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This paper investigates the effect of time delays on the stability of a generator excitation control system compensated with a
stabilizing transformer known as rate feedback stabilizer to dampout oscillations.The time delays are due to the use ofmeasurement
devices and communication links for data transfer. An analytical method is presented to compute the delay margin for stability.The
delaymargin is themaximum amount of time delay that the system can tolerate before it becomes unstable. First, without using any
approximation, the transcendental characteristic equation is converted into a polynomial without the transcendentality such that its
real roots coincide with the imaginary roots of the characteristic equation exactly.The resulting polynomial also enables us to easily
determine the delay dependency of the system stability and the sensitivities of crossing roots with respect to the time delay. Then,
an expression in terms of system parameters and imaginary root of the characteristic equation is derived for computing the delay
margin. Theoretical delay margins are computed for a wide range of controller gains and their accuracy is verified by performing
simulation studies. Results indicate that the addition of a stabilizing transformer to the excitation system increases the delaymargin
and improves the system damping significantly.

1. Introduction

In electrical power systems, load frequency control (LFC) and
excitation control system also known as automatic voltage
regulator (AVR) equipment are installed for each generator
to maintain the system frequency and generator output
voltage magnitude within the specified limits when changes
in real and reactive power demand occur [1]. This paper
investigates the effect of the time delay on the stability of the
generator excitation control system that includes a stabilizing
transformer. Figure 1 shows the schematic block diagram of
a typical excitation control system for a large synchronous
generator. It consists of an exciter, a phasormeasurement unit
(PMU), a rectifier, a stabilizing transformer (rate feedback
stabilizer), and a regulator [1].The exciter provides DC power
to the synchronous generator’s field winding constituting
power stage of the excitation system. Regulator consists of a
proportional-integral (PI) controller and an amplifier [1, 2].

The regulator processes and amplifies input control signals
to a level and form appropriate for control of the exciter.
The PI controller is used to improve the dynamic response
as well as reducing or eliminating the steady-state error.
The amplifier may be magnetic amplifier, rotating amplifier,
or modern power electronic amplifier. The PMU derives
its input from the secondary sides of the three phases of
the potential transformer (voltage transducer) and outputs
the corresponding positive sequence voltage phasor. The
rectifier rectifies the generator terminal voltage and filters
it to a DC quantity. The stabilizing transformer provides an
additional input signal to the regulator to damp power system
oscillations [2].

Time delays have become an important issue in power
system control and dynamic analysis since the use of pha-
sor measurement units (PMUs) and open and distributed
communication networks for transferring measured signals
and data to the controller has introduced significant amount
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Figure 1: The schematic block diagram of the generator excitation control system.

of time delays. The PMUs are units that measure dynamic
data of power systems, such as voltage, current, angle, and
frequency using the discrete Fourier transform (DFT) [3].
The use of PMUs introduces the measurement delays that
consist of voltage transducer delay and processing delay. The
processing delay is the amount of time required in converting
transducer data into phasor informationwith the help ofDFT.

In power systems, various communication links used for
data transfer include both wired options, such as telephone
lines, fiber-optic cables, and power lines, and wireless options
such as satellites [4]. In power system control, the total
measurement delay is reported to be in the order of millisec-
onds. Depending on the communication link used, the total
communication delay is considered to be in the range of 100–
700ms. Measurement and communication delays involved
between the instant of measurement and that of signal being
available to the controller are themajor problem in the power
system control. This delay can typically be in the range of
0.5–1.0 s [4–6]. Another processing delay in the order of
milliseconds is observedwhen adigital PI controller is used in
the regulator located in the feed-forward section of the AVR
shown in Figure 1.

The inevitable time delays in power systems have a desta-
bilizing impact, reduce the effectiveness of control system
damping, and lead to unacceptable performance such as loss
of synchronism and instability. Therefore, stability analysis
and controller design methods must take into account large
time delays and practical tools should be developed to study
the complicated dynamic behavior of time-delayed power
systems. Specifically, such tools should estimate the maxi-
mum amount of time delay that the system could tolerate
without becoming unstable. Such knowledge on the delay
margin (upper bound in the time delay) could also be helpful
in the controller design for cases where uncertainty in the
delay is unavoidable.

The previous studies on the dynamics of time-delayed
power systems have mainly focused on the following issues:
(i) to investigate the time-delay influence on the controller
design for power system stabilizers (PSSs) [7], for load
frequency control (LFC) [8, 9], and for thyristor-controlled

series compensator (TCSC) [10]; (ii) to determine and
analyze the cause of time delays and to find appropriate
methods to reduce their adverse effects [11–13]; (iii) to
eliminate periodic and chaotic oscillations in power systems
by applying time-delayed feedback control [14, 15]; (iv) to
estimate the delay margin for small-signal stability of time-
delayed power systems [16, 17]. However, less attention has
been paid to the effects of time delays on the stability of
generator excitation control systems including a stabilizing
transformer.

There are several methods in the literature to com-
pute delay margins of general time-delayed systems. The
common starting point of them is the determination of
all the imaginary roots of the characteristic equation. The
existing procedures can be classified into the following
five distinguishable approaches: (i) Schur-Cohn (Hermite
matrix formation) [18–20]; (ii) elimination of transcendental
terms in the characteristic equation [21]; (iii) matrix pencil,
Kronecker sum method [18–20, 22]; (iv) Kronecker multi-
plication and elementary transformation [23]; (v) Rekasius
substitution [24–26]. These methods demand numerical
procedures of different complexity and they may result in
different precisions in computing imaginary roots. A detailed
comparison of these methods, demonstrating their strengths
and weakness, can be found in [27].

This paper presents a direct approach based on the
method reported in [21] to compute the delay margin for
stability of excitation control system including a stabilizing
transformer. The proposed method is an analytically elegant
procedure that first converts the transcendental characteristic
equation into a polynomial without the transcendentality.
This procedure does not use any approximation or substitu-
tion to eliminate the transcendentality of the characteristic
equation. Therefore, it is exact and the real roots of the new
polynomial coincide with the imaginary roots of the char-
acteristic equation exactly. The resulting polynomial without
the transcendentality also enables us to easily determine the
delay dependency of the system stability and the sensitivities
of crossing roots (root tendency) with respect to the time
delay. This is a remarkable feature of the proposed method.
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Figure 2: Block diagram of the excitation control system with a stabilizing transformer and time delay.

Then, an easy-to-use formula is derived to determine the
delay margin in terms of system parameters and imaginary
roots of the characteristic equation, which is the main
contribution of the paper.

In this work, delay margins are first theoretically deter-
mined for a wide range of PI controller gains. Then, theoret-
ical delay margin results are verified by using time-domain
simulation capabilities of Matlab/Simulink [28]. Moreover,
delay margin results of the excitation control system with a
stabilizing transformer are compared with those of the exci-
tation control system not including a stabilizing transformer.
It is observed that the compensation of the excitation system
with a stabilizing transformer increases the delay margin of
the system (thus, the stability margin) and provides signifi-
cant amount of damping to system oscillations enhancing the
closed-loop stability of the time-delayed excitation control
system.

2. AVR System Model with Time Delay
and Stability

2.1. AVR System Model with Time Delay. For load frequency
control and excitation control systems, linear or linearized
models are commonly used to analyze the system dynamics
and to design a controller. Figure 2 shows the block diagram
of a generator excitation control system including a time
delay. Note that each component of the system, namely,
amplifier, exciter, generator, sensor, and rectifier, is modeled
by a first-order transfer function [1, 2]. The transfer function
of each component is given below:

𝐺
𝐴 (𝑠) =

𝐾
𝐴

1 + 𝑇
𝐴
𝑠
; 𝐺

𝐸 (𝑠) =
𝐾
𝐸

1 + 𝑇
𝐸
𝑠
;

𝐺
𝐺 (𝑠) =

𝐾
𝐺

1 + 𝑇
𝐺
𝑠
; 𝐺

𝑅 (𝑠) =
𝐾
𝑅

1 + 𝑇
𝑅
𝑠
,

(1)

where 𝐾
𝐴
, 𝐾
𝐸
, 𝐾
𝐺
, and 𝐾

𝑅
are the gains of amplifier, exciter,

generator, and sensor, respectively, and𝑇
𝐴
,𝑇
𝐸
,𝑇
𝐺
, and𝑇

𝑅
are

the corresponding time constants.

Note that, as illustrated in Figure 2, using an exponential
term, the total of measurement and communication delays
(𝜏) is placed in the feedback part of the excitation control
system. Moreover, a stabilizing transformer is introduced in
the system by adding a derivative feedback to the control sys-
tem to improve the dynamic performance [2].The stabilizing
transformer will add a zero to the AVR open-loop transfer
function and, thus, will increase the relative stability of the
closed-loop system. The transfer function of the stabilizing
transformer is given as follows:

𝐺
𝐹 (𝑠) =

𝐾
𝐹
𝑠

1 + 𝑠𝑇
𝐹

, (2)

where𝐾
𝐹
and 𝑇

𝐹
are the gain and time constant, respectively.

The transfer function of the PI controller is described as

𝐺
𝑐 (𝑠) = 𝐾

𝑃
+

𝐾
𝐼

𝑠
, (3)

where 𝐾
𝑃
and 𝐾

𝐼
are the proportional and integral gains,

respectively. The proportional term affects the rate of voltage
rise after a step change.The integral term affects the generator
voltage settling time after initial voltage overshoot. The inte-
gral controller adds a pole at origin and increases the system
type by one and reduces the steady-state error.The combined
effect of the PI controller will shape the response of the
generator excitation system to reach the desired performance.

2.2. Stability. The characteristic equation of the excitation
control system can be easily obtained as

Δ (𝑠, 𝜏) = 𝑃 (𝑠) + 𝑄 (𝑠) 𝑒
−𝑠𝜏

= 0, (4)

where𝑃(𝑠) and𝑄(𝑠) are polynomials in 𝑠with real coefficients
given below:

𝑃 (𝑠) = 𝑝
6
𝑠
6
+ 𝑝
5
𝑠
5
+ 𝑝
4
𝑠
4
+ 𝑝
3
𝑠
3
+ 𝑝
2
𝑠
2
+ 𝑝
1
𝑠,

𝑄 (𝑠) = 𝑞
2
𝑠
2
+ 𝑞
1
𝑠 + 𝑞
0
.

(5)

The coefficients of these polynomials in terms of gains and
time constants are given in the Appendix.
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Figure 3: Illustration of the movement of the characteristic roots with respect to time delay.

The main goal of the stability studies of time-delayed
systems is to determine conditions on the delay for any given
set of system parameters that will guarantee the stability of
the system. As with the delay-free system (i.e., 𝜏 = 0), the
stability of the AVR system depends on the locations of the
roots of system’s characteristic equation defined by (4). It is
obvious that the roots of (4) are a function of the time delay
𝜏. As 𝜏 changes, location of some of the roots may change.
For the system to be asymptotically stable, all the roots of the
characteristic equation of (4) must lie in the left half of the
complex plane. That is,

Δ (𝑠, 𝜏) ̸= 0, ∀𝑠 ∈ 𝐶
+
, (6)

where𝐶+ represents the right half plane of the complex plane.
Depending on system parameters, there are two different
possible types of asymptotic stability situations due to the
time delay 𝜏 [19, 21]:

(i) Delay-independent stability: the characteristic equa-
tion of (4) is said to be delay-independent stable if
the stability condition of (6) holds for all positive and
finite values of the delay; 𝜏 ∈ [0,∞).

(ii) Delay-dependent stability: the characteristic equation
of (4) is said to be delay-dependent stable if the
condition of (6) holds for some values of delays
belonging in the delay interval, 𝜏 ∈ [0, 𝜏

∗
), and is

violated for other values of delay 𝜏 ≥ 𝜏
∗.

In the delay-dependent case, the roots of the characteris-
tic equations move as the time delay 𝜏 increases starting from
𝜏 = 0. Figure 3 illustrates the movement of the roots. Note
that the delay-free system (𝜏 = 0) is assumed to be stable.
This is a realistic assumption since for the practical values
of system parameters the excitation control system is stable
when the total delay is neglected. Observe that, as the time
delay 𝜏 is increased, a pair of complex eigenvalues moves in
the left half of the complex plane. For a finite value of 𝜏 > 0,
they cross the imaginary axis and pass to the right half plane.
The time delay value 𝜏

∗ at which the characteristic equation
has purely imaginary eigenvalues is the upper bound on the

delay size or the delay margin for which the system will
be stable for any given delay less or equal to this bound,
𝜏 ≤ 𝜏

∗. In order to characterize the stability property of (4)
completely, we first need to determine whether the system for
any given set of parameters is delay-independent stable or not
and, if not, to determine the delay margin 𝜏

∗ for a wide range
of system parameters. In the following section, we present a
practical approach that gives a criterion for evaluating the
delay dependency of stability and an analytical formula to
compute the delay margin for the delay-dependent case.

3. Delay Margin Computation

A necessary and sufficient condition for the system to be
asymptotically stable is that all the roots of the characteristic
equation of (4) lie in the left half of the complex plane. In
the single delay case, the problem is to find values of 𝜏∗ for
which the characteristic equation of (4) has roots (if any) on
the imaginary axis of the s-plane. Clearly, Δ(s, 𝜏) = 0 is an
implicit function of 𝑠 and 𝜏 which may, or may not, cross the
imaginary axis. Assume for simplicity that Δ(𝑠, 0) = 0 has all
its roots in the left half plane. That is, the delay-free system is
stable. If, for some 𝜏, Δ(𝑠, 𝜏) = 0 has a root on the imaginary
axis at 𝑠 = 𝑗𝜔

𝑐
, so does Δ(−𝑠, 𝜏) = 0, for the same value

of 𝜏 and 𝜔
𝑐
because of the complex conjugate symmetry of

complex roots. Therefore, looking for roots on the imaginary
axis reduces to finding values of 𝜏 for which Δ(𝑠, 𝜏) = 0 and
Δ(−𝑠, 𝜏) = 0 have a common root [21]. That is,

𝑃 (𝑠) + 𝑄 (𝑠) 𝑒
−𝑠𝜏

= 0,

𝑃 (−𝑠) + 𝑄 (−𝑠) 𝑒
𝑠𝜏

= 0.

(7)

By eliminating exponential terms in (7), we get the following
polynomial:

𝑃 (𝑠) 𝑃 (−𝑠) − 𝑄 (𝑠) 𝑄 (−𝑠) = 0. (8)

If we replace 𝑠 by 𝑗𝜔
𝑐
in (8), we have the polynomial in 𝜔

2

𝑐

given below:

𝑊(𝜔
2

𝑐
) = 𝑃 (𝑗𝜔

𝑐
) 𝑃 (−𝑗𝜔

𝑐
) − 𝑄 (𝑗𝜔

𝑐
) 𝑄 (−𝑗𝜔

𝑐
) = 0. (9)
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Substituting 𝑃(𝑠) and 𝑄(𝑠) polynomials given in (5) into
(9), we could obtain the following 12th order augmented
characteristic equation or polynomial:

𝑊(𝜔
2

𝑐
) = 𝑡
12
𝜔
12

𝑐
+ 𝑡
10
𝜔
10

𝑐
+ 𝑡
8
𝜔
8

𝑐
+ 𝑡
6
𝜔
6

𝑐

+ 𝑡
4
𝜔
4

𝑐
+ 𝑡
2
𝜔
2

𝑐
+ 𝑡
0
= 0,

(10)

where the coefficients 𝑡
0
, 𝑡
2
, 𝑡
4
, 𝑡
6
, 𝑡
8
, 𝑡
10
, 𝑡
12

are real-valued
and given in the Appendix.

Please note that transcendental characteristic equation
with single delay given in (4) is now converted into a
polynomial without the transcendentality given by (10), and
its positive real roots coincide with the imaginary roots of
(4) exactly. The roots of this polynomial might easily be
determined by standard methods. Depending on the roots of
(10), the following situation may occur.

(i) The polynomial of (10) may not have any positive real
roots, which implies that the characteristic equation
of (4) does not have any roots on the 𝑗𝜔-axis. In that
case, the system is stable for all 𝜏 ≥ 0, indicating that
the system is delay-independent stable.

(ii) The polynomial of (10) may have at least one positive
real root, which implies that the characteristic equa-
tion of (4) has at least a pair of complex eigenvalues on
the 𝑗𝜔-axis. In that case, the system is delay-dependent
stable.

For a positive real root (𝜔
𝑐
) of (10) the corresponding value

of delay margin 𝜏
∗ can be easily obtained using (7) as [21]

𝜏
∗
=

1

𝜔
𝑐

Tan−1 (
Im {𝑃 (𝑗𝜔

𝑐
) /𝑄 (𝑗𝜔

𝑐
)}

Re {−𝑃 (𝑗𝜔
𝑐
) /𝑄 (𝑗𝜔

𝑐
)}

) +
2𝑟𝜋

𝜔
𝑐

;

𝑟 = 0, 1, 2, . . . ,∞.

(11)

By substituting the polynomial of 𝑃(𝑠) and 𝑄(𝑠) given in (5),
the analytical formula for computing the delaymargin ofAVR
system is determined as

𝜏
∗
=

1

𝜔
𝑐

Tan−1 (
𝑎
7
𝜔
7

𝑐
+ 𝑎
5
𝜔
5

𝑐
+ 𝑎
3
𝜔
3

𝑐
+ 𝑎
1
𝜔
𝑐

𝑎
8
𝜔8
𝑐
+ 𝑎
6
𝜔6
𝑐
+ 𝑎
4
𝜔4
𝑐
+ 𝑎
2
𝜔2
𝑐
+ 𝑎
0

)

+
2𝑟𝜋

𝜔
𝑐

; 𝑟 = 0, 1, 2, . . . ,∞,

(12)

where the coefficients 𝑎
𝑖
; 𝑖 = 0, 1, . . . , 8 are real-valued and

given in the Appendix.
For the positive roots of (10), we also need to check if,

at 𝑠 = 𝑗𝜔
𝑐
, the root of (4) crosses the imaginary axis with

increasing 𝜏.This can be determined by the sign of Re[𝑑𝑠/𝑑𝜏].
The necessary condition for the existence of roots crossing
the imaginary axis is that the critical characteristic roots
cross the imaginary axis with nonzero velocity (transversality
condition); that is,

Re [ 𝑑𝑠

𝑑𝜏
]

𝑠=𝑗𝜔
𝑐

̸= 0, (13)

where Re(⋅) denotes the real part of a complex variable. The
sign of root sensitivity is defined as root tendency (RT):

RT|𝑠=𝑗𝜔
𝑐

= sgn{Re [ 𝑑𝑠

𝑑𝜏
]

𝑠=𝑗𝜔
𝑐

} . (14)

By taking the derivative of (4) with respect to 𝜏 and noticing
that 𝑠 is an explicit function of 𝜏 we obtain

𝑑𝑠

𝑑𝜏
=

𝑄 (𝑠) 𝑠𝑒
−𝑠𝜏

𝑃 (𝑠) + 𝑄 (𝑠) 𝑒−𝑠𝜏 − 𝑄 (𝑠) 𝜏𝑒−𝑠𝜏
, (15)

where 𝑃

(𝑠) and 𝑄


(𝑠) denote the first-order derivatives of

𝑃(𝑠) and𝑄(𝑠)with respect to 𝑠, respectively. Using (4) we can
rewrite this expression as

𝑑𝑠

𝑑𝜏
= −𝑠[

𝑃

(𝑠)

𝑃 (𝑠)
−

𝑄

(𝑠)

𝑄 (𝑠)
+ 𝜏]

−1

. (16)

We can get the corresponding root tendency by evaluating
(16) at 𝑠 = 𝑗𝜔

𝑐
:

RT|𝑠=𝑗𝜔
𝑐

= − sgn[Re(𝑗𝜔
𝑐
(
𝑃

(𝑗𝜔
𝑐
)

𝑃(𝑗𝜔
𝑐
)
−

𝑄

(𝑗𝜔
𝑐
)

𝑄(𝑗𝜔
𝑐
)
+ 𝜏)

−1

)]

= − sgn[Re( 1

𝑗𝜔
𝑐

(
𝑃

(𝑗𝜔
𝑐
)

𝑃 (𝑗𝜔
𝑐
)

−
𝑄

(𝑗𝜔
𝑐
)

𝑄 (𝑗𝜔
𝑐
)

+ 𝜏))]

= sgn[Im(
1

𝜔
𝑐

(
𝑄

(𝑗𝜔
𝑐
)

𝑄 (𝑗𝜔
𝑐
)

−
𝑃

(𝑗𝜔
𝑐
)

𝑃 (𝑗𝜔
𝑐
)
))] .

(17)

Itmust be noted that the root tendency is independent of time
delay 𝜏. This implies that even though there are an infinite
number of values of 𝜏 associated with each value of 𝜔

𝑐
that

makes Δ(𝑗𝜔
𝑐
, 𝜏) = 0, the behavior of the roots at these points

will always be the same. It can be easily shown by further
simplifications of (17) that RT information can be deduced
trivially from the polynomial 𝑊(𝜔

2

𝑐
) in (10). Recalling that

𝑠 = 𝑗𝜔
𝑐
, we have 𝑊(𝜔

2

𝑐
) = 0. Then, from (9) we have

𝑄(𝑗𝜔
𝑐
) = 𝑃(𝑗𝜔

𝑐
)𝑃(−𝑗𝜔

𝑐
)/𝑄(−𝑗𝜔

𝑐
). Thus,

RT|𝑠=𝑗𝜔
𝑐

= sgn[Im(
1

𝜔
𝑐

(
𝑄

(𝑗𝜔
𝑐
) 𝑄 (−𝑗𝜔

𝑐
)

𝑃 (𝑗𝜔
𝑐
) 𝑃 (−𝑗𝜔

𝑐
)

−
𝑃

(𝑗𝜔
𝑐
)

𝑃 (𝑗𝜔
𝑐
)
))]

= sgn[Im(
1

𝜔
𝑐

(
𝑄

(𝑗𝜔
𝑐
) 𝑄 (−𝑗𝜔

𝑐
)−𝑃

(𝑗𝜔
𝑐
) 𝑃 (−𝑗𝜔

𝑐
)

𝑃 (𝑗𝜔
𝑐
) 𝑃 (−𝑗𝜔

𝑐
)

))]

= sgn [Im(
1

𝜔
𝑐

(𝑄

(𝑗𝜔
𝑐
) 𝑄 (−𝑗𝜔

𝑐
) − 𝑃

(𝑗𝜔
𝑐
) 𝑃 (−𝑗𝜔

𝑐
)))] ,

(18)
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since 𝑃(𝑗𝜔
𝑐
)𝑃(−𝑗𝜔

𝑐
) = |𝑃(𝑗𝜔

𝑐
)|
2

> 0. Finally using the
property Im(𝑧) = (𝑧 − 𝑧)/2𝑗, for any complex number 𝑧, we
have

RT|𝑠=𝑗𝜔
𝑐

= sgn 1

2𝑗𝜔
𝑐

× [(𝑄

(𝑗𝜔
𝑐
) 𝑄 (−𝑗𝜔

𝑐
) − 𝑄 (𝑗𝜔

𝑐
) 𝑄

(−𝑗𝜔
𝑐
)

−𝑃

(𝑗𝜔
𝑐
) 𝑃 (−𝑗𝜔

𝑐
) + 𝑃 (𝑗𝜔

𝑐
) 𝑃

(−𝑗𝜔
𝑐
))] ,

(19)

which finally leads us to

RT|𝑠=𝑗𝜔
𝑐

= sgn [𝑊

(𝜔
2

𝑐
)] , (20)

where the prime represents differentiation with respect to𝜔
2

𝑐
.

The evaluation of the root sensitivities with respect to the
time delay is unique feature of the proposed method. This
expression gives a simple criterion to determine the direction
of transition of the roots at 𝑠 = 𝑗𝜔

𝑐
as 𝜏 increases from

𝜏
1

= 𝜏
∗
− Δ𝜏 to 𝜏

2
= 𝜏
∗
+ Δ𝜏, 0 < Δ𝜏 ≪ 1 as shown in

Figure 3.The root 𝑠 = 𝑗𝜔
𝑐
crosses the imaginary axis either to

unstable right half plane when RT = +1 or to stable left half
plane when RT = −1.

For the excitation control system, the root tendency for
each crossing frequency could be easily determined by the
following expression obtained by taking the derivative of the
polynomial given in (10) with respect to 𝜔

2

𝑐
:

RT|𝑠=𝑗𝜔
𝑐

= 6𝑡
12
𝜔
10

𝑐
+ 5𝑡
10
𝜔
8

𝑐
+ 4𝑡
8
𝜔
6

𝑐

+ 3𝑡
6
𝜔
4

𝑐
+ 2𝑡
4
𝜔
2

𝑐
+ 𝑡
2
.

(21)

Itmust be noted here that the polynomial of (10)mayhave
multiple but finite number of positive real roots for all 𝜏 ∈

R+. Let us call this set

{𝜔
𝑐
} = {𝜔

𝑐1
, 𝜔
𝑐2
, . . . , 𝜔

𝑐q} . (22)

This finite number 𝑞 is influenced not only by the system
order, but also by the coefficients of polynomials 𝑃(𝑠) and
𝑄(𝑠). Furthermore, for each 𝜔

𝑐𝑚
, 𝑚 = 1, 2, . . . , 𝑞, we can get

infinitely many periodically spaced 𝜏
∗

𝑚
values by using (12).

Let us call this set

{𝜏
∗

𝑚
} = {𝜏

∗

𝑚1
, 𝜏
∗

𝑚2
, . . . , 𝜏

∗

𝑚,∞
} 𝑚 = 1, 2, . . . , 𝑞, (23)

where 𝜏
𝑚,𝑟+1

− 𝜏
𝑚,𝑟

= 2𝜋/𝜔
𝑐
is the apparent period of

repetition. According to the definition of delay margin, the
minimum of 𝜏

∗

𝑚
, 𝑚 = 1, 2, . . . , 𝑞, will be the system delay

margin:

𝜏
∗
= min (𝜏

∗

𝑚
) . (24)

4. Results and Discussion

4.1. Theoretical Results. In this section, the delay margin 𝜏
∗

for stability for awide range of PI controller gains is computed
using the expression given in (12). Theoretical delay margin

results are verified by using Matlab/Simulink. The gains and
time constants of the exciter control system used in the
analysis are as follows:

𝑇
𝐴
= 0.1 s, 𝑇

𝐸
= 0.4 s, 𝑇

𝐺
= 1.0 s,

𝑇
𝑅
= 0.05 s, 𝑇

𝐹
= 0.04 s,

𝐾
𝐴
= 5, 𝐾

𝐸
= 𝐾
𝐺
= 𝐾
𝑅
= 1.0, 𝐾

𝐹
= 2.0.

(25)

First, we choose typical PI controller gains𝐾
𝑃
= 0.7; 𝐾

𝐼
=

0.8 s−1 to demonstrate the delay margin computation. The
process of the delay margin computation consists of the
following four steps.

