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Accurate reconstruction of the object from sparse-view sampling data is an appealing issue for ultrasound diffraction tomography
(UDT). In this paper, we present a reconstruction method based on compressed sensing framework for sparse-view UDT. Due
to the piecewise uniform characteristics of anatomy structures, the total variation is introduced into the cost function to find a
more faithful sparse representation of the object. The inverse problem of UDT is iteratively resolved by conjugate gradient with
nonuniform fast Fourier transform. Simulation results show the effectiveness of the proposed method that the main characteristics
of the object can be properly presented with only 16 views. Compared to interpolation and multiband method, the proposed
method can provide higher resolution and lower artifacts with the same view number.The robustness to noise and the computation
complexity are also discussed.

1. Introduction

In recent years, ultrasound diffraction tomography (UDT)
has drawnmore andmore attention inmedical imaging field.
Different from traditional B-mode ultrasound technique
which displays the strength of the echoes with gray scale
to show anatomic structure, UDT infers the distribution
of acoustic properties such as refractivity, attenuation, and
density. Since these acoustic properties of normal and dis-
eased tissues have different value ranges [1], UDT has the
potential for providing functional information of the object.
For example, in the breast cancer exam, the malignant tumor,
the benign mass, and the normal tissue can be differentiated
by UDT [2].

Under the assumption of weak scatting, the Fourier
diffraction theory (FDT) [3, 4] is adopted for the image
reconstruction of UDT. Firstly, the object is illuminated
by plane sound wave from one certain direction and the
scattering waves are measured and sampled. Secondly, the
spatial Fourier transform is performed on the stored data.
Under the Born or Rytov approximation [5], the corre-
sponding frequency values are considered to represent the
2D Fourier transform of the object nonuniform distributed

along a semicircle arc. The above processes are implemented
oriented at various angles around the object to acquire suffi-
cient spatial frequency information. Finally, the UDT image
is reconstructed through inverse spatial Fourier transform.
To avoid undersampling, normally more spatial frequency
samples are required [6]; thus more views from different
directions are needed. However, the scan and process time
and the associated cost will increase. Besides that, it will
impose rigorous requirements on controlling precision of
the imaging system. Moreover, redundant information is
introduced by multiple views, which results in the waste of
the system resources. Hence, accurate reconstruction from
nonuniform distributed frequency samples in sparse-view
situation has great practical significance.

Currently, in addition to reconstructing the underlying
object through beamforming [7], there are other two main
approaches based on FDT to recover the complete informa-
tion from the sparse-view data: interpolation method and
iterative method. The former calculates the frequency values
on the rectangular grids by a predetermined interpolation
function based on sampled frequency on the circular arc grid
[8, 9]. Although the interpolation method is computationally
efficient, it is liable to introduce coordinate conversion error,
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which can severely introduce artifacts and distort the image,
especially in sparse-view situation. The latter repeatedly
corrects the reconstructed image by minimizing the incon-
sistency between the sampled and the estimated frequency.
Through designing appropriate optimization strategy, this
process can maximally reduce the reconstruction error and
suppress the artifacts. Various researches have been done
on the UDT image reconstruction with the iterative method
under sparse-view situation. Bronstein et al. [10] proposed an
iterative reconstruction framework based on nonuniform fast
Fourier transform (NUFFT) and reduced the number of view
with broadband sound wave. LaRoque et al. [11] introduced
a kind of diffraction tomography with few-view (sparse-
view) and limited-angle data through total variation (TV)
minimization algorithm for absorberless media. Tingting
Li et al. [12] combined TV regularization with the iterative
next-neighbor regridding (INNG) algorithm to suppress
artifacts and noise.

Compressed sensing (CS) [13, 14] is built on the sparse
nature of real signals in certain transform domain. CS has
the ability to reconstruct signals with samples which are
much less than those required by the Nyquist criterion. CS
brings great innovations in image reconstruction and has
been widely used in medical imaging field such as MR [15],
CT [16, 17], PET [18], and photoacoustic imaging [19, 20].
In recent years, some progress has been made in applying
this emerging theory in ultrasound imaging field to reduce
the amount of the data and the complexity of the imaging
system. Schiffner et al. [21–23] investigated the performance
of CS in solving the inverse scattering problem in pule-echo
diagnostic ultrasound imaging under the constraint that the
scatterer distribution is sparse. With the same assumption,
Wagner et al. [24–26] proposed a method based on finite
rate of innovation and Xampling for the reconstruction of
the beamformed image from channel RF data. Shen et al. [27,
28] presented ameasurement-domain adaptive beamforming
approach based on distributed CS to reconstruct an image
of sparse targets. Achim et al. [29] introduced a framework
based on CS for ultrasonic signals reconstruction under
the assumption of RF echoes with 𝛼-stable distributions.
Liebgott et al. [30–32] studied the feasibility of CS for the
reconstruction of channel RF data, the quantity of channel
RF data is reduced through introducing the wave atoms as a
representation basis for prebeamformed RF signal. Quinsac
et al. [33–37] and Dobigeon et al. [38] applied CS theory to
recover beamformed 2D RF images using conjugate gradient
descent or Bayesian approach. Zobly et al. [39, 40] and
Richy et al. [41] applied CS for doppler imaging.

