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Three-dimensional piezothermoelastic solutions for a finite functionally graded cylindrical shell with piezoelectric layer are carried
out in this paper. The cylindrical shell is simply supported at four end edges and is subjected to axisymmetric thermomechanical
loads.The piezoelectric layers are polarized along radial direction as a sensor.Thematerial properties are assumed to be temperature
independent and radially dependent but are assumed to be homogeneous in each layer; the variables are expanded in Fourier series
to satisfy the boundary conditions and multilayer approach is used. Numerical results of mullite/molybdenum functionally graded
cylindrical shell are presented; the temperature change, stresses, electric potential, and electric displacement distributions are given
and briefly discussed.

1. Introduction

Functionally graded materials (FGMs) are new kind of inho-
mogeneous composite materials with continuously varying
properties. The spatial grading in composition and micro-
structure of FGMs can be adjusted in order to obtain specific
properties or to reduce the magnitude of mechanical and
thermal stresses. Piezoelectric materials are probably the
most popular active materials which act as sensors and
actuators and have been used widely in structural health
monitoring, vibration, and noise control as well as many
other areas. Among these, piezoelectric bimorph and mul-
timorph are commonly employed. Usually, these structures
are made of two or more layers of piezoelectric sheets and
are jointed by bonding agents. However, such laminated
piezoelectric structures suffer from high stress concentration
near the interface due to the abrupt changes in both material
composition and thermoelectroelastic properties, which can
cause severe deterioration of the bonding layer strength
and reduce the lifetime of the structures. To overcome
the drawbacks and meet some particular requirements for
performance and reliability, the functionally gradedmaterials
(FGMs) and piezoelectric material are used together, which

called functionally graded piezoelectric materials (FGPMs).
A new type of structure was developed.

The fabrication and property investigation of FGPMs
have attracted great attention from the research community.
Among the early investigators, PintoCarreia et al. [1] derived
and solved the coupled displacement and electrical field
equations for a piezoelectric cylindrical shell based on the
third-order shear deformation theory and the finite ele-
ment method. Using classical laminate theory, the piezother-
moelastic behavior of a piezoelectric composite actuator
with functionally graded microstructure was analyzed [2].
Ootao and Tanigawa [3–7] exactly analyzed the transient
piezothermoelastic problem of a functionally graded hollow
sphere, a simply supported cylindrical composite panel which
composed of crossply or angleply and piezoelectric layer
under the state of generalized plane deformation, a rectan-
gular composite plate composed of cross-ply laminate and
piezoelectric material, and a functionally graded rectangular
plate bonded to a piezoelectric plate due to partial heat supply.
Using the power series expansion method, Chen and his
coworkers [8, 9] successfully derived two-dimensional exact
elasticity solution and studied both the direct and inverse
piezoelectric effects of the piezothermoelastic behavior of
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circular laminated piezoelectric cylindrical shells and func-
tionally graded piezoelectric cylindrical shells subjected to
axisymmetric loading. Kapuria and Achary [10] presented
a new coupled consistent third-order theory for static ther-
moelectromechanical response of hybrid piezoelectric lam-
inated plates. Shao [11] presented solutions for temperