𝑧
∗

2
. Then, 𝐽∗

𝜆
𝑥
∗ consists of one point. We

also denote the domain and the range of 𝐽∗
𝜆
𝑥
∗ by 𝐷(𝐽∗

𝜆
) =

𝑅(𝐼
∗

+ 𝜆𝐵𝐽
−1

) and 𝑅(𝐽∗
𝜆
) = 𝐷(𝐵𝐽

−1

), respectively, where 𝐼∗
is the identity on 𝐸∗. Such a 𝐽∗

𝜆
: 𝐸
∗

→ 𝐸
∗ is called the

generalized resolvent of 𝐵 and is denoted by

𝐽
∗

𝜆
= (𝐼
∗

+ 𝜆𝐵𝐽
−1

)
−1

. (18)

We get some properties of 𝐽∗
𝜆
and (𝐵𝐽−1)−10.

Proposition 5. Let 𝐸∗ be a reflexive and strictly convex
Banach space with a Fréchet differentiable norm and let 𝐵 ⊂
𝐸×𝐸
∗ be a maximal monotone operator with 𝐵−10 ̸=Ø.Then,

the following hold:
(1) 𝐷(𝐽∗

𝜆
) = 𝐸
∗ for each 𝜆 > 0;

(2) (𝐵𝐽−1)−10 = 𝐹(𝐽∗
𝜆
) for each 𝜆 > 0, where 𝐹(𝐽∗

𝜆
) is the

set of fixed points of 𝐽∗
𝜆
;

(3) (𝐵𝐽−1)−10 is closed;
(4) 𝐽∗
𝜆
: 𝐸
∗

→ 𝐸
∗ is generalized nonexpansive for each

𝜆 > 0.

Proof. (1) From the maximality of 𝐵, we have

𝑅 (𝐽 + 𝜆𝐵) = 𝐸
∗

, ∀𝜆 > 0. (19)

Hence, for each 𝑥∗ ∈ 𝐸
∗, there exists 𝑥 ∈ 𝐸 such that

𝑥
∗

∈ 𝐽𝑥 + 𝜆𝐵𝑥. Since 𝐸 is reflexive and strictly convex, 𝐽
is bijective. Therefore, there exists 𝑧∗ ∈ 𝐸∗ such that 𝑥 =
𝐽
−1

(𝑧
∗

). Therefore, we have

𝑥
∗

∈ 𝐽𝐽
−1

(𝑧
∗

) + 𝜆𝐵𝐽
−1

(𝑧
∗

)

= 𝑧
∗

+ 𝜆𝐵𝐽
−1

(𝑧
∗

) ⊂ 𝑅 (𝐼
∗

+ 𝜆𝐵𝐽
−1

) = 𝐷 (𝐽
∗

𝜆
) .

(20)

This implies 𝐸∗ ⊂ 𝐷(𝐽∗
𝜆
). 𝐷(𝐽∗

𝜆
) ⊂ 𝐸

∗ is clear. So, we have
𝐷(𝐽
∗

𝜆
) = 𝐸
∗.

(2) Let 𝜆 > 0. Then, we have

𝑥
∗

∈ 𝐹 (𝐽
𝜆
) ⇐⇒ 𝐽

∗

𝜆
𝑥
∗

= 𝑥
∗

⇐⇒ 𝑥
∗

∈ 𝑥
∗

+ 𝜆𝐵𝐽
−1

(𝑥
∗

)

⇐⇒ 0 ∈ 𝜆𝐵𝐽
−1

(𝑥
∗

) ⇐⇒ 0 ∈ 𝐵𝐽
−1

(𝑥
∗

)

⇐⇒ 𝑥
∗

∈ (𝐵𝐽
−1

)
−1

0.

(21)

(3) Let {𝑥∗
𝑛
} ⊂ (𝐵𝐽

−1

)
−1

0 with 𝑥∗
𝑛
→ 𝑥

∗. From 𝑥
∗

𝑛
∈

(𝐵𝐽
−1

)
−1

0, we have 𝐽−1(𝑥∗
𝑛
) ∈ 𝐵

−1

0. Since 𝐽−1 is norm to
norm continuous and 𝐵−10 is closed, we have that 𝐽−1(𝑥∗

𝑛
) →

𝐽
−1

(𝑥
∗

) ∈ 𝐵
−1

0. This implies 𝑥∗ ∈ (𝐵𝐽
−1

)
−1

0. That is,
(𝐵𝐽
−1

)
−1

0 is closed.
(4) Let 𝑥∗ ∈ 𝐸∗, 𝑦∗ ∈ 𝐸∗, 𝑧∗ ∈ 𝐸∗, and 𝜆 > 0. By

Definition (2) and calculating that

𝑉(𝑥
∗

, 𝐽
−1

𝑧
∗

) + 𝑉 (𝑧
∗

, 𝐽
−1

𝑦
∗

)