In this paper, we propose an iterative reconstruction
method based on CS for sparse-view UDT. The above
researchers mainly focused on applying CS to the pulse-echo
imaging systems. To the best of our knowledge, CS was rarely
applied in the investigation of UDT image reconstruction,
and this is the main motivation of this work. According to
FDT, the sample points are bounded in a circle with the
radius of√2𝑘

0
(𝑘
0
: wave number) [9] for transmission UDT;

this results in a sharp sampling cutoff in spatial frequency
space. Thus, the reconstructed object is a low-pass version
of the original and the quality of image will be distorted by

the Gibbs aliasing. This problem can be further deteriorated
in the sparse-view situation due to limited sample data.
In this context, besides the general 𝑙

1
norm constraint, we

introduce TV penalty into the cost function, which can
reduce the oscillation and preserve edges of the object [42].
Empirical observations [10] showed that the majority of
nature images, particularly medical images, demonstrated
piecewise continuous behavior; that is, parts of anatomy
structures were supposed to show uniform characteristics,
which belonged to the class of functions of bounded TV [43].
Furthermore, to improve computational efficiency, a fast and
accurate NUFFT is adopted to calculate the forward scatter
field.

Through the numerical simulation, the proposedmethod
is verified and compared with interpolation method and
iterationmethodwith broadband signal [10].Thequantitative
evaluation and the robustness to noise of the method are
discussed. Simulation shows that the object can be faithfully
reconstructed in sparse-view situation without noticeable
loss of image quality and the reconstructed error is reduced.

The rest of the paper is organized as follows. The basic
principle of UDT and CS theory are described in Section 2.
The proposed method is presented in Section 3. Section 4
describes the simulation experiments for UDT image recon-
struction and results. Section 5 provides discussion about
noise robustness and computational complexity of the pro-
posedmethod. Conclusions and future work are summarized
in Section 6.

2. Background

2.1. UDT Based on FDT. The classical 2D UDT imaging
configuration is shown in Figure 1. The inhomogeneous
object with a distribution function𝑓(r) = 𝑛

2
(r)−1, r = (𝑥, 𝑦),

is surrounded by homogeneous medium such as water; the
𝑛(r) is refractive index. The reconstruction object of UDT
is to infer the unknown 𝑓(r) through transmitted signals
measured by ultrasound transducer.

Assume the object is illuminated by a monochromatic
plane wave with wave number 𝑘

0
and angular frequency𝜔

0
at

an angle 𝜃. The wave is scattered within and at the boundary
of the inhomogeneous object. Set up a rotated cartesian coor-
dinate system (𝜉, 𝜂) such that 𝜂-axis is coincident with the
view angle as shown in Figure 1. The relation between (𝑥, 𝑦)

and (𝜉, 𝜂) can be derived through coordinate transformation:
𝜉 = cos(𝜃)𝑥 + sin(𝜃)𝑦, 𝜂 = − sin(𝜃)𝑥 + cos(𝜃)𝑦.

The sound pressure field 𝑢(r) satisfies the following wave
equation [4]:

(∇
2
+ 𝑘

2

0
) 𝑢 (r) = −𝑘

2

0
𝑓 (r) 𝑢 (r) , (1)

where∇2 denotes the Laplacian operator.𝑢(r) can bemodeled
as the superposition of the incident wave 𝑢

𝑖,𝜃
(r) and the

scatter wave 𝑢
𝑠,𝜃

(r): 𝑢(r) = 𝑢
𝑖,𝜃
(r) + 𝑢

𝑠,𝜃
(r).

Under the assumption of weak scattering, 𝑢
𝑠,𝜃

(r) ≪

𝑢
𝑖,𝜃
(r), or first order Born, or Rytov approximation, one can

derive the so-called FDT which relates the scattered field
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Figure 1: Scheme of 2D ultrasound diffraction tomography: illumi-
nating the object with plane wave at an angle 𝜃 and the scattered
measured along 𝜂 = 𝑙.

measured along the line 𝜂 = 𝑙 to the object by Fourier
transform:

𝑈
𝑠,𝜃 (

𝜅) =

𝑘
2

0
𝑈
0

2𝑗𝑦

𝑒
𝑗𝑦𝑙

∬

+∞

−∞

𝑓 (r) 𝑒−𝑗[𝜅𝜉+(𝛾−𝑘0)𝜂]𝑑r, (2)

where 𝑈
𝑠,𝜃

(𝜅) is the Fourier transform of received scattered
data 𝑢

𝑠,𝜃
(𝜉) with respect to 𝜉:

𝑈
𝑠,𝜃

(𝜅) = ∫

+∞

−∞

𝑢
𝑠,𝜃

(𝜉) 𝑒
−𝑗𝜅𝜉

𝑑𝜉 (3)

and 𝑦 = √𝑘
2

0
− 𝜅

2, |𝜅| ≤ 𝑘
0
, and 𝑈

0
is the complex amplitude

of the illuminating plane wave. The quantity of 𝑈
𝑠,𝜃

(𝜅) in
(2) is known or measurable, and the integral 𝑄

𝜃
(𝜅) =

∬

+∞

−∞
𝑓(r)𝑒−𝑗[𝜅𝜉+(𝛾−𝑘0)𝜂]𝑑r contains the underlying object 𝑓(r)

that we want to reconstruct. Detailed analysis reveals that
𝑄
𝜃
(𝜅) is the Fourier transform of the object along a semicircle

of radius 𝑘
0
and centered at −𝑘

0
s
0
[4], as the arc AOB

depicted in Figure 2, and s
0
is the unit vector along direction

𝜃. Mathematically, the image reconstruction by (2) is a typical
inverse problem which can be expressed as the following
formulation:

𝐹 = Φ (𝑓) , (4)

where 𝐹 is the sample data in 𝑘-space, Φ is the diffrac-
tion operator, and 𝑓 is the object 𝑓(r) which we want
to reconstruct. For formulation (4), classical interpolation
method based on FDT is not applicable in sparse-view
situation due to violating Nyquist limitation. With fast and
accurate nonuniform fast Fourier transform, we propose a CS
framework for UDT reconstruction in sparse-view situation
to improve the image quality of the reconstruction.
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Figure 2: Fourier diffraction projection theorem: the Fourier trans-
form of the scattered data equals the Fourier transform of the object
along semicircle AOB.

2.2. Compressed Sensing: A Short Overview. Compressed
sensing is a kind of signal processing technique for effi-
ciently acquiring and reconstructing a signal. CS has been
increasingly adopted in a variety of applications by applied
mathematicians, computer scientists, and engineers since it
was initiated in 2006 [44].The idea of CS can be expressed by
the following linear measurement model:

y = Φx, (5)

where x ∈ R𝑛 is the unknown signal such as an image that
we want to reconstruct, y is the measured signal, and Φ is
one 𝑚 × 𝑛 (𝑚 < 𝑛) measure matrix, which is decided by
the imaging system. In this work, Φ is the Fourier transform
operator and y is the corresponding Fourier transform of the
received scatter field. Assume the unknown signal x can be
sparsely represented in terms of a known basis:

x = Ψs, (6)

where Ψ is the basis, s is the corresponding representation
coefficients. Here, the sparse means that the number of
nonzero coefficients of s is small.

Substituting (6) into (5), we obtain (7) as follows:

y = Θs, (7)

where Θ = ΦΨ; since 𝑚 < 𝑛, the matrix Θ is not invertible.
Taking advantage of the sparsity of s, CS theory shows that
if the Θ meets the so-called restricted isometry property
(RIP) condition, we can exactly recover swith overwhelming
probability by solving the following minimization problem
[45, 46]:

mins {‖s‖0 : Θs = y} , (8)

where ‖ ⋅ ‖
0
norm counts the number of no-zero entry of

a vector. Equation (8) seeks the sparsest one among all the
possible solutions of y = Θs.
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Figure 3: Schematic of the frequency interpolation method (a) and proposed method (b). In (a), the object is reconstructed through IFFT
after frequency interpolation. In (b), the object is reconstructed through CG and NUFFT.

However, (8) belongs to the class of NP-hard problem,
which is difficult to obtain solutions for nearly all real
applications. One computationally tractable alternative for
(8) is to solve the following 𝑙

1
problem [13, 45]:

mins {‖s‖1 : Θs = y} , (9)

where ‖s‖
1
= ∑ |𝑠

𝑖
|.

The above CS theory requires x to be sparse and y = Φx
exactly, whereas, in most practical situations, the object is
approximately sparse or compressible. Here, approximately
sparse means that x contains a small number of components
with magnitudes significantly larger than those of the rest,
which are not necessarily zero; compressible means the
coefficients of s decay exponentially in absolute value. To
address these problems, Candès et al. [47] extended (9) to the
following form:

mins {‖s‖1 :
󵄩
󵄩
󵄩
󵄩
Θs − y󵄩󵄩󵄩

󵄩

2

2
⩽ 𝜎

2
} , (10)

where ‖s‖
2

= (∑ |𝑠
𝑖
|
2
)

1/2 and 𝜎
2 represents energy bound of

error.
Considering that (10) is a convex optimization problem, it

can be further recast as the following regularization equation
[48]:

mins {𝛼‖s‖1 +
󵄩
󵄩
󵄩
󵄩
Θs − y󵄩󵄩󵄩

󵄩

2

2
} , (11)

where 𝛼 is a regularization parameter.

3. Compressed Sensing for UDT
Imaging Reconstruction

In this section, we present an image reconstruction method
for UDT in 2D case, while it can be readily extended to 3D.
Figure 3 provides the comparison between the interpolation
method and the proposed scheme, which is composed of
three major steps. Firstly, the object is illuminated from
random angles and the number of views can be far below that
restricted by the Nyquist limitation. The measured sparse-
view data are processed by Fourier transform to obtain the
corresponding spatial frequency samples along semicircular
arcs oriented at the view angles. Secondly, the inverse prob-
lem (4) is formulated within CS framework by building the
measure matrix Φ and exploiting the sparsity of the object.
Thirdly, the object is reconstructed through the NUFFT and
CG algorithm.

3.1. Sparse-View Data Sampling. As we discussed in
Section 2.2, when the sensing matrix Θ satisfies the RIP
[45, 46], the NP-hard inverse problem (8) can be transformed
to computationally tractable 𝑙

1
norm minimization problem

((9) or (11)). However, even for moderate dimensional
operators Θ, it is computationally impractical to verify the
RIP. Fortunately, a few classes of matrices are shown to hold
RIP for almost certainly. It is shown in [49, 50] that, when Φ

is a Gaussian or partial Fourier, that is, the entries of Φ are
randomly selected using a Gaussian pdf or 𝑚 rows of Φ are
randomly selected from the rows of 𝑛 × 𝑛 Fourier matrix, Θ
satisfies RIP.

For UDT scanner, the sample operator coincides with
the matrix mentioned above since the samples in spatial
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frequency domain are obtained through FDT, Which makes
it possible to reconstruct the object through 𝑙

1
minimization

with sparse data. Here, we generate the sparse-view data
by randomly choosing view angles and the number of
view is much less than that required by the conventional
interpolation method.

3.2. Inverse Problem Formulation under CS Framework. The
sparse-view data sampling in Section 3.1 generates the mea-
sured value 𝑦 in problem (9). To formulate the UDT inverse
problem under CS framework, the sensingmatrixΘ = ΦΨ in
(9)must be constructed.Here,Φ is dependent on the imaging
principle of UDT, while Ψ is the basis for the object to be
reconstructed. The explicit expression of Φ and Ψ for UDT
will be derived as below.

Since the object has limited physical dimensions, we
assume the object 𝑓(r) or 𝑓(𝑥, 𝑦) in cartesian coordinate
system has bounded support [−𝐶, 𝐶] × [−𝐶, 𝐶]; that is,
𝑓(𝑥, 𝑦) = 0 when |𝑥| > 𝐶 or |𝑦| > 𝐶. Let 𝑓

𝑑
∈ R(𝑛𝑑+1)×(𝑛𝑑+1),

(𝑛
𝑑

= 2⌈𝐶/𝑇⌉) be the discrete form of the underlying object
that we want to reconstruct, where 𝑇 is the sample period for
𝑥- and 𝑦-axis. 𝐹(𝑢, V) and 𝐹

𝑑
(𝑢, V) are the Fourier transform

of 𝑓(𝑥, 𝑦) and 𝑓
𝑑
(𝑛
1
, 𝑛
2
), respectively. Assume the frequency

response of 𝑓(𝑥, 𝑦) is band-limited; that is, there exists a
cutoff frequency 𝑊 such that |𝐹(𝑢, V)| ≈ 0, when |𝑢| >

𝑊 or |V| > 𝑊. In practice, the loss of resolution by this
band limit is negligible; the reconstructed imaging quantity
is more influenced by other factors such as the aperture sizes
of transmitting and receiving transducers [9]. Based on the
Nyquist theorem, if 𝑇 < 1/2𝑊, 𝐹

𝑑
(𝑢, V) ≈ 𝐹(𝑢, V) for |𝑢| < 𝑊

and |V| < 𝑊.
Since the receiving array of UDT has a limited number

of elements, we denote the measured discrete field 𝑢̂
𝑠,𝜃

=

𝑢
𝑠,𝜃

(𝑛𝜏), where 𝑛 is the number of elements and 𝜏 is pitch
(the distance between the centers of two adjacent elements).
𝜏 is the spatial sampling interval of UDT system. 𝑈̂

𝑠,𝜃
(𝜅)

and 𝑈
𝑠,𝜃

(𝜅) are the Fourier transform of 𝑢̂
𝑠,𝜃

and 𝑢
𝑠,𝜃

(𝜉),
respectively. 𝑈̂

𝑠,𝜃
(𝜅) → 𝑈

𝑠,𝜃
(𝜅) for all 𝜅 ∈ R as 𝜏 → 0.

The relation between (𝑢, V) and (𝜅, 𝛾) can be formulated as
the following equations:

𝜅 = U (𝑢, V) ,

𝛾 = V (𝑢, V) ,
(12)

where U, V are derived from the coordinate transform and
(2); let arc grid points (𝜅

1
, 𝛾
1
) and (𝜅

2
, 𝛾
2
) (−𝑘

0
≤ 𝜅

1
≤ 0, 0 ≤

𝜅
2

≤ 𝑘
0
) be on half arc AO, OB, respectively; then we can

get 𝜅
𝑖
= (−1)

𝑖
𝑘
0
sin(2 arcsin(√𝑢

2
+ V2/2𝑘

0
)), 𝛾

𝑖
= √𝑘

2

0
− 𝜅

2

𝑖
,

𝑖 = 1, 2. For more details about this transformation please
refer to [4].

According to (2) and (12), if 𝑈̂
𝑠,𝜃

(𝜅) sufficiently approx-
imates 𝑈

𝑠,𝜃
(𝜅) and |𝑢| < 𝑊, |V| < 𝑊, then we have

𝑈̂
𝑠,𝜃

(𝜅) ≈ 𝑈
𝑠,𝜃

(𝜅) = 𝐹(𝜅, 𝛾) = 𝐹(𝑢, V) ≈ 𝐹
𝑑
(𝑢, V). Generally,

this requirement can be satisfied in the real UDT system
because the pitch of normal medical ultrasound probe is
among 0.5𝜆 ∼ 2𝜆 (𝜆 is the sound wave length).

Let Ω
1

= {𝜃
1
, 𝜃
2
, . . . , 𝜃

𝑁1
} be the finite set of view

angles. In UDT system, 𝑈
𝑠,𝜃

(𝜅) is obtained over Ω
1
. Then

the corresponding 𝑈̂
𝑠,𝜃

(𝜅) can be calculated offline for all
𝜅 ∈ Ω

2
= {𝜅

1
, 𝜅
2
, . . . , 𝜅

𝑁2
} (3). Therefore, the 𝑓

𝑑
can be

reconstructed through the set of observation 𝑈̂
𝑠,𝜃

(𝜅) | (𝜃, 𝜅) ∈

(Ω
1
, Ω

2
):

(𝑇𝜅
0
)
2
𝑈
0

2𝑗𝛾

𝑒
𝑗𝛾𝑙

⌈𝐶/𝑇⌉

∑

𝑛1=⌊−𝐶/𝑇⌋

⌈𝐶/𝑇⌉

∑

𝑛2=⌊−𝐶/𝑇⌋

𝑓
𝑑𝑛1,𝑛2

𝑒
−2𝜋𝑗(𝑛1𝑢+𝑛2V)𝑇

= 𝑈̂
𝑠,𝜃

(𝜅) + 𝑛
𝑠,𝜃

(𝜅) .

(13)

This set of equations can be written in matrix form: Φ𝑓
𝑑

=

𝐹 + 𝑛, where Ω = (Ω
1
, Ω

2
), Φ ∈ C|Ω|×(𝑛𝑑+1)

2

, 𝑓
𝑑

∈ R(𝑛𝑑+1)
2

,
−𝑛
𝑑
/2 ≤ 𝑛

1
, 𝑛

2
≤ 𝑛

𝑑
/2, 𝐹, 𝑛 ∈ C|Ω|, 𝑛

𝑠,𝜃
(𝜅), or 𝑛 is

approximation error. With (13), Φ in inverse problem (9) is
obtained.