Step 1. Determine the characteristic equation of time-delayed
excitation control system using (4) and (5). This equation is
found to be

Δ (𝑠, 𝜏) = (8 × 10
−5
𝑠
6
+ 0.0047𝑠

5
+ 0.4416𝑠

4

+ 7.817𝑠
3
+ 16.99𝑠

2
+ 9.0𝑠)

+ (0.14𝑠
2
+ 3.66𝑠 + 4) 𝑒

−𝑠𝜏
= 0.

(26)

Note that for 𝜏 = 0 the characteristic equation of the delay-
free system has roots at 𝑠

1,2
= −19.035 ± 𝑗65.838; 𝑠

3,4
=

−0.501 ± 𝑗0.4095; 𝑠
5

= −18.0155; 𝑠
6

= −1.4121, which
indicates that the delay-free system is stable.

Step 2. Construct the𝑊(𝜔
2

𝑐
)polynomial using (10), and com-

pute its real positive roots 𝜔
𝑐𝑚
, if they exist. The polynomial

is computed as

𝑊(𝜔
2

𝑐
) = 6.4 × 10

−9
𝜔
12

𝑐
− 4.8754 × 10

−5
𝜔
10

𝑐
+ 0.1189𝜔

8

𝑐

+ 56.0930𝜔
6

𝑐
+ 136.9545𝜔

4

𝑐
+ 68.7244𝜔

2

𝑐

− 16 = 0.

(27)

It is found that this polynomial has only one positive real root.
This positive real root is found to be 𝜔

𝑐
= 0.4131 rad/s.

Step 3. Compute the delay margin for each positive root
found in Step 2 using (12) and select the minimum of those as
the system delaymargin for this PI controller gains.The delay
margin is computed as 𝜏∗ = 2.8760 s.

Step 4. Determine the root tendency (RT) for each positive
root𝜔

𝑐𝑚
using (21).TheRT for𝜔

𝑐
= 0.4131 rad/s is computed

as RT = +1. This RT indicates that a pair of complex roots
passes from stable half plane to unstable half plane crossing
𝑗𝜔-axis 𝑠 = ±𝑗0.4131 rad/s for 𝜏∗ = 2.8760 s and the system
becomes unstable.

For the theoretical analysis, the effect of PI controller
gains on the delay margin is also investigated. Table 1
shows delay margins of the AVR system with a stabilizing
transformer for the range of 𝐾

𝑃
= 0.3–0.7 and 𝐾

𝐼
= 0.1–

1.0 s−1. It is clear from Table 1 that the delay margin decreases
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Table 1: Delay margins 𝜏∗ for different values of 𝐾
𝐼
and 𝐾

𝑃
of the

AVR system with a stabilizing transformer.

𝐾
𝐼
(s−1) 𝜏

∗ (s)
𝐾
𝑃
= 0.3 𝐾

𝑃
= 0.5 𝐾

𝑃
= 0.7

0.1 5.4172 4.4662 3.8108
0.2 4.0532 3.9038 3.6515
0.3 3.5181 3.5078 3.4234
0.4 3.2443 3.2645 3.2403
0.5 3.0813 3.1073 3.1059
0.6 2.9745 2.9996 3.0071
0.7 2.8997 2.9223 2.9330
0.8 2.8446 2.8645 2.8760
0.9 2.8026 2.8199 2.8312
1.0 2.7694 2.7846 2.7952

as the integral gain increases when 𝐾
𝑃
is fixed. In order to

find out the quantitative impact of the stabilizing transformer
on the delay margin, delay margins are also obtained for the
case in which a stabilizing transformer is not used in the AVR
system [29]. Table 2 shows delay margins of the AVR system
without a stabilizing transformer. It is clear from Tables 1
and 2 that compensation of the AVR system by a stabilizing
transformer significantly increases the delay margins for all
values of PI controller gains, which makes the AVR system
more stable. For example, for 𝐾

𝑃
= 0.7 and 𝐾

𝐼
= 0.8 s−1, the

delay margin when a stabilizing transformer is not included
is found to be 𝜏

∗
= 0.1554 s while it is 𝜏

∗
= 2.8760 s

when a stabilizing transformer is included. This is obviously
a significant improvement in the stability performance of the
AVR system. This observation is valid for all values of PI
controller gains as indicated in Tables 1 and 2.

4.2. Verification of Theoretical Delay Margin Results. Mat-
lab/Simulink is used to verify the theoretical results on the
delaymargin and to illustrate how the stabilizing transformer
damps the oscillations in the presence of time delays. For the
illustrative purpose, PI controller gains are chosen as 𝐾

𝑃
=

0.7 and 𝐾
𝐼
= 0.8 s−1. From Table 1, for these gains, the delay

margin is found to be 𝜏
∗

= 2.8760 s when the stabilizing
transformer is included. Simulation result for this delay value
is shown in Figure 4(a). It is clear that sustained oscillations
are observed indicating a marginally stable operation. When
the time delay is less than the delay margin, it is expected that
the exciter systemwill be stable. Figure 4(a) also shows such a
simulation result for 𝜏 = 2.74 s. Similarly, when the time delay
is larger than the delay margin, the system will have growing
oscillations indicating an unstable operation, as illustrated
in Figure 4(a) for 𝜏 = 3.0 s. These simulation results show
that the theoretical method correctly estimates the delay
margin of the AVR system compensated by a stabilizing
transformer. Moreover, the voltage response of the AVR
system not including a stabilizing transformer is presented
in Figure 4(b), indicating the same type of dynamic behavior

Table 2: Delay margins 𝜏∗ for different values of 𝐾
𝐼
and 𝐾

𝑃
of the

AVR system without a stabilizing transformer.