=
󵄩󵄩󵄩󵄩𝑥
∗󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝑧
∗󵄩󵄩󵄩󵄩

2

− 2 ⟨𝑥
∗

, 𝐽
−1

𝑧
∗

⟩

+
󵄩󵄩󵄩󵄩𝑦
∗󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝑧
∗󵄩󵄩󵄩󵄩

2

− 2 ⟨𝑧
∗

, 𝐽
−1

𝑦
∗

⟩

= 𝑉 (𝑥
∗

, 𝐽
−1

𝑦
∗

) + 2 ⟨𝑧
∗

− 𝑥
∗

, 𝐽
−1

𝑧
∗

− 𝐽
−1

𝑦
∗

⟩ ,

(22)

we have that
𝑉(𝑥
∗

, 𝐽
−1

𝑦
∗

) = 𝑉 (𝑥
∗

, 𝐽
−1

𝑧
∗

) + 𝑉 (𝑧
∗

, 𝐽
−1

𝑦
∗

)

+ 2 ⟨𝑥
∗

− 𝑧
∗

, 𝐽
−1

𝑧
∗

− 𝐽
−1

𝑦
∗

⟩ .

(23)

Let 𝑥∗ ∈ 𝐸∗, 𝑦∗ ∈ 𝐹(𝐽
𝜆
), and 𝜆 > 0. From the above formula,

we have
𝑉(𝑥
∗

, 𝐽
−1

𝑦
∗

) = 𝑉 (𝑥
∗

, 𝐽
−1

𝐽
∗

𝜆
𝑥
∗

) + 𝑉 (𝐽
∗

𝜆
𝑥
∗

, 𝐽
−1

𝑦
∗

)

+ 2 ⟨𝑥
∗

− 𝐽
∗

𝜆
𝑥
∗

, 𝐽
−1

𝐽
𝜆
𝑥
∗

− 𝐽
−1

𝑦
∗

⟩ .

(24)

Since ((𝑥∗ − 𝐽∗
𝜆
𝑥
∗

)/𝜆) ∈ 𝐵𝐽
−1

(𝐽
∗

𝜆
𝑥
∗

) and 0 ∈ 𝐵𝐽−1(𝑦∗), we
have

⟨𝑥
∗

− 𝐽
∗

𝜆
𝑥
∗

, 𝐽
−1

𝐽
∗

𝜆
𝑥
∗

− 𝐽
−1

𝑦
∗

⟩ ≥ 0. (25)

Therefore, we get

𝑉(𝑥
∗

, 𝐽
−1

𝑦
∗

) ≥ 𝑉 (𝑥
∗

, 𝐽
−1

𝐽
∗

𝜆
𝑥
∗

) + 𝑉 (𝐽
∗

𝜆
𝑥
∗

, 𝐽
−1

𝑦
∗

)

≥ 𝑉 (𝐽
∗

𝜆
𝑥
∗

, 𝐽
−1

𝑦
∗

) .

(26)

That is, 𝐽∗
𝜆
is generalized nonexpansive on 𝐸∗.

Theorem 6 (see [8]). Let 𝐸 be a Banach space and let 𝐴 ⊂

𝐸 × 𝐸
∗ be a maximal monotone operator with 𝐴−10 ̸=Ø. If E∗

is strictly convex and has a Fréchet differentiable norm, then,
for each 𝑥 ∈ 𝐸, lim

𝜆→∞
(𝐽 + 𝜆𝐴)

−1

𝐽(𝑥) exists and belongs to
𝐴
−1

0.
Using Theorem 6, we get the following result.

Theorem 7. Let 𝐸∗ be a uniformly convex Banach space with
a Fréchet differentiable norm and let 𝐵 ⊂ 𝐸×𝐸∗ be a maximal
monotone operator with 𝐵−10 ̸=Ø. Then the following hold:

(1) for each 𝑥∗ ∈ 𝐸∗, lim
𝜆→∞

𝐽
∗

𝜆
𝑥
∗ exists and belongs to

(𝐵𝐽
−1

)
−1

0;
(2) if 𝑅∗𝑥∗ := lim

𝜆→∞
𝐽
∗

𝜆
𝑥
∗ for each 𝑥∗ ∈ 𝐸∗, then 𝑅∗ is

a sunny generalized nonexpansive retraction of𝐸∗ onto
(𝐵𝐽
−1

)
−1

0.