CS theory utilizes the sparse nature of the object and
reconstructs the object by minimizing the corresponding
𝑙
1
norm in transform domain. According to FDT, the spa-

tial frequency samples are distributed along the arc AOB
(Figure 2). As the incident wave revolves around the object,
the AOB describes a disk of radius √2𝑘

0
centered at the

origin; that is, the reconstructed object is a low-pass version
of the original. Besides that, we also exploit the fact that
the structural morphology of human soft tissue is expected
to demonstrate piecewise continuous behavior. That means
the object belongs to the class of bounded TV [43] and the
gradient of the object is sparse. In this work, the sparsity
of the underlying object is exploited not only through
wavelet transform which provides sparse representations for
rapidly varied regions, but also by TV which affords sparse
transformation for piecewise smooth object. Furthermore,
TV constraint can help to suppress Gibbs effect and preserve
edges [10].

For a discrete object 𝑓
𝑑
, TV is defined as

TV (𝑓
𝑑
) = ∑

𝑛1 ,𝑛2

√(𝐷
ℎ

𝑛1 ,𝑛2
𝑓
𝑑
)
2

+ (𝐷
V
𝑛1 ,𝑛2

𝑓
𝑑
)
2
= ∑

𝑛1 ,𝑛2

󵄩
󵄩
󵄩
󵄩
󵄩
𝐷
𝑛1𝑛2

𝑓
𝑑

󵄩
󵄩
󵄩
󵄩
󵄩2

,

(14)

where𝐷
ℎ

𝑛1 ,𝑛2
,𝐷V

𝑛1 ,𝑛2
denote the forward finite difference oper-

ator in horizontal (ℎ) and vertical (V) coordinates, respec-
tively. Combining 𝑙

1
normwith TV constraints, we extend the

problem (11) to the following minimization problem:

min
𝑠

𝐺 (𝑠) = 𝛼TV (Ψs) + 𝛽‖s‖1 + ‖𝐹 − ΦΨs‖2
2
, (15)

where 𝛼, 𝛽 are two positive regularization parameters, 𝐹 is
spatial frequency samples, Ψ is the selected basis for sparse
representation of the object 𝑓

𝑑
, and s is the coefficients of 𝑓

𝑑

in basis Ψ.

3.3. Object Reconstruction. An iterativemethod based onCG
is adopted to solve the inverse problem (15). For UDT system,
the receive elements are equally spaced that means the 𝑢

𝑠,𝜃
(𝜉)

along 𝜂 = 𝑙 is equally spaced sampled. However, themeasure-
ments of 𝑄

𝜃
(𝜅) are unequally spaced distributed, since the

measurements along the line are projected perpendicularly
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onto frequency domain of the object along semicircular
arc. Thus, the Fourier transform must be computed for
every nonuniform frequency points (ΦΨs orΦ𝑓

𝑑
). Although

the result of direct nonuniform discrete Fourier transform
(NDFT) is exact, the computation time required by theNDFT
restricts its real application. To speed up, a fast NUFFT
is employed to approximate NDFT in every iteration of
reconstruction.

3.3.1. Conjugate Gradient Method. To solve the inverse prob-
lem (15) iteratively by CG, the gradient of the objective
function 𝐺(s) must be computed as:

∇𝐺 (s) = 2(ΦΨ)
󸀠
(ΦΨs − 𝐹) + 𝛼∇ (TV (Ψs)) + 𝛽∇ (‖s‖1) ,

(16)

where (⋅)
󸀠 represents the conjugate transpose. Since the

absolute value function in 𝑙
1
norm and TV is nonsmooth

function, we use approximation techniques to compute the
corresponding gradient. For 𝑙

1
norm, the absolute value

function is approximated with a smooth function by using
the relation ‖z‖

1
≈ √z󸀠z + 𝜀, where 𝜀 is a small positive

smooth parameter. For TV, we use the following approxi-
mation strategy to avoid a zero denominator: ‖𝐷

𝑛1𝑛2
𝑓
𝑑
‖
2

≈

√(𝐷
ℎ

𝑛1 ,𝑛2
𝑓
𝑑
)
2

+ (𝐷
V
𝑛1 ,𝑛2

𝑓
𝑑
)
2
+ 𝜇, where 𝜇 is a small positive

parameter. Therefore the gradient of 𝑙
1
norm and TV can be

calculated:

∇ (‖z‖1) =

z
√z󸀠z + 𝜀

, (17)

∇

󵄩
󵄩
󵄩
󵄩
󵄩
𝐷
𝑛1 ,𝑛2

𝑓
𝑑

󵄩
󵄩
󵄩
󵄩
󵄩2

=

𝐷
ℎ

𝑛1 ,𝑛2
𝑓
𝑑

󵄩
󵄩
󵄩
󵄩
󵄩
𝐷
𝑛1 ,𝑛2

𝑓
𝑑

󵄩
󵄩
󵄩
󵄩
󵄩2

+

𝐷
V
𝑛1 ,𝑛2

𝑓
𝑑

󵄩
󵄩
󵄩
󵄩
󵄩
𝐷
𝑛1 ,𝑛2

𝑓
𝑑

󵄩
󵄩
󵄩
󵄩
󵄩2

−

𝐷
ℎ

𝑛1 ,𝑛2−1
𝑓
𝑑

󵄩
󵄩
󵄩
󵄩
󵄩
𝐷
𝑛1 ,𝑛2−1

𝑓
𝑑

󵄩
󵄩
󵄩
󵄩
󵄩2

−

𝐷
V
𝑛1−1,𝑛2

𝑓
𝑑

󵄩
󵄩
󵄩
󵄩
󵄩
𝐷
𝑛1−1,𝑛2

𝑓
𝑑

󵄩
󵄩
󵄩
󵄩
󵄩2

.

