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Let f be a transcendental meromorphic function of order less than one. The authors prove that the exact difference Δ𝑓 = 𝑓(𝑧 +

1) −𝑓(𝑧) has infinitely many fixed points, if 𝑎 ∈ C and∞ are Borel exceptional values (or Nevanlinna deficiency values) of f. These
results extend the related results obtained by Chen and Shon.

1. Introduction and Main Results

In this paper, we assume that the reader is familiar with the
notations of frequency use in Nevanlinna theory (see [1–3]).
Let 𝑓(𝑧) be a meromorphic function in the complex plane
C and 𝑎 ∈ C. We use the notations 𝜎(𝑓) to denote the
order of 𝑓(𝑧), 𝜆(𝑓, 𝑎), and 𝜆(1/𝑓), respectively, to denote the
exponent of convergence of zeros of 𝑓(𝑧) − 𝑎 and poles of
𝑓(𝑧). Especially, if 𝑎 = 0, we denote 𝜆(𝑓, 0) = 𝜆(𝑓). A point
𝑧 ∈ C is called as a fixed point of 𝑓(𝑧) if 𝑓(𝑧) = 𝑧. There
is a considerable number of results on the fixed points for
meromorphic functions in the plane; we refer the reader to
Chuang and Yang [4]. It follows Chen and Shon [5]; we use
the notation 𝜏(𝑓) to denote the exponent of convergence of
fixed points of 𝑓 that is defined as

𝜏 (𝑓) = lim sup
𝑟→∞

log𝑁(𝑟, 1/ (𝑓 − 𝑧))

log 𝑟
. (1)

Let 𝑓 be a transcendental meromorphic function in the
complex plane C. The exact differences Δ𝑓 are defined by
Δ𝑓 = 𝑓(𝑧 + 1) − 𝑓(𝑧).

Recently, there are a number of papers (including [6–16])
focusing on the differences analogues of Nevanlinna’s theory
and its application on the complex difference equations. For
the fixed points of the difference operatorΔ𝑓, Chen and Shon
have proved the following.

Theorem A (see [17]). Let 𝑓 be a transcendental entire
function of order of growth 𝜎(𝑓) = 1 and have infinitely many
zeros with the exponent of convergence of zeros 𝜆(𝑓) < 1. Then
Δ𝑓 has infinitely many zeros and infinitely many fixed points.

When the order of 𝑓 is less than 1, Chen and Shon have
proved the following.

Theorem B (see [5]). Let 𝑓 be a transcendental meromorphic
function of order of growth 𝜎(𝑓) ≤ 1. Suppose that 𝑓 satisfies
𝜆(1/𝑓) < 𝜆(𝑓) < 1 or has infinitely many zeros (with 𝜆(𝑓) =
0) and finitely many poles. Then Δ𝑓 has infinitely many fixed
points and satisfies the exponent of convergence of fixed points
𝜏(Δ𝑓) = 𝜎(𝑓).

A natural question is, letting 𝑓 be a transcendental
meromorphic function of order of growth 𝜎(𝑓) < 1, is there
a similar result as that in Theorem B if 𝜆(1/𝑓) ≥ 𝜆(𝑓) or 𝑓
has infinitely many zeros (with 𝜆(𝑓) = 0) and infinitely many
poles?

In this paper, we will prove the following theorem to
answer the question.

Theorem 1 (main). Let 𝑓 be a transcendental meromorphic
function of order of growth 𝜎(𝑓) < 1 and 𝑎 ∈ C. Suppose
that 𝑓 satisfies 𝜆(1/𝑓) < 𝜎(𝑓) and 𝜆(𝑓, 𝑎) < 𝜎(𝑓). Then Δ𝑓

has infinitely many fixed points and satisfies the exponent of
convergence of fixed points 𝜏(Δ𝑓) = 𝜎(𝑓).
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FromTheorem 1, we can get the following corollary.