Proof. (1) By defining a mapping 𝑄
𝜆
from 𝐸 to 𝐸 by

𝑄
𝜆
𝑥 := (𝐼 + 𝜆𝐽

−1

𝐵) 𝑥, ∀𝑥 ∈ 𝐸, 𝜆 > 0, (27)

we have, for all 𝑥∗ ∈ 𝐸∗, 𝜆 > 0, 𝐽∗
𝜆
𝑥
∗

= 𝐽𝑄
𝜆
𝐽
−1

(𝑥
∗

). In fact,
define

𝑥
∗

𝜆
:= 𝐽𝑄

𝜆
𝐽
−1

(𝑥
∗

) = [𝐽 (𝐼 + 𝜆𝐽
−1

𝐵) 𝐽
−1

]
−1

(𝑥
∗

) . (28)

Then, we have
𝑥
∗

∈ 𝐽 (𝐼 + 𝜆𝐽
−1

𝐵) 𝐽
−1

(𝑥
∗

𝜆
) = (𝐼

∗

+ 𝜆𝐵𝐽
−1

) 𝑥
∗

𝜆
, (29)

and hence 𝑥∗
𝜆
= 𝐽
∗

𝜆
𝑥
∗. FromTheorem 6, we get

lim
𝜆→∞

𝑄
𝜆
𝐽
−1

(𝑥
∗

) = 𝑢 ∈ 𝐵
−1

0. (30)

If 𝐸∗ is uniformly convex, then 𝐸 has a Fréchet differentiable
norm. So, 𝐽 is norm to norm continuous. Since𝐵−10 is closed,
we have

lim
𝜆→∞

𝐽
∗

𝜆
𝑥
∗

= lim
𝜆→∞

𝐽𝑄
𝜆
𝐽
−1

(𝑥
∗

) = 𝐽𝑢 ∈ 𝐽𝐵
−1

0 = (𝐵𝐽
−1

)
−1

0.

(31)
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(2) We define a mapping 𝑅∗ from 𝐸∗ to 𝐸∗ by

𝑅
∗

𝑥
∗

:= lim
𝜆→∞

𝐽
∗

𝜆
𝑥
∗

, ∀𝑥
∗

∈ 𝐸
∗

. (32)

Let𝑢∗ ∈ (𝐵𝐽−1)−10 = 𝐹(𝐽∗
𝜆
𝑥
∗

).Then,𝑅∗𝑢∗ = lim
𝜆→∞

𝐽
∗

𝜆
𝑢
∗

=

lim
𝜆→∞

𝑢
∗

= 𝑢
∗. Therefore, 𝑅∗ is a retraction of 𝐸∗ onto

(𝐵𝐽
−1

)
−1

0. Since 𝑥∗ ∈ 𝐽∗
𝜆
𝑥
∗

+ 𝜆𝐵𝐽
−1

(𝐽
∗

𝜆
𝑥
∗

), we have

⟨
𝑥
∗

− 𝐽
∗

𝜆
𝑥
∗

𝜆
, 𝐽
−1

(𝐽
∗

𝜆
𝑥
∗

) − 𝐽
−1

(𝑧
∗

)⟩ ≥ 0,

∀𝑧
∗

∈ (𝐵𝐽
−1

)
−1

0,

(33)

and hence

⟨𝑥
∗

− 𝐽
∗

𝜆
𝑥
∗

, 𝐽
−1

(𝐽
∗

𝜆
𝑥
∗

) − 𝐽
−1

(𝑧
∗

)⟩ ≥ 0. (34)

Letting 𝜆 → 0, we get

⟨𝑥
∗

− 𝑅
∗

𝑥
∗

, 𝐽
−1

(𝑅
∗

𝑥
∗

)− 𝐽
−1

(𝑧
∗

)⟩ ≥ 0, ∀𝑧
∗

∈ (𝐵𝐽
−1

)
−1

0.

(35)

From Proposition 5, 𝑅∗ is sunny and generalized nonexpan-
sive.This implies that𝑅∗ is a sunny generalized nonexpansive
retraction of 𝐸∗ onto (𝐵𝐽−1)−10.

3. An Iterative Scheme for Finding a Zero
Point of a Monotone Mapping by 𝐽∗

𝜆

Now we construct an iterative scheme which converges
strongly to a point which is a fixed point of relatively weak
nonexpansive mapping and a zero of monotone mapping.

Theorem 8. Let 𝐸∗ be a uniformly convex Banach space and
uniformly smooth Banach space. Let𝐴 ⊂ 𝐸×𝐸∗ be a maximal
monotone operator. Let 𝐶 be a nonempty closed convex subset
of 𝐸. Let 𝑇 : 𝐶 → 𝐶 be a relatively weak nonexpansive
mapping with𝐴−10∩𝐹(𝑇) ̸=Ø. Assume that 0 ≤ 𝛼

𝑛
< 𝑎 < 1 is

a sequence of real numbers. Then, the sequence {𝑥
𝑛
} generated

by

𝑥
0
∈ 𝐶, 𝜆

𝑛
󳨀→ +∞,

𝑦
𝑛
= 𝐽
−1

(𝛼
𝑛
𝐽𝑥
𝑛
+ (1 − 𝛼

𝑛
) 𝐽
∗

𝜆
𝑛

𝐽𝑥
𝑛
) ,

𝐽
∗

𝜆
𝑛

= (𝐼
∗

+ 𝜆
𝑛
𝐴𝐽
−1

)
−1

,

𝑧
𝑛
= 𝑇𝑦
𝑛
,

𝐻
0
= {V ∈ 𝐶 : 𝑉

2
(V, 𝑧
0
) ≤ 𝑉
2
(V, 𝑦
0
) ≤ 𝑉
2
(V, 𝑥
0
)} ,

𝐻
𝑛
={V ∈ 𝐻

𝑛−1
∩𝑊
𝑛−1
: 𝑉
2
(V, 𝑧
𝑛
)≤ 𝑉
2
(V, 𝑦
𝑛
) ≤𝑉
2
(V, 𝑥
𝑛
)},

𝑊
0
= 𝐶,

𝑊
𝑛
= {V ∈ 𝐻

𝑛−1
∩𝑊
𝑛−1
: ⟨V − 𝑥

𝑛
, 𝐽𝑥
0
− 𝐽𝑥
𝑛
⟩ ≤ 0} ,

𝑥
𝑛+1
= ∏

𝐻
𝑛
∩𝑊
𝑛

(𝑥
0
) , 𝑛 ≥ 1

(36)

converges strongly to Π
𝐴
−1
0∩𝐹(𝑇)

(𝑥
0
), where Π

𝐴
−1
0∩𝐹(𝑇)

is the
generalized projection from 𝐸 onto 𝐴−10 ∩ 𝐹(𝑇).

Proof. Wefirst show that𝐻
𝑛
and𝑊

𝑛
are closed and convex for

each 𝑛 ≥ 0. From the definition of 𝐻
𝑛
and𝑊

𝑛
, it is obvious

that𝐻
𝑛
is closed and𝑊

𝑛
is closed and convex for each 𝑛 ≥ 0.

We show that𝐻
𝑛
is convex. Since

𝐻
𝑛
= {V ∈ 𝐻

𝑛−1
∩𝑊
𝑛−1
: 𝑉
2
(V, 𝑧
𝑛
) ≤ 𝑉
2
(V, 𝑦
𝑛
)}

∩ {V ∈ 𝐻
𝑛−1
∩𝑊
𝑛−1
: 𝑉
2
(V, 𝑦
𝑛
) ≤ 𝑉
2
(V, 𝑥
𝑛
)} ,

(37)

𝑉
2
(V, 𝑦
𝑛
) ≤ 𝑉
2
(V, 𝑥
𝑛
) is equivalent to

2 ⟨V, 𝐽𝑥
𝑛
− 𝐽𝑦
𝑛
⟩ +
󵄩󵄩󵄩󵄩𝑦𝑛
󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝑥𝑛
󵄩󵄩󵄩󵄩

2

≤ 0, (38)

and 𝑉
2
(V, 𝑧
𝑛
) ≤ 𝑉
2
(V, 𝑦
𝑛
) is equivalent to

2 ⟨V, 𝐽𝑦
𝑛
− 𝐽𝑧
𝑛
⟩ +
󵄩󵄩󵄩󵄩𝑧𝑛
󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝑥𝑛
󵄩󵄩󵄩󵄩

2

≤ 0, (39)

it follows that𝐻
𝑛
is convex.

Next, we show that 𝐹 =: 𝐴−10 ∩ 𝐹(𝑇) ⊂ 𝐻
𝑛
∩𝑊
𝑛
for each

𝑛 ≥ 0. Let 𝑝 ∈ 𝐹; then relatively weak nonexpansiveness of 𝑇
and generalized nonexpansiveness of 𝐽∗

𝜆
give that

𝑉
2
(𝑝, 𝑧
0
) = 𝑉
2
(𝑝, 𝑇𝑦

0
) ≤ 𝑉
2
(𝑝, 𝑦
0
)

= 𝑉
2
(𝑝, 𝐽
−1

(𝛼
0
𝐽𝑥
0
+ (1 − 𝛼

0
) 𝐽
∗

𝜆
0

𝐽𝑥
0
))

=
󵄩󵄩󵄩󵄩𝑝
󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩󵄩
𝛼
0
𝐽𝑥
0
+ (1 − 𝛼

0
) 𝐽
∗

𝜆
0

𝐽𝑥
0

󵄩󵄩󵄩󵄩󵄩

2

− 2 ⟨𝑝, 𝛼
0
𝐽𝑥
0
+ (1 − 𝛼

0
) 𝐽
∗

𝜆
0

𝐽𝑥
0
⟩

≤
󵄩󵄩󵄩󵄩𝑝
󵄩󵄩󵄩󵄩

2

− 2𝛼
0
⟨𝑝, 𝐽𝑥

0
⟩ − 2 (1 − 𝛼

0
) ⟨𝑝, 𝐽

∗

𝜆
0

𝐽𝑥
0
⟩

+ 𝛼
0

󵄩󵄩󵄩󵄩𝐽𝑥0
󵄩󵄩󵄩󵄩

2

+ (1 − 𝛼
0
)
󵄩󵄩󵄩󵄩󵄩
𝐽
∗

𝜆
0

𝐽𝑥
0

󵄩󵄩󵄩󵄩󵄩

2

= 𝛼
0
(
󵄩󵄩󵄩󵄩𝑝
󵄩󵄩󵄩󵄩

2

− 2𝛼
0
⟨𝑝, 𝐽𝑥

0
⟩ +
󵄩󵄩󵄩󵄩𝑥0
󵄩󵄩󵄩󵄩

2

)

+ (1 − 𝛼
0
) (
󵄩󵄩󵄩󵄩𝑝
󵄩󵄩󵄩󵄩

2

− 2 ⟨𝑝, 𝐽
∗

𝜆
0

𝐽𝑥
0
⟩ +

󵄩󵄩󵄩󵄩󵄩
𝐽
∗

𝜆
0

𝐽𝑥
0

󵄩󵄩󵄩󵄩󵄩

2

)

= 𝛼
0
𝑉
2
(𝑝, 𝑥
0
) + (1 − 𝛼

0
) 𝑉
2
(𝑝, 𝐽
−1

𝐽
∗

𝜆
0

𝐽𝑥
0
)

= 𝛼
0
𝑉
2
(𝑝, 𝑥
0
) + (1 − 𝛼

0
) 𝑉 (𝑝, 𝐽

∗

𝜆
0

𝐽𝑥
0
)

≤ 𝛼
0
𝑉
2
(𝑝, 𝑥
0
) + (1 − 𝛼

0
) 𝑉 (𝑝, 𝐽𝑥

0
)

≤ 𝛼
0
𝑉
2
(𝑝, 𝑥
0
) + (1 − 𝛼

0
) 𝑉
2
(𝑝, 𝑥
0
) = 𝑉
2
(𝑝, 𝑥
0
) .

(40)

Thus, we give that 𝑝 ∈ 𝐻
0
. On the other hand, it is clear that

𝑝 ∈ 𝐶. Thus, 𝐹 ⊂ 𝐻
0
∩ 𝑊
0
and, therefore, 𝑥

1
= Π
𝐻
0
∩𝑊
0

is well defined. Suppose that 𝐹 ⊂ 𝐻
𝑛−1
∩ 𝑊
𝑛−1

and {𝑥
𝑛
} is

well defined.Then, themethods in (40) imply that𝑉
2
(𝑝, 𝑧
𝑛
) ≤

𝑉
2
(𝑝, 𝑦
𝑛
) ≤ 𝑉
2
(𝑝, 𝑥
𝑛
) and 𝑝 ∈ 𝐻

𝑛
. Moreover, it follows from

Lemma 3 that

⟨𝑝 − 𝑥
𝑛
, 𝐽𝑥
𝑛
− 𝐽𝑥
0
⟩ ≥ 0, (41)