(18)

3.3.2. NUFFT. NUFFT developed by Fessler and Sutton [51]
is adopted. Consider the following 1D NUFFT case:

𝐹 (𝜔
𝑚
) =

𝑁−1

∑

𝑛=0

𝑓
𝑛
𝑒
−𝑖𝜔𝑚𝑛

, 𝑚 = 1, . . . ,𝑀, (19)

where f = (𝑓
0
, . . . , 𝑓

𝑁−1
) is a vector of equally spaced samples

of a signal and 𝜔 = (𝜔
1
, . . . , 𝜔

𝑀
) is a vector of nonuniform

distributed frequencies. In matrix notation

𝐹 = Φf , (20)

whereΦ ∈ C𝑀×𝑁 : Φ = (𝜙
1
, . . . , 𝜙

𝑀
)
𝑇 is nonuniform Fourier

transform matrix. The NUFFT is implemented by two steps:
firstly, project f on an oversampled uniform Fourier basisΛ ∈

C𝑞𝑀×𝑁 by standard FFT

𝑍 = Λf ; (21)

that is,

𝑍
𝑘
=

𝑁−1

∑

𝑛=0

𝑓
𝑛
𝑒
−𝑖(2𝜋/𝐾)𝑘𝑛

, 𝑘 = 0, . . . , 𝐾 − 1, (22)

where 𝐾 = 𝑞𝑀. Secondly, approximate each 𝐹(𝜔
𝑚
) by inter-

polating the 𝑍
𝑘
using 𝑝 uniform samples

𝐹 (𝜔
𝑚
) ≃ 𝐹 (𝜔

𝑚
) =

𝐾−1

∑

𝑘=0

V
𝑚𝑘

𝑍
𝑘
, 𝑚 = 1, . . . ,𝑀; (23)

that is, 𝐹 = Φf ≃ 𝑉
𝑝
Λf . 𝑉

𝑚
= (V

𝑚1
, . . . , V

𝑚𝐾
) is the 𝑚th row

of interpolation matrix𝑉
𝑝
which makes use of 𝑝 neighboring

uniform samples of𝑍 for approximation of each nonuniform
sample of 𝐹. In [51], Fessler and Sutton designed a kind of
min-max criterion to choose interpolation coefficients for
every 𝐹(𝜔

𝑚
):

min
𝑉𝑚

max
‖f‖2≤1

|𝑉
𝑚
Λf − 𝜙

𝑚
f|2. (24)

The analytical solution of (24) is

𝑉
𝑚

= 𝜙
𝑚
Λ
𝐻
(ΛΛ

𝐻
)

−1

, (25)

where 𝐻 denotes Hermitian transpose. Fessler and Sutton
have shown that the overall complexity of such method is
𝑂(𝑞𝑁 log𝑁 + 𝑝𝑀).

4. Simulation and Results

4.1. Simulation Parameters. In order to evaluate the perfor-
mance of the proposed method for UDT reconstruction, we
have performed a series of numerical experiments for the
phantom in Figure 4(a). The phantom consists of ten ellipses
which looks like the well-known Shepp-Logan “head phan-
tom” for CT imaging. However, for UDT system, we have
modified the gray levels to those used by [8, 9].The gray levels
represent the relative change in refractive index from the
background value of 1.0; the maximum and minimum gray
intensity are set to 1.0 and 0, respectively. The speed of sound
of the backgroundmedia is 1500m/s. To evaluate ourmethod,
the scattered field was calculated based on FDT under Born
approximation. Although the Born approximation imposes
limitation on the dimension of the object for real application
[4] and cannot distinguish the features of the object spaced
less than 𝜆/2 [52, 53], it can provide a simple and direct
method to reconstruct the structure of an object from the
measurement of the scattered field. According to FDT, the
Fourier transform of the scattered field measured on 𝜂 = 𝑙 is
proportional to Fourier transform of the object over an arc
(2), while the Fourier transform of each ellipse has simple
analytical expression; hence we can generate the scattered
data through inverse Fourier transform. This procedure not
only is fast but also allows the scattered date to be calculated
for testing the reconstruction algorithms and experiments
parameters such as pitch and number of elements [4, 8–10].

In numerical experiments, the imaging system utilizes
a pair of parallel linear array probes [54, 55]. Referring
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Figure 4: (a) Original image. (b) Image reconstructed using interpolation method. (c) Image reconstructed using broadband signal. (d)
Image reconstructed using CS.

to exiting commercial ultrasound linear transducer and
ultrasound tomography system, the frequency of incident
wave is set to 1.5MHz, and the number of elements and
pitch of the probes are 128 and 𝜆, respectively, where 𝜆 is the
wavelength of incident plane wave. The distance between the
two probes is 200𝜆. The phantom Figure 4(a) is discretized
on a 128 × 128 Cartesian grid. According to the diffraction
limitation [52, 53], the spatial sample step 𝑇 or the resolution
of the system is set to 𝜆/2. It is also necessary to point out that
the numbers of iterations for iterative methods are all set to 8;
we did not employ error threshold as the iteration criterion,
because we want to compare the iterative algorithms after the
same iteration numbers. According to the recommendation
of Fessler and Sutton [51], the values of 𝑝, 𝑞 are set to 6 and 2,
respectively. The regularization parameters 𝛼 and 𝛽 are set to
0.01 and 0.001, respectively.

4.2. Results. Figure 4 shows the reconstructed images
through different methods from simulated sparse-view data
with no added noise. Figure 4(a) is the original phantom,

Figure 4(b) is the reconstructed image using bilinear fre-
quency interpolation, Figure 4(c) is the reconstructed image
using the method proposed by Bronstein et al. [10] with
broadband incident sound wave, and Figure 4(d) is the
reconstructed image using the proposed method where the
sparse transform basis is Haar wavelet.The number of view is
16, and the number of iterations is 8 for Figures 4(c) and 4(d).
Due to sparse-view sampling, theNyquist-Shannon sampling
limitation cannot be satisfied. The reconstructed image of
Figure 4(b) is severely blurred and distorted by interpolation
error. The small scale features of original phantom cannot
be recognized and larger ones are distorted by ring artifacts.
Compared with the interpolation method, the two iterative
methods can suppress the artifacts and reduce the noises and
Gibbs effect as shown in Figures 4(c) and 4(d). In Figure 4(c),
we adopted ten different frequency waves used by Bronstein
in [10] to illuminate the object in each view.The image shows
oversmoothing effect that the edges and details of the features
are blurred. This may be caused by resolving the inverse
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Figure 5: Magnitude of error in frequency domain. (a) Interpolation method; (b) error value of interpolation method within [0, 300]; (c)
broadband method; (d) CS method.

problem of UDT under overdetermined framework; that is,
there are more known 𝐹 than unknown 𝑓

𝑑
.

Figure 4(d) shows the result of the proposed method.
Most of the features can be clearly represented. The arti-
facts and oscillation noises are efficiently reduced. For the
homogenous background (black region), there is no visible
artifact and grayscale aberration, which accords with the
characteristic of the original homogenous medium. For the
narrow ring region 𝐴, the outer and inner boundary can be
preserved. The inner background 𝐵 is uniformly displayed
except for parts of slightly blurred region.𝐶 is set to be a low-
contrast region (the gray intensity is 0.5, while it is 0.6 for
background 𝐵), which can be used to evaluate the sensitivity
of imaging methods. In Figure 4(d), the region 𝐶 can be
clearly distinguished from the surrounding background with
a sharp edge definition. Regions 𝐷 and 𝐸 are low and
high refractive regions, with the gray intensity 0.3 and 0.75,
respectively. The boundary of 𝐷 is preserved and the inner
of 𝐷 is clean. The small region 𝐸 can be distinguished from
surroundings. It is worth noting that the three small ellipses
at region 𝐹 can be identified in Figure 4(d), while they are
almost invisible in Figures 4(b) and 4(c). This implies the
proposed method can improve the resolution efficiently in
sparse-view situation.

Figure 5 shows the magnitude of error in the fre-
quency domains. Since the maximum error of the interpo-
lation method in Figure 5(a) is 4311, which is much bigger

than the corresponding ones of the broadband method in
Figure 5(c) (249.6) and the proposed method in Figure 5(d)
(54.2), we also show the magnitude of error within the inter-
val of [0, 300] for the interpolation method (Figure 5(b)).
From Figure 5, we can find that the error of interpolation
method around center frequency is significantly larger than
the remaining two methods, which accords with Figure 4(b)
that the details of the features are seriously distorted compar-
ing to other twomethods. In Figure 5(c), the maximum error
around center frequency is lower than that of Figure 5(b);
however, the error of frequencies other than center frequency
area is generally higher than the corresponding ones in
Figure 5(b). This means the noises in the reconstructed
image through broadbandmethod are higher than the recon-
structed image through interpolation method. Figure 5(d)
shows that the proposed method can markedly reduce the
frequency domain error particularly in the low frequency
components. This indicates that the reconstructed image
can faithfully represent the feature details while efficiently
suppressing the noises for sparse-view sampling data. Table 1
gives the relative mean square error (RMSE) in frequency
domains, which is defined as

RMSE =

󵄩
󵄩
󵄩
󵄩
󵄩
𝐹 − 𝐹

󵄩
󵄩
󵄩
󵄩
󵄩

2

2

‖𝐹‖
2

2

; (26)
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Figure 6: Images reconstructed with different penalties: (a) 𝛼 = 0.01, 𝛽 = 0.001; (b) 𝛼 = 0.01, 𝛽 = 0; (c) 𝛼 = 0, 𝛽 = 0.001; (d) 𝛼 = 𝛽 = 0.

Table 1: SSIM and RMSE for different methods.

Interpolation Broadband signal CS
SSIM 0.291 0.346 0.820
RMSE in frequency
domain 0.765 0.352 0.255

𝐹 and 𝐹 are the distribution function of the original phantom
and the reconstructed object in frequency domain, respec-
tively. Table 1 also lists the structural similarity (SSIM) index
for different methods. Compared with RMSE, the SSIM has
proven to be consistent with human eye perception [56]. In
this paper, the original object (Figure 4(a)) is the reference
image for SSIM. Compared to interpolation method, the
proposed method has relatively smaller RMSE and higher
SSIM values which coincides with the description above.

In (15), the regularization parameters 𝛼, 𝛽 determine the
trade-off between the data consistency and the sparsity of the
object. Furthermore, they can be used to adjust the relative
weights of the different components in the cost function.