Corollary 2. Let𝑓 be a transcendental meromorphic function
of order of growth 𝜎(𝑓) < 1. Suppose that 𝑓 satisfies 𝜆(𝑓) ≤
𝜆(1/𝑓) < 𝜎(𝑓). Then Δ𝑓 has infinitely many fixed points and
satisfies the exponent of convergence of fixed points 𝜏(Δ𝑓) =

𝜎(𝑓).

In Theorem 1, we suppose that 𝑓 satisfies 𝜆(1/𝑓) < 𝜎(𝑓)

and 𝜆(𝑓, 𝑎) < 𝜎(𝑓). That is to say ∞ and 𝑎 are Borel
exceptional values of 𝑓. If we suppose that ∞ and 𝑎 are
Nevanlinna deficiency values of 𝑓, is there a similar result as
that in Theorem B? In the following, we give Theorem 3 to
answer this question.

Let𝑓(𝑧) be ameromorphic function in the complex plane
C and 𝑎 ∈ C

∞
= C ∪ {∞}. Nevanlinna’s deficiency of 𝑓 with

respect to 𝑎 is defined by

𝛿 (𝑎, 𝑓) = 1 − lim sup
𝑟→∞

𝑁(𝑟, 1/ (𝑓 − 𝑎))

𝑇 (𝑟, 𝑓)
. (2)

If 𝑎 = ∞, then one should replace𝑁(𝑟, 1/(𝑓 − 𝑎)) in the
above formula by 𝑁(𝑟, 𝑓). If 𝛿(𝑎, 𝑓) > 0, then 𝑎 is called a
Nevanlinna deficiency value of 𝑓.

Theorem 3 (main). Let 𝑓 be a transcendental meromorphic
function of order of growth 𝜎(𝑓) < 1 and 𝑎 ∈ C. Suppose that
𝑓 satisfies 𝛿(∞,𝑓) = 1 and 𝑎 is a Nevanlinna deficiency value
of 𝑓. Then Δ𝑓 has infinitely many fixed points.

Corollary 4. Let𝑓 be a transcendental entire function of order
of growth 𝜎(𝑓) < 1 and 𝑎 ∈ C. Suppose that 𝛿(𝑎, 𝑓) > 0. Then
Δ𝑓 has infinitely many fixed points.

2. Some Lemmas

Lemma 1 (lemma on the logarithmic derivative). Let 𝑓(𝑧) be
a meromorphic function. If the function 𝑓(𝑧) has finite order,
then

𝑚(𝑟,
𝑓
(𝑘)

𝑓
) = 𝑂 (log 𝑟) (3)

holds for any positive integer 𝑘.

Lemma 2 (see [18]). Let𝑓(𝑧) be ameromorphic function with
the exponent of convergence of poles 𝜆(1/𝑓) = 𝜆 < +∞ and let
𝑐 be a nonzero complex number. Then for each 𝜀 > 0, we have

𝑁(𝑟, 𝑓 (𝑧 + 𝑐)) = 𝑁 (𝑟, 𝑓) + 𝑂 (𝑟
𝜆−1+𝜀

) + 𝑂 (log 𝑟) . (4)

Lemma 3. Let 𝑓 be a transcendental meromorphic function
of order of growth 𝜎(𝑓) < 1 and let 𝑐 be a nonzero complex
number. Then

𝑁(𝑟, 𝑓 (𝑧 + 𝑐)) = 𝑁 (𝑟, 𝑓) + 𝑂 (log 𝑟) . (5)

Proof. Since the order 𝜎(𝑓) := 𝜎 < 1, then 𝜆(1/𝑓) = 𝜆 ≤ 𝜎 <

1. Therefore, for any 0 < 𝜀 < 1 − 𝜎, it follows from Lemma 2
that

𝑁(𝑟, 𝑓 (𝑧 + 𝑐)) = 𝑁 (𝑟, 𝑓) + 𝑂 (𝑟
𝜆−1+𝜀

) + 𝑂 (log 𝑟)

= 𝑁 (𝑟, 𝑓) + 𝑂 (1) + 𝑂 (log 𝑟) .
(6)

That is,

𝑁(𝑟, 𝑓 (𝑧 + 𝑐)) = 𝑁 (𝑟, 𝑓) + 𝑂 (log 𝑟) . (7)

Lemma 4 (see [6]). Let 𝑓 be a function transcendental and
meromorphic in the plane which satisfies

lim inf
𝑟→∞

𝑇 (𝑟, 𝑓)

𝑟
= 0. (8)

Then Δ𝑓 is transcendental.

Lemma 5. Let 𝑓 be a transcendental meromorphic function of
order of growth 𝜎(𝑓) = 𝜎 < 1. Then Δ𝑓 is transcendental.

Proof. Since the order 𝜎(𝑓) := 𝜎 < 1, then, for any positive
𝜀(0 < 𝜀 < 1−𝜎), there exists 𝑅 > 0 such that for any 𝑟 > 𝑅 we
have

𝑇 (𝑟, 𝑓) ≤ 𝑟
𝜎+𝜀

. (9)

Therefore,

lim inf
𝑟→∞

𝑇 (𝑟, 𝑓)

𝑟
= 0. (10)

Lemma 5 follows Lemma 4.

Lemma 6 (see [7]). Let 𝑓(𝑧) be a meromorphic function of
finite order, then 𝜎(Δ𝑓) ≤ 𝜎(𝑓).

Lemma 7 (see [7]). Let 𝑓 be a transcendental meromorphic
function of order of growth 𝜎(𝑓) < 1. Then for any 𝜀 > 0

and any positive integer 𝑘, there exists a set 𝐸 ⊂ (1,∞) that
depends on 𝑓 and has finite logarithmic measure, such that for
all 𝑧 satisfying |𝑧| = 𝑟 ∉ 𝐸 ∪ [0, 1] we have

Δ
𝑘

𝑓(𝑧)

𝑓(𝑧)
=
𝑓
(𝑘)

(𝑧)

𝑓(𝑧)
+ 𝑂 (𝑟

(𝑘+1)(𝜎−1)+𝜀

) . (11)

It is easy to derive the following lemma from Lemma 1
and Lemma 7.

Lemma 8. Let 𝑓 be a transcendental meromorphic function
of order of growth 𝜎(𝑓) < 1. Then for any positive integer 𝑘
there exists a set 𝐸 ⊂ (1,∞) that depends on 𝑓 and has finite
logarithmic measure, such that

𝑚(𝑟,
Δ
𝑘

𝑓 (𝑧)

𝑓 (𝑧)
) = 𝑂 (log 𝑟) , 𝑟 ∉ 𝐸. (12)
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3. Proof of Theorems

Proof. Since

1

𝑓
=
Δ𝑓

𝑧𝑓
−
𝑧Δ
2

𝑓 − Δ𝑓

𝑧𝑓

Δ𝑓 − 𝑧

𝑧Δ2𝑓 − Δ𝑓
, (13)

then

𝑚(𝑟,
1

𝑓
) ≤ 𝑚(𝑟,

Δ𝑓

𝑧𝑓
) + 𝑚(𝑟,

𝑧Δ
2

𝑓 − Δ𝑓

𝑧𝑓
)

+ 𝑚(𝑟,
Δ𝑓 − 𝑧

𝑧Δ2𝑓 − Δ𝑓
) + 𝑂 (1)

≤ 2𝑚(𝑟,
Δ𝑓

𝑓
) + 𝑚(𝑟,

Δ
2

𝑓

𝑓
)

+ 𝑚(𝑟,
Δ𝑓 − 𝑧

𝑧Δ2𝑓 − Δ𝑓
) + 𝑂 (log 𝑟) .