which implies that 𝑝 ∈ 𝑊
𝑛
. Hence 𝐹 ⊂ 𝐻

𝑛
∩ 𝑊
𝑛
and 𝑥

𝑛+1
=

Π
𝐻
𝑛
∩𝑊
𝑛

is well defined.Then, by induction, 𝐹 ⊂ 𝐻
𝑛
∩𝑊
𝑛
and

the sequence generated by (36) is well defined for each 𝑛 ≥ 0.



Journal of Applied Mathematics 5

Now, we show that {𝑥
𝑛
} is a bounded sequence and

converges to a point of 𝐹. Let 𝑝 ∈ 𝐹. Since 𝑥
𝑛+1
= Π
𝐻
𝑛
∩𝑊
𝑛

(𝑥
0
)

and𝐻
𝑛
∩𝑊
𝑛
⊂ 𝐻
𝑛−1
∩𝑊
𝑛−1

for all 𝑛 ≥ 1, we have

𝑉
2
(𝑥
𝑛
, 𝑥
0
) ≤ 𝑉
2
(𝑥
𝑛+1
, 𝑥
0
) (42)

for all 𝑛 ≥ 0. Therefore, {𝑉
2
(𝑥
𝑛
, 𝑥
0
)} is nondecreasing. In

addition, it follows from definition of𝑊
𝑛
and Lemma 3 that

𝑥
𝑛
= Π
𝑊
𝑛

(𝑥
0
). Therefore, by Lemma 2 we have

𝑉
2
(𝑥
𝑛
, 𝑥
0
) = 𝑉
2
(∏

𝑊
𝑛

(𝑥
0
) , 𝑥
0
)

≤ 𝑉
2
(𝑝, 𝑥
0
) − 𝑉
2
(𝑝, 𝑥
𝑛
) ≤ 𝑉
2
(𝑝, 𝑥
0
) ,

(43)

for each 𝑝 ∈ 𝐹(𝑇) ⊂ 𝑊
𝑛
for all 𝑛 ≥ 0. Therefore, {𝑉

2
(𝑥
𝑛
, 𝑥
0
)}

is bounded. This together with (40) implies that the limit
of {𝑉
2
(𝑥
𝑛
, 𝑥
0
)} exists. Put lim

𝑛→∞
𝑉
2
(𝑥
𝑛
, 𝑥
0
) = 𝑑. From

Lemma 2, we have, for any positive integer𝑚, that

𝑉
2
(𝑥
𝑛+𝑚
, 𝑥
𝑛
) = 𝑉
2
(𝑥
𝑛+𝑚
,∏

𝑊
𝑛

(𝑥
0
)) ≤ 𝑉

2
(𝑥
𝑛+𝑚
, 𝑥
0
)

− 𝑉
2
(∏

𝑊
𝑛

(𝑥
0
) , 𝑥
0
)

= 𝑉
2
(𝑥
𝑛+𝑚
, 𝑥
0
) − 𝑉
2
(𝑥
𝑛
, 𝑥
0
) ,

(44)

for all 𝑛 ≥ 0. The existence of lim
𝑛→∞

𝑉
2
(𝑥
𝑛
, 𝑥
0
) implies that

lim
𝑛→∞

𝑉
2
(𝑥
𝑚+𝑛
, 𝑥
𝑛
) = 0. Thus, Lemma 4 implies that

𝑥
𝑚+𝑛

− 𝑥
𝑛
󳨀→ 0 as 𝑛 󳨀→ ∞, (45)

and hence {𝑥
𝑛
} is a Cauchy sequence. Therefore, there exists

a point 𝑞 ∈ 𝐸 such that 𝑥
𝑛
→ 𝑞 as 𝑛 → ∞. Since 𝑥

𝑛+1
∈ 𝐻
𝑛
,

we have 𝑉
2
(𝑥
𝑛+1
, 𝑧
𝑛
) ≤ 𝑉

2
(𝑥
𝑛+1
, 𝑦
𝑛
) ≤ 𝑉

2
(𝑥
𝑛+1
, 𝑥
𝑛
). Thus by

Lemma 4 and (45) we get that

𝑥
𝑛+1
− 𝑧
𝑛
󳨀→ 0, 𝑥

𝑛+1
− 𝑦
𝑛
󳨀→ 0 as 𝑛 󳨀→ ∞, (46)

and hence ‖𝑥
𝑛
− 𝑦
𝑛
‖ ≤ ‖𝑥

𝑛+1
− 𝑥
𝑛
‖ + ‖𝑥

𝑛+1
− 𝑦
𝑛
‖ → 0 as

𝑛 → ∞. Furthermore, since 𝐽 is uniformly continuous on
bounded sets, we have

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝐽𝑥𝑛+1 − 𝐽𝑧𝑛
󵄩󵄩󵄩󵄩 = lim
𝑛→∞