𝐾
𝐼
(s−1) 𝜏

∗ (s)
𝐾
𝑃
= 0.3 𝐾

𝑃
= 0.5 𝐾

𝑃
= 0.7

0.1 1.4164 0.6275 0.3652
0.2 0.9700 0.5471 0.3349
0.3 0.6781 0.4665 0.3037
0.4 0.4831 0.3912 0.2722
0.5 0.3459 0.3235 0.2411
0.6 0.2447 0.2639 0.2111
0.7 0.1674 0.2118 0.1825
0.8 0.1066 0.1664 0.1554
0.9 0.0576 0.1267 0.1300
1.0 0.0174 0.0920 0.1063

as the AVR system including a stabilizing transformer with a
smaller delay margin (𝜏∗ = 0.1554 s).

The damping effect of the stabilizing transformer could
be easily illustrated by time-domain simulations. Figure 5(a)
compares the voltage response of the AVR system with and
without a stabilizing transformer for 𝜏∗ = 0.1554 s. It is clear
that theAVR systemnot including the stabilizing transformer
is marginally stable or on the stability boundary having
sustained oscillations while the AVR system compensated by
a stabilizing transformer has a response with quickly damped
oscillations. Similarly, Figure 5(b) shows the voltage response
of the AVR system with and without the stabilizing trans-
former for 𝜏 = 0.17 s. When the stabilizing transformer is
not considered, the system is unstable since 𝜏 = 0.17 s > 𝜏

∗
=

0.1554 s and growing oscillations are observed. However, the
addition of the stabilizing transformer damps the oscillations
and makes the excitation control system stable.

5. Conclusions

This paper has proposed an exact method to compute the
delay margin for stability of the AVR system including a
stabilizing transformer. The method first eliminates the tran-
scendental term in the characteristic equation without using
any approximation. The resulting augmented equation has
become a regular polynomial whose real roots coincide with
the imaginary roots of the characteristic equation exactly.
An expression in terms of system parameters and imaginary
roots of the characteristic equation has been derived for
computing the delay margin. Moreover, using the augmented
equation, a simple root sensitivity test has been developed to
determine the direction of the root transition.

The effect of PI controller gains on the delay margin
has been investigated. The theoretical results indicate that
the delay margin decreases as the integral gain increases
for a given proportional gain. Such a decrease in delay
margin implies a less stable AVR system. Moreover, it has
been observed that the compensation of the AVR system
with a stabilizing transformer remarkably increases the delay
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Figure 4: Voltage response of the AVR system for 𝐾
𝑃
= 0.7 and 𝐾

𝐼
= 0.8 s−1: (a) with a stabilizing transformer and 𝜏 = 2.74, 2.876, and 3.0 s

and (b) without a stabilizing transformer and 𝜏 = 0.14, 0.1554, and 0.17 s.
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Figure 5: Voltage response of the AVR system with and without a stabilizing transformer for 𝐾
𝑃
= 0.7 and 𝐾

𝐼
= 0.8 s−1: (a) 𝜏 = 0.1554 s; (b)

𝜏 = 0.17 s.

margin of the system, which indicates a more stable AVR
system.

Theoretical delay margin results have been verified by
carrying out simulation studies. It has been observed that
the proposed method correctly estimates the delay margin of
the AVR system. Additionally, with the help of simulations, it
has been shown that the stabilizing transformer significantly
improves the system dynamic performance by damping the
oscillations.

With the help of the results presented, controller gains
could be properly selected such that the excitation control
system will be stable and will have a desired damping
performance even if certain amount of time delays exists in
the system.

The following studies have been put in perspective as
future work: (i) the extension of the proposed method
into multimachine power systems with commensurate time
delays, (ii) the influence of power system stabilizer (PSS)



Mathematical Problems in Engineering 9

on the delay margin, and (iii) the probabilistic evaluation of
delay margin as to take into account random nature of time
delays.

Appendix

The coefficients of polynomials 𝑃(𝑠) and 𝑄(𝑠) given in (5) in
terms of gains and time constants of the AVR system:

𝑝
6
= 𝑇
𝐴
𝑇
𝐸
𝑇
𝐹
𝑇
𝐺
𝑇
𝑅
,

𝑝
5
= 𝑇
𝐴
𝑇
𝐸
𝑇
𝐹
𝑇
𝐺

+ 𝑇
𝑅
(𝑇
𝐴
𝑇
𝐸
𝑇
𝐹
+ 𝑇
𝐴
𝑇
𝐸
𝑇
𝐺
+ 𝑇
𝐴
𝑇
𝐹
𝑇
𝐺
+ 𝑇
𝐸
𝑇
𝐹
𝑇
𝐺
) ,

𝑝
4
= 𝑇
𝐴
𝑇
𝐸
𝑇
𝐹
+ 𝑇
𝐴
𝑇
𝐸
𝑇
𝐺
+ 𝑇
𝐴
𝑇
𝐹
𝑇
𝐺
+ 𝑇
𝐸
𝑇
𝐹
𝑇
𝐺

+ 𝑇
𝑅
(𝑇
𝐴
𝑇
𝐸
+ 𝑇
𝐴
𝑇
𝐹
+ 𝑇
𝐸
𝑇
𝐹
+ 𝑇
𝐴
𝑇
𝐺
+ 𝑇
𝐸
𝑇
𝐺

+𝑇
𝐹
𝑇
𝐺
+ 𝐾
𝐴
𝐾
𝐸
𝐾
𝑃
𝐾
𝐹
𝑇
𝐺
) ,

𝑝
3
= 𝑇
𝐴
𝑇
𝐸
+ 𝑇
𝐴
𝑇
𝐹
+ 𝑇
𝐸
𝑇
𝐹
+ 𝑇
𝐴
𝑇
𝐺
+ 𝑇
𝐸
𝑇
𝐺

+ 𝑇
𝐹
𝑇
𝐺
+ 𝐾
𝐴
𝐾
𝐸
𝐾
𝑃
𝐾
𝐹
𝑇
𝐺

+ 𝑇
𝑅
(𝑇
𝐴
+ 𝑇
𝐸
+ 𝑇
𝐹
+ 𝐾
𝐴
𝐾
𝐸
𝐾
𝑃
𝐾
𝐹

+𝐾
𝐴
𝐾
𝐸
𝐾
𝐼
𝐾
𝐹
𝑇
𝐺
+ 𝑇
𝐺
) ,

𝑝
2
= 𝑇
𝐴
+ 𝑇
𝐸
+ 𝑇
𝐹
+ 𝐾
𝐴
𝐾
𝐸
𝐾
𝑃
𝐾
𝐹
+ 𝐾
𝐴
𝐾
𝐸
𝐾
𝐼
𝐾
𝐹
𝑇
𝐺
+ 𝑇
𝐺

+ 𝑇
𝑅
(𝐾
𝐴
𝐾
𝐸
𝐾
𝐼
𝐾
𝐹
+ 1) ,

𝑝
1
= 1 + 𝐾

𝐴
𝐾
𝐸
𝐾
𝐼
𝐾
𝐹
,

𝑞
2
= 𝐾
𝐴
𝐾
𝐸
𝐾
𝑃
𝐾
𝐺
𝐾
𝑅
𝑇
𝐹
,

𝑞
1
= 𝐾
𝐴
𝐾
𝐸
𝐾
𝐺
𝐾
𝑅
(𝐾
𝑃
+ 𝐾
𝐼
𝑇
𝐹
) ,

𝑞
0
= 𝐾
𝐴
𝐾
𝐸
𝐾
𝐼
𝐾
𝐺
𝐾
𝑅
.

(A.1)

The coefficients of the polynomial𝑊(𝜔
2

𝑐
) given in (10):

𝑡
12

= 𝑝
2

6
, 𝑡

10
= 𝑝
2

5
− 2𝑝
4
𝑝
6
,

𝑡
8
= 𝑝
2

4
− 2𝑝
3
𝑝
5
+ 2𝑝
2
𝑝
6
,

𝑡
6
= 𝑝
2

3
− 2𝑝
2
𝑝
4
+ 2𝑝
1
𝑝
5
,

𝑡
4
= 𝑝
2

2
− 2𝑝
1
𝑝
3
− 𝑞
2

2
,

𝑡
2
= 𝑝
2

1
− 𝑞
2

1
+ 2𝑞
0
𝑞
2
, 𝑡

0
= −𝑞
2

0
.

(A.2)

The coefficients of the analytical formula given in (12):

𝑎
8
= −𝑝
6
𝑞
2
, 𝑎

7
= 𝑝
6
𝑞
1
− 𝑝
5
𝑞
2
,

𝑎
6
= 𝑝
4
𝑞
2
+ 𝑝
6
𝑞
0
− 𝑝
5
𝑞
1
,

𝑎
5
= −𝑝
4
𝑞
1
+ 𝑝
3
𝑞
2
+ 𝑝
5
𝑞
0
,

𝑎
4
= −𝑝
2
𝑞
2
− 𝑝
4
𝑞
0
+ 𝑝
3
𝑞
1
,

𝑎
3
= 𝑝
2
𝑞
1
− 𝑝
1
𝑞
2
− 𝑝
3
𝑞
0
,

𝑎
2
= 𝑝
2
𝑞
0
− 𝑝
1
𝑞
1
,

𝑎
1
= 𝑝
1
𝑞
0
, 𝑎

0
= 0.

(A.3)
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measurement errors caused by communications delay,” IEEE
Transactions on Power Delivery, vol. 17, no. 2, pp. 334–337, 2002.

[12] S. P. Carullo and C. O. Nwankpa, “Experimental validation of
a model for an information-embedded power system,” IEEE
Transactions on Power Delivery, vol. 20, no. 3, pp. 1853–1863,
2005.



10 Mathematical Problems in Engineering

[13] C.-W. Park and W.-H. Kwon, “Time-delay compensation for
induction motor vector control system,” Electric Power Systems
Research, vol. 68, no. 3, pp. 238–247, 2004.

[14] H. Okuno and T. Fujii, “Delayed feedback controlled power
system,” in Proceedings of the SICE Annual Conference, pp.
2659–2663, August 2005.

[15] H.-K. Chen, T.-N. Lin, and J.-H. Chen, “Dynamic analysis,
controlling chaos and chaotification of a SMIB power system,”
Chaos, Solitons and Fractals, vol. 24, no. 5, pp. 1307–1315, 2005.

[16] H. Jia, X. Yu, Y. Yu, and C. Wang, “Power system small
signal stability region with time delay,” International Journal of
Electrical Power and Energy Systems, vol. 30, no. 1, pp. 16–22,
2008.

[17] S. Ayasun, “Computation of time delay margin for power sys-
tem small-signal stability,” European Transactions on Electrical
Power, vol. 19, no. 7, pp. 949–968, 2009.

[18] J. Chen, G. Gu, and C. N. Nett, “A new method for computing
delay margins for stability of linear delay systems,” Systems and
Control Letters, vol. 26, no. 2, pp. 107–117, 1995.

[19] K. Gu, V. L. Kharitonov, and J. Chen, Stability of Time Delay
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