(14)

Applying the first fundamental theorem, we get

𝑚(𝑟,
1

𝑓
) = 𝑇 (𝑟, 𝑓) − 𝑁(𝑟,

1

𝑓
) + 𝑂 (1) ,

𝑚(𝑟,
Δ𝑓 − 𝑧

𝑧Δ2𝑓 − Δ𝑓
) = 𝑚(𝑟,

𝑧Δ
2

𝑓 − Δ𝑓

Δ𝑓 − 𝑧
)

+ 𝑁(𝑟,
𝑧Δ
2

𝑓 − Δ𝑓

Δ𝑓 − 𝑧
)

− 𝑁(𝑟,
Δ𝑓 − 𝑧

𝑧Δ2𝑓 − Δ𝑓
) + 𝑂 (1)

≤ 𝑚(𝑟,
𝑧Δ
2

𝑓 − Δ𝑓

Δ𝑓 − 𝑧
)

+ 𝑁(𝑟,
𝑧Δ
2

𝑓 − Δ𝑓

Δ𝑓 − 𝑧
) + 𝑂 (1) .

(15)

Combining (14)-(15) we have

𝑇 (𝑟, 𝑓) ≤ 𝑁(𝑟,
1

𝑓
) + 2𝑚(𝑟,

Δ𝑓

𝑓
) + 𝑚(𝑟,

Δ
2

𝑓

𝑓
)

+ 𝑚(𝑟,
𝑧Δ
2

𝑓 − Δ𝑓

Δ𝑓 − 𝑧
)

+ 𝑁(𝑟,
𝑧Δ
2

𝑓 − Δ𝑓

Δ𝑓 − 𝑧
) + 𝑂 (log 𝑟)

≤ 𝑁(𝑟,
1

𝑓
) + 𝑁(𝑟,

1

Δ𝑓 − 𝑧
) + 𝑁(𝑟, 𝑧Δ

2

𝑓 − Δ𝑓)

+ 2𝑚(𝑟,
Δ𝑓

𝑓
)

+ 𝑚(𝑟,
Δ
2

𝑓

𝑓
) + 𝑚(𝑟,

𝑧Δ
2

𝑓 − Δ𝑓

Δ𝑓 − 𝑧
) + 𝑂 (log 𝑟) .

(16)

Since

Δ
2

𝑓 = Δ (𝑓 (𝑧 + 1) − 𝑓 (𝑧))

= 𝑓 (𝑧 + 2) − 2𝑓 (𝑧 + 1) + 𝑓 (𝑧) ,

Δ (Δ𝑓 − 𝑧) = Δ (𝑓 (𝑧 + 1) − 𝑓 (𝑧) − 𝑧)

= 𝑓 (𝑧 + 2) − 2𝑓 (𝑧 + 1) + 𝑓 (𝑧) − 1,

(17)

then, we can get

𝑧Δ
2

𝑓 − Δ𝑓 = 𝑧𝑓 (𝑧 + 2) − 2𝑧𝑓 (𝑧 + 1) + 𝑧𝑓 (𝑧)

− 𝑓 (𝑧 + 1) + 𝑓 (𝑧) .

𝑧Δ (Δ𝑓 − 𝑧) − (Δ𝑓 − 𝑧) = 𝑧𝑓 (𝑧 + 2) − 2𝑧𝑓 (𝑧 + 1)

+ 𝑧𝑓 (𝑧) − 𝑓 (𝑧 + 1) + 𝑓 (𝑧) .

(18)

Therefore,

𝑧Δ
2

𝑓 − Δ𝑓

Δ𝑓 − 𝑧
=
𝑧Δ (Δ𝑓 − 𝑧) − (Δ𝑓 − 𝑧)

Δ𝑓 − 𝑧

=
𝑧Δ (Δ𝑓 − 𝑧)

Δ𝑓 − 𝑧
− 1,

(19)

𝑁(𝑟, 𝑧Δ
2

𝑓 − Δ𝑓) ≤ 𝑁 (𝑟, 𝑓 (𝑧 + 2)) + 𝑁 (𝑟, 𝑓 (𝑧 + 1))

+ 𝑁 (𝑟, 𝑓 (𝑧)) .