󵄩󵄩󵄩󵄩𝐽𝑥𝑛 − 𝐽𝑦𝑛
󵄩󵄩󵄩󵄩 = 0, (47)

which implies that
󵄩󵄩󵄩󵄩𝐽𝑥𝑛+1 − 𝐽𝑇𝑦𝑛

󵄩󵄩󵄩󵄩 󳨀→ as 𝑛 󳨀→ ∞. (48)

Since 𝐽−1 is also uniformly norm-continuous on bounded
sets, we obtain

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑇𝑦𝑛
󵄩󵄩󵄩󵄩 = lim
𝑛→∞

󵄩󵄩󵄩󵄩󵄩
𝐽
−1

𝐽𝑥
𝑛+1
− 𝐽
−1

𝐽𝑇𝑦
𝑛

󵄩󵄩󵄩󵄩󵄩
= 0. (49)

Therefore, from (46), (49), and ‖𝑦
𝑛
− 𝑇𝑦
𝑛
‖ ≤ ‖𝑥

𝑛+1
− 𝑇𝑦
𝑛
‖ +

‖𝑥
𝑛
−𝑦
𝑛
‖, we obtain that lim

𝑛→∞
‖𝑦
𝑛
−𝑇𝑦
𝑛
‖ = 0.This together

with the fact that {𝑥
𝑛
} (and hence {𝑦

𝑛
}) converges strongly

to 𝑞 ∈ 𝐸 and the definition of relatively weak nonexpansive
mapping implies that 𝑞 ∈ 𝐹(𝑇). Furthermore, from (36) and

(47), we have that (1 − 𝛼
𝑛
)‖𝐽
∗

𝜆
𝑛

𝐽𝑥
𝑛
− 𝐽𝑥
𝑛
‖ = ‖𝐽𝑥

𝑛
− 𝐽𝑦
𝑛
‖ → 0

as 𝑛 → ∞.Thus, from lim
𝑛→∞

𝐽
∗

𝜆
𝑛

𝐽𝑥
𝑛
= lim
𝑛→∞

𝐽𝑥
𝑛
= 𝐽𝑞 ∈

𝐽𝐴
−1

0 = (𝐴𝐽
−1

)
−1

0, we obtain that 𝑞 ∈ 𝐴−10.
Finally, we show that 𝑞 = Π

𝐴
−1
0∩𝐹(𝑇)

(𝑥
0
) as 𝑛 → ∞.

From Lemma 2, we have

𝑉
2
(𝑞, ∏

𝐴
−1
0∩𝐹(𝑇)

(𝑥
0
))+ 𝑉

2
( ∏

𝐴
−1
0∩𝐹(𝑇)

(𝑥
0
) , 𝑥
0
)≤𝑉
2
(𝑞, 𝑥
0
) .

(50)

On the other hand, since 𝑥
𝑛+1
= Π
𝐻
𝑛
∩𝑊
𝑛

(𝑥
0
) and𝐹 ⊂ 𝐻

𝑛
∩𝑊
𝑛

for all 𝑛 ≥ 0, we have by Lemma 2 that

𝑉
2
( ∏

𝐴
−1
0∩𝐹(𝑇)

(𝑥
0
) , 𝑥
𝑛+1
) + 𝑉

2
(𝑥
𝑛+1
, 𝑥
0
)

≤ 𝑉
2
( ∏

𝐴
−1
0∩𝐹(𝑇)

(𝑥
0
) , 𝑥
0
) .