Figure 6 shows the images reconstructed under different
penalties with 16 views, 128 elements, and pitch of 𝜆.
Figure 6(a) is reconstructed with TV and 𝑙

1
norm regu-

larization terms the same as Figure 4(d); the regularization
parameters are set to 0.01 and 0.001, respectively. Figure 6(b)
is reconstructed with solely TV regularization term; that
is, 𝛼 = 0.01, 𝛽 = 0. Compared to Figure 6(a), although
the TV penalty can preserve the edges of the object, the
inner of the object is blurred. Figure 6(c) is reconstructed
with solely 𝑙

1
norm regularization term; that is, 𝛼 = 0,

𝛽 = 0.001. The quality of the image, Figure 6(c), for inner
region can match Figure 6(a), but the edges of the object
are distorted. Figure 6(d) is directly reconstructed from the
limited sample data without any penalties; that is, 𝛼 = 𝛽 = 0.
Compared to Figure 6(a), not only are the qualities of the
inner and edge seriously declined in Figure 6(d), but also the
background is filled with noise. In practical, one can choose
the regularization parameters 𝛼, 𝛽 empirically based on the
noise level and image contrast [57] or adaptively adjust the
regularization parameters in the process of reconstruction
[58, 59]. The primary target of this work is to accurately
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Figure 7: The reconstructed image through CS and interpolation methods with different views. (a), (b), (c), and (d) Reconstructed images
by CS for 32 views, 48 views, 64 views, and 96 views, respectively; (e), (f), (g), and (h) reconstructed images by interpolation for 32 views, 48
views, 64 views, and 96 views, respectively.

reconstruct the object in sparse-view, the selection of the
optimal regularization parameters is not the focus of this
paper, but it is worth further investigation.

To fully evaluate the proposed method, we also recon-
struct the object with various numbers of views (Figure 7).
In Figure 7(b), with 32 views, the smaller scale features (the
three small ellipses) can be fully distinguished. Although
the quality of reconstructed image for interpolation is also
improved visually with the increase of views, the ring artifacts
and oscillation noises cannot be eliminated even with 96
views.

5. Discussion

Not only can the sparse-view sampling scheme save the
scan time of UDT but also it can reduce the complexity of
the imaging device. In Section 4.2, we show the feasibility
of image reconstruction for UDT in sparse-view situation
based on CS framework. The two main reasons that CS is
efficiently employed can be concluded as follows. Firstly,
the acoustic indexes of the object are sparsely represented
through orthogonal transform and finite difference trans-
form; the former provides sparse representations for rapidly
varied regions through wavelet transform, while the latter
affords sparse transformation for piecewise smooth regions
by TV. Secondly, the acoustic index coefficients with finite
main components in the transform domain can be faithfully
recovered through the iterative method based on CG and
NUFFT.

To full evaluate our method, we will analyze the noise
robustness of our method. Besides that, the computational
complexity is also discussed in this part.

5.1. Robustness to Noise. In real situation, in addition to sys-
tematic errors such as misaligned transducers, the detected
signals contain different kinds of noises such as thermal noise
of transducer, electronic noise of amplifier. We added white
Gauss noise in the received scatter data to test the robustness
to noise of the proposed method. The signal-to-noise ratio
(SNR) of simulated noisy data is 20 dB and 10 dB, respectively,
where SNR is defined as

SNR = 10 log(

‖𝐹‖
2

2

‖𝑛‖
2

2

) . (27)

The pitch and the number of elements are 𝜆 and 192,
respectively.

Figure 8 shows the reconstructed images with none,
20 dB, and 10 dB noise under 16 views and 32 views. The
images reconstructed from the signal with an SNR of 20 dB
have hardly any difference with the images reconstructed
from noise-free signals. The homogenous medium back-
ground is not contaminated by noise. The edges of different
structures can be distinguished.

However, when the noise increases to 10 dB, the quality
of reconstructed image is affected by granulation noise.
Although the main features of the object are still visible, the
small details are seen to seriously deteriorate, especially for
16 views. How to increase the robustness to noise remains a
further research topic.

5.2. Computational Complexity. In the proposed method,
the computation time is mainly occupied by NUFFT. For
an 𝑁 × 𝑁 digital object, the complexity of NUFFT is
𝑂(2𝑞𝑁

2 log𝑁 + 𝑝𝑁
2
) [51], where 𝑞 is the oversampling
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Figure 8: The robustness to noise of the proposed method. (a) 16 views, noise-free; (b) 16 views, SNR = 20 dB; (c) 16 views, SNR = 10 dB;
(d) 32 views, noise-free; (e) 32 views, SNR = 20 dB; (f) 32 views, SNR = 10 dB.

constant and 𝑝 is the number of neighbors for interpolation.
For normal reconstruction with the iteration number𝑚

1
and

the linear search times 𝑚
2
for each iteration, the total com-

plexity of our method is estimated as 𝑂(2𝑚
1
𝑚
2
(𝑞𝑁

2 log𝑁 +

𝑝𝑁
2
)). For comparison, the theoretical complexity of the

frequency domain interpolation requires𝑂(𝑁
2 log𝑁+4𝑁

2
).

Furthermore, the practical view number is generally more
than 4𝑁 to avoid aliasing. The sample points for every
view are at least two times of 𝑁. The complexity of filtered
backpropagation (FBP) is about 𝑂(𝑁

3 log𝑁). For the 128 ×

128 tested image used in this paper, the frequency interpo-
lation method requires about 1.80 × 10

6 operations; spatial
domain interpolation method (FBP) would require 14.68 ×

10
6 operations and our method requires about 144.17 × 10

6

operations.

6. Conclusion

UDT is an important image modality and can afford func-
tional exams in application. CS is one of the most exciting
advances in signal theorywhich takes advantage of compress-
ibility of the object to break Nyquist limitation and recover
the major component in transform domain. The paper
presents one CS framework for UDT image reconstruction.
The numerical experiments show that the proposed method
can improve image quality. The relative error is smaller than

conventional interpolation method and broadband method.
Combining 𝑙

1
norm with TV, not only is the edge of the

object preserved, but also the contrast and resolution are
improved.

In this paper our effort mainly focuses on integrating
CS and UDT to develop practical framework for image
reconstruction. Future work will be done on the evaluation of
our study with in vivo data. Other important works include
how to choose suitable transform basis and how to choose
regularization parameters.
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