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We introduce a new generalized resolventina
iterative scheme for finding a point which is a fixed
Furthermore, strong convergence of the scheme to a
zero of monotone mapping is proved.
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its properties. Using these properties, we obtain an
k nonexpansive mapping and a zero of monotone mapping.
isa ﬁxed point of relatively weak nonexpansive mapping and a

eralized projection Il : E — C from Hilbert space to
iformly convex and uniformly smooth Banach space:

v (Tlgx, x) = minV; (y, x). 3)

Such a mapping I1- is called the generalized projection.
Applying the definitions of V, and J, a functional V': E* x
E — Ris defined by the following formula:
V(x',y)=V,(J'x"y), Vx'€E', yeE (4
In the following, we will make use of the following
lemmas.

Lemma 1 (see [3]). Let E be a real smooth Banach space and

let A: E — 2F be a maximal monotone mapping; then A~'0
is a closed and convex subset of E and the graph of A, G(A),
is demiclosed in the following sense, for all x,, € D(A) with
x, — xinE and forall y, € Ax, with y, — yinE implying
that x € D(A) and y € Ax.

Lemma 2 (see [2]). Let C be a nonempty closed and convex
subset of a real reflexive, strictly convex, and smooth Banach
space E and let x € E. Then, y € C and

V, (y, Hex) + <V, (TIex, x) <V, (9, %) (5)
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Lemma 3 (see [2]). Let C be a convex subset of a real smooth ~ mapping A in a real uniformly s
Banach space E. Let x € E and x, € C. Then, V,(xy,x) =  Banach space E. Then the seq
inf{V,(z,x) : z € C} if and only if

(z = xg, Jxy — Jx) > 0. (6)

Lemma 4 (see [4]). Let E be a real smooth and uniformly
convex Banach space and let {x,} and {y,} be two sequences
of E. If either {x,} or {y,} is bounded and V,(x,, y,) — 0as
n — oo, thenx, -y, — 0,asn — oo.

Let E* be a smooth Banach space and let D™ be a nonempty
closed convex subset of E*. A mapping R* : D* — D" is called
generalized nonexpansive if F(R") + @ and

V(R*X*,]_ly*) < V(x*,]_ly*),

Vx" € D", y* € F(R"),

where F(R") is the set of fixed points of R".

Let C be a nonempty closed convex subset of E, and let T be
a mapping from C into itself. We denote by F(T) the set of fixed
points of T. A point of p in C is said to be a strong asymptotic
fixed point of T if C contains a sequence {x,} which converges
strongly to p such that the strong lim, _, . (Tx, — x,,)
set of strong asymptotic fixed points of T will be
F(T). A mapping T from C into itself is called we.
nonexpansive if F(T) = F(T) and V,(p, Tx) < V,(p,
x €Candp e F(T) (see[5]).

Let E be a smooth Banach space and let C be a nonem
closed convex subset of E. A mapping R : is calle
generalized nonexpansive if F(R) # @ an

A-tonr(r)(Xo)> where TLy-10nk(r) is the
from E onto A0 n F(T).

n this paper, motivated by Alber [2], Ibaraki and Taka-
geye and Shahzad [7], we first introduce the
olvent and discuss its properties. Secondly, we

an iterative scheme for finding a point which is a fixed
nt of relatively weak nonexpansive mapping and a zero of
otone mapping. Finally, we show its convergence.

e Generalized Resolvent | ; and

Vy (Rx, y) <V, (%, ), Some of Its Properties

et E* be a reflexive and smooth Banach space and let B €
E x E* be a maximal monotone operator. For each A > 0 and
x € E, consider the set:

Lixt={z" e E :x" ez + 2B (2)}. (13)

If z + Al = x% 20 + W} = x* w € BI''(z)),
w} € BJ"'(2}), then we have from the monotonicity of B that

(wf -w}, 77" (2) - " (23)) 2 0, (14)

and hence

x* -z x"-z; . . 1.
< 4 /\2,]1(21)—]1(22)>20. 1)

So, we obtain
(<=2 - =) @) - @) =0. ()
and hence

scheme for finding oint of a maximal strongly monotone <Z; -z, J (z7) - J! (z;)> > 0. 17)
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This implies z; = z;. Then, J;x" consists of one point. We
also denote the domain and the range of Jyx* by D(J;) =
R(I* + ABJ ') and R(Jy) = D(BJ ™), respectively, where I*
is the identity on E*. Such a J; : E* — E” is called the
generalized resolvent of B and is denoted by

Ji= (1 +as) (18)
We get some properties of J; and (BJ ~H o,

Proposition 5. Let E* be a reflexive and strictly convex
Banach space with a Fréchet differentiable norm and let B C

E x E* be a maximal monotone operator with B0 # @. Then,
the following hold:

(1) D(J;) = E* for each A > 0;

(2) B H o = F(Jy) for each A > 0, where F(J}) is the
set of fixed points of J;

(3) (BJ )0 is closed;

(4) J; : E* — E" is generalized nonexpansive for each

A>0.

Proof. (1) From the maximality of B, we have

R(J+AB)=E", VA>0. 19)
Hence, for each x*

€ E”, there exists x € E
x" € Jx + ABx. Since E is reflexive and strictl
is bijective. Therefore, there exists z* € E” suc
J 71 (z*). Therefore, we have

x* e N (2") + ABI ' (2%)
=z" +ABJ "' (z*) < R(I" + ABJ

This implies E* ¢ D(J;). D(Jy) C [
D(}) = E.
(2) Let A > 0. Then, we have

= x
(21)
* -1 . * *
(3) Let {x,} Y710 with x, — "€
BI 0, we h B7!0. Since J7! is norm to

ed, we have that J _l(x;) —
* 1710, That is,

“,and A > 0. By

(22)
o

y
2 <Z* _ x*’]—lz* _ ]—ly*> ,

we have that

V(x*,]_ly*) _ V(x*,]

+2
Letx" € E*,y* € F(J
we have
V(x*,]_l *) _
! (24)
I y*> )
Since ((x* e Bl ' (y*), we

t E be a Banach space and let A C
onotone operator with A0 # Q. If E*
d has a Fréchet differentiable norm, then,
reach x € E, limy _, (J + AA) " (x) exists and belongs to

em 6, we get the following result.

orem 7. Let E* be a uniformly convex Banach space with
réchet differentiable norm and let B C E x E* be a maximal
one operator with B~'0 # @. Then the following hold:

) for each x* € E*, lim, _, . Jxx" exists and belongs to
B0,

(2) if R*x" := lim, _, . Jy x" for each x* € E*, then R" is
a sunny generalized nonexpansive retraction of E* onto
)

Proof. (1) By defining a mapping Q, from E to E by

Qux:=(I+A"'B)x, VxeE, 1>0, (27)

we have, for all x* € E*,A > 0, J;x" = JQ,J *(x*). In fact,
define

X = QU () = [T (T+ M7 B) ] (7). (28)
Then, we have
X e J(I+A7'B) 7 (xy) = (I" +ABT ) ), (29)
and hence x) = J; x". From Theorem 6, we get
. -1 LA —1
Jim Q) (x7) =u e B0, (30)

If E* is uniformly convex, then E has a Fréchet differentiable
norm. So, J is norm to norm continuous. Since B™'0is closed,
we have

lim Jix" = lim JQuJ 7 (x") = Ju € B0 = (377) .
(31
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(2) We define a mapping R* from E* to E* by

R*x™ = lim Jyx", Vx" € E". (32)
— 00
Letu® € (B )0 = F(J;x"). Then, R*u"* =lim, _, Jyu" = each n > 0. From the d
lim, _, ,u" = u". Therefore, R* is a retraction of E* onto that H, is closed and
(BI™")7'0. Since x* € Jix* + ABJ "' (J;x*), we have We show that H,, is

(S0 -1 @) ) 20

(33)
vz' e (B17Y) o,
and hence
(x" - Iix" T () =T () 20, (34)

Letting A — 0, we get

N A s . -1 ws that H,, is convex.
<x -R'x" ] (R'x7)-] " (2 )> >0, Vz € (B] ) 0. ext, we show that F =: A”'0n F(T) ¢ H, N W, for each
(35) . ; ively weak nonexpansiveness of T

From Proposition 5, R* is sunny and generalized nonexpan-
sive. This implies that R* is a sunny generalized nonexpansive
retraction of E* onto (BJ1)™"0. O

<V, (p, 3)
VI (%Jxo +(1-a) ];to]xo))

3. An Iterative Scheme for Finding a Z

2 % 2
1-
Point of a Monotone Mapping by J; [+ ferxo + (1= 00) 13,

-2 <P’ apJxg + (1 - ap) ];0]x0>
< [l = 205 (p.Txo) 2 (1 = ag) (. T T %o )

Now we construct an iterative scheme which con
strongly to a point whlch is a fixed point of relatlvely we

2
*
J2|

2
+ o[ Jxo | + (1 = atg)
uniformly smooth Banach space. Let
monotone operator. Let C be a non
of E.Let T : C — C be a relative
mapping with A" 0N F(T) # O,
a sequence of real numbers.
by

= ay ([lp” - 200 (. J%0) + %)
+(1=a0) (Il = 2 (p T3 o) + 13 )
= agVy (prx0) + (1= a) Vo (2T 7T I %o )
= aoV; (pxo) + (1= ) V (. T, o)
< ayV, (prxg) + (1 —0a) V(P Jxg)

< aVy (px) + (1= ag) Vy (P, %) = V(P Xo) -
(40)

Thus, we give that p € H,,. On the other hand, it is clear that
p € C.Thus, F ¢ Hy N W, and, therefore, x; = Il .
is well defined. Suppose that F ¢ H,_; N W,_; and {x,} is
well defined. Then, the methods in (40) imply that V,(p, z,,) <
Vo (p, y,) < V,(p, x,) and p € H,. Moreover, it follows from
Lemma 3 that

_xn)]x()_]xn> SO}’ <P—xn,]xn_]x0> 20; (41)

)b

5 (v ) <Va (v

which implies that p € W,. Hence F ¢ H,N W, and x,,,, =
I ~w, is well defined. Then, by induction, F ¢ H, N W,, and
(36)  the sequence generated by (36) is well defined for each n > 0.
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Now, we show that {x,} is a bounded sequence and (47), we have that (1 — )|l ];[n J)

converges to a point of F. Let p € F. Since x,,,; = ITy , (xo) asn — oo. Thus, from lim,,
and H,NW, c H,_; NW,_, for all n > 1, we have JAT'0 = (AJ))10, we obtain

V, (x,0 %) < Vs (%10 %) (42) Finally, we show tha
From Lemma 2, we hav

n" = "]xn -

for all n > 0. Therefore, {V,(x,,x,)} is nondecreasing. In
addition, it follows from definition of W, and Lemma 3 that
x, = Iy (xo). Therefore, by Lemma 2 we have

(50)
Vy (% %) = V3 <1‘;[(x0),x0> (43) and F ¢ H,nW,
< Vo (pax0) = Vo (pox,) <V (o %)
for each p € F(T) ¢ W, for all n > 0. Therefore, {V,(x,,, x,)}
is bounded. This together with (40) implies that the limit
of {V,(x,,x,)} exists. Put lim,_, ., V,(x,,x,) = d. From (51)
Lemma 2, we have, for any positive integer m, that
V. , =V, , <V ,
2 (xn+m xn) 2 <xn+m 1‘/‘_/;‘[ (xO)) 2 (xn+m xO) osz(x, y)) we get that
w1 Xo) = V3 (%) - (52)

-V, <l_[(x0),x0) 0

=V, (xn+m’x0) -V, (xn)xo) >

for all n > 0. The existence of lim,, _, .V, (x,,, x,) imp.
lim,, _, V(%10 X,,) = 0. Thus, Lemma 4 implies that

By combining (50) and (52), we obtain that V,(g,x,) =
X,)> Xo)- Therefore, it follows from the unique-
(1) (%) that g = T 419 p(7y (xo). This completes

OJ

mark 9. If in Theorem 8 we have that T = I, the identity

on E, then we get the following.

Xppan — %, — 0 asn —

m+n

ary10. Let E* be a uniformly convex Banach space and
siformly smooth Banach space. Let A C Ex E* be a maximal
onotone operator. Let C be a nonempty closed convex subset
of E with A™'0# Q. Assume that 0 < a,, < a < 1 is a sequence
of real numbers. Then, the sequence {x,} generated by

and hence {x,} is a Cauchy sequence
apointq € E such thatx, — gas
we have V,(x,,,1,2,) < V,(x,.1> ¥
Lemma 4 and (45) we get that

Xpp1 — 2, — 0, Xpi1 0 asn
xy € C, A, — +00,

and hence |x, — y,l < + [Ix,1 — ¥l — 0as 1
n — oo. Furthermore ly continuous on =T Y aJx.+(1-a )] Jx 7= (r'+ A4

bounded sets, we havi W=7 ( %t ( ) hJ n) A ( A )
Hy={veC:V,(v,z)) <V, (v, 39) <V, (v, %)},

Jim |7, (47)

which impliest an {V € Hn—l n Wn—l : V2 (V’ Zn) < V2 (‘V, yn)S V2 (V’ xn)} >

WO = C,
(48)
={veH, ,NnW,_, :{v-x,Jxy— Jx,) <0},
Since J ! is also u uous on bounded
sets, we.g X1 = l_[ (x9), n=1
H,W,
— 77 Ty,| = 0. (49) (53)
Vo =Tyl < lxp = Tyl + converges strongly to I1,-1), where I1,-, is the generalized

that lim,, _, o, 17, =Tyl = 0. This together  projection from E onto A™*0.

(and hence {y,}) converges strongly

to g € E and of relatively weak nonexpansive =~ Remark 11. We have compared the results of [2, 6, 7] with the
mapping implies tha F(T). Furthermore, from (36) and  result in this paper.
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(1) In [6], Ibaraki and Takahashi introduced the general- [5] Y. Su and X. Qin, “Monoto
ized resolvent J, : E — E, which was denoted by nonexpansive semigroups a
Nonlinear Analysis: Theory,

Jy =+ AB])_I. (54) no. 12, pp. 3657-3664, 2008.

[6] T.Ibarakiand W. Takal i

In this paper, we introduce the generalized resolvent J} : theorems for the p

E* — E*, which is denoted by . Approximatiog The
7] H. Zegeye an
monotone ma nsive map-

Ji= (1 +aB) (55)

(2) In [6], Ibaraki and Takahashi defined a sunny gener- (8]
alized nonexpansive retraction R of E onto BJ 0. " Lakshmikan, Ed.,

mic Press, NewYork, NY, USA, 1979.
Rx:= lim J,x, Vx¢€E. (56)
A— 00

In this paper, we define a sunny generalized nonexpansive
retraction R* of E* onto (BJ 1) 0 :

R*x" = lim J;x", VxeE" (57)
A— 00

(3) In [7], Zegeye and Shahzad proved the strong conver-
gence theorem of the sequence {x,} generated by (12). Using
J;» in this paper, we construct an iterative scheme in E*,
which converges strongly to a point which is a fixed point
of a relatively weak nonexpansive mapping and a
monotone mapping.

The results we have obtained in this paper are s
E*, which is different from others.
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