(51)

Moreover, by the definition of 𝑉
2
(𝑥, 𝑦), we get that

lim
𝑛→∞

𝑉
2
(𝑥
𝑛+1
, 𝑥
0
) = 𝑉
2
(𝑞, 𝑥
0
) . (52)

By combining (50) and (52), we obtain that 𝑉
2
(𝑞, 𝑥
0
) =

𝑉
2
(Π
𝐴
−1
0∩𝐹(𝑇)

(𝑥
0
), 𝑥
0
). Therefore, it follows from the unique-

ness ofΠ
𝐴
−1
0∩𝐹(𝑇)

(𝑥
0
) that 𝑞 = Π

𝐴
−1
0∩𝐹(𝑇)

(𝑥
0
).This completes

the proof.

Remark 9. If in Theorem 8 we have that 𝑇 = 𝐼, the identity
map on 𝐸, then we get the following.

Corollary 10. Let 𝐸∗ be a uniformly convex Banach space and
uniformly smooth Banach space. Let𝐴 ⊂ 𝐸×𝐸∗ be a maximal
monotone operator. Let 𝐶 be a nonempty closed convex subset
of 𝐸 with 𝐴−10 ̸=Ø. Assume that 0 ≤ 𝛼

𝑛
< 𝑎 < 1 is a sequence

of real numbers. Then, the sequence {𝑥
𝑛
} generated by

𝑥
0
∈ 𝐶, 𝜆

𝑛
󳨀→ +∞,

𝑦
𝑛
= 𝐽
−1

(𝛼
𝑛
𝐽𝑥
𝑛
+ (1− 𝛼

𝑛
) 𝐽
∗

𝜆
𝑛

𝐽𝑥
𝑛
) , 𝐽

∗

𝜆
𝑛

= (𝐼
∗

+ 𝜆
𝑛
𝐴𝐽
−1

)
−1

,

𝐻
0
= {V ∈ 𝐶 : 𝑉

2
(V, 𝑧
0
) ≤ 𝑉
2
(V, 𝑦
0
) ≤ 𝑉
2
(V, 𝑥
0
)} ,

𝐻
𝑛
= {V ∈ 𝐻

𝑛−1
∩𝑊
𝑛−1
: 𝑉
2
(V, 𝑧
𝑛
)≤ 𝑉
2
(V, 𝑦
𝑛
)≤ 𝑉
2
(V, 𝑥
𝑛
)} ,

𝑊
0
= 𝐶,

𝑊
𝑛
= {V ∈ 𝐻

𝑛−1
∩𝑊
𝑛−1
: ⟨V − 𝑥

𝑛
, 𝐽𝑥
0
− 𝐽𝑥
𝑛
⟩ ≤ 0} ,

𝑥
𝑛+1
= ∏

𝐻
𝑛
∩𝑊
𝑛

(𝑥
0
) , 𝑛 ≥ 1

(53)

converges strongly to Π
𝐴
−1
0
, where Π

𝐴
−1
0
is the generalized

projection from 𝐸 onto 𝐴−10.

Remark 11. We have compared the results of [2, 6, 7] with the
result in this paper.
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(1) In [6], Ibaraki and Takahashi introduced the general-
ized resolvent 𝐽

𝜆
: 𝐸 → 𝐸, which was denoted by

𝐽
𝜆
= (𝐼 + 𝜆𝐵𝐽)

−1

. (54)

In this paper, we introduce the generalized resolvent 𝐽∗
𝜆
:

𝐸
∗

→ 𝐸
∗, which is denoted by

𝐽
∗

𝜆
= (𝐼
∗

+ 𝜆𝐵𝐽
−1

)
−1

. (55)

(2) In [6], Ibaraki and Takahashi defined a sunny gener-
alized nonexpansive retraction 𝑅

𝐶
of 𝐸 onto 𝐵𝐽−10 :

𝑅𝑥 := lim
𝜆→∞

𝐽
𝜆
𝑥, ∀𝑥 ∈ 𝐸. (56)

In this paper, we define a sunny generalized nonexpansive
retraction 𝑅∗ of 𝐸∗ onto (𝐵𝐽−1)−10 :

𝑅
∗

𝑥
∗

:= lim
𝜆→∞

𝐽
∗

𝜆
𝑥
∗

, ∀𝑥 ∈ 𝐸
∗

. (57)

(3) In [7], Zegeye and Shahzad proved the strong conver-
gence theorem of the sequence {𝑥

𝑛
} generated by (12). Using

𝐽
∗

𝜆
, in this paper, we construct an iterative scheme in 𝐸∗,

which converges strongly to a point which is a fixed point
of a relatively weak nonexpansive mapping and a zero of a
monotone mapping.

The results we have obtained in this paper are studied in
𝐸
∗, which is different from others.
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