(20)

Thus from Lemma 3 and (20), we deduce

𝑁(𝑟, 𝑧Δ
2

𝑓 − Δ𝑓) ≤ 3𝑁 (𝑟, 𝑓 (𝑧)) + 𝑂 (log 𝑟) . (21)

By Lemmas 5 and 6, we know that Δ𝑓 − 𝑧 is a transcen-
dental meromorphic function of order of growth 𝜎(Δ𝑓−𝑧) ≤
𝜎(𝑓) < 1. It follows from Lemma 8 and (19) that there exists a
set 𝐸 ⊂ (1,∞) that has finite logarithmic measure, such that
for any 𝑟 ∉ 𝐸 we have

𝑚(𝑟,
Δ𝑓

𝑓
) = 𝑂 (log 𝑟) ,

𝑚(𝑟,
Δ
2

𝑓

𝑓
) = 𝑂 (log 𝑟) ,

𝑚(𝑟,
𝑧Δ
2

𝑓 − Δ𝑓

Δ𝑓 − 𝑧
) = 𝑂 (log 𝑟) .

(22)

From (16) and (21)-(22), we have

𝑇 (𝑟, 𝑓) ≤ 3𝑁 (𝑟, 𝑓) + 𝑁(𝑟,
1

𝑓
) + 𝑁(𝑟,

1

Δ𝑓 − 𝑧
)

+ 𝑂 (log 𝑟) , 𝑟 ∉ 𝐸.

(23)
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Denoting 𝑔 ≡ 𝑓 − 𝑎 by (23) we derive,
𝑇 (𝑟, 𝑓) ≤ 𝑇 (𝑟, 𝑔) + 𝑂 (1)

≤ 3𝑁 (𝑟, 𝑔) + 𝑁(𝑟,
1

𝑔
) + 𝑁(𝑟,

1

Δ𝑔 − 𝑧
)

+ 𝑂 (log 𝑟)

≤ 3𝑁 (𝑟, 𝑓) + 𝑁(𝑟,
1

𝑓 − 𝑎
) + 𝑁(𝑟,

1

Δ𝑓 − 𝑧
)

+ 𝑂 (log 𝑟) , 𝑟 ∉ 𝐸.

(24)

3.1. The Rest of the Proof ofTheorem 1. By Lemma 6, we know
that 𝜏(Δ𝑓) ≤ 𝜎(𝑓). If 𝜏(Δ𝑓) < 𝜎(𝑓), by 𝜆(1/𝑓) < 𝜎(𝑓) and
𝜆(𝑓, 𝑎) < 𝜎(𝑓), there exists a number 𝜂 < 𝜎(𝑓), such that for
any sufficient 𝑟 we have

𝑁(𝑟, 𝑓) < 𝑟
𝜂

, 𝑁(𝑟,
1

𝑓 − 𝑎
) < 𝑟
𝜂

,

𝑁(𝑟,
1

Δ𝑓 − 𝑧
) < 𝑟
𝜂

.

(25)

Combining (24) and (25), we can get a contradiction.
Therefore, we have 𝜏(Δ𝑓) = 𝜎(𝑓).

3.2. The Rest of the Proof of Theorem 3. Since 𝛿(∞,𝑓) = 1,
then𝑁(𝑟, 𝑓) = 𝑜(𝑇(𝑟, 𝑓)). By (24), we can get

(1 − 𝑜 (1)) 𝑇 (𝑟, 𝑓) ≤ 𝑁(𝑟,
1

𝑓 − 𝑎
) + 𝑁(𝑟,

1

Δ𝑓 − 𝑧
)

+ 𝑂 (log 𝑟) , 𝑟 ∉ 𝐸.

(26)

Since 𝛿(𝑎, 𝑓) > 0, then there is a positive number 𝜃 < 1

such that

𝑁(𝑟,
1

𝑓 − 𝑎
) < 𝜃𝑇 (𝑟, 𝑓) . (27)

If Δ𝑓 has only a finite number of fixed points, then from
(26) and (27) we would have

(1 − 𝑜 (1) − 𝜃) 𝑇 (𝑟, 𝑓) ≤ 𝑂 (log 𝑟) , 𝑟 ∉ 𝐸. (28)
This contradicts 𝑓 being transcendental. Therefore, Δ𝑓

has infinitely many fixed points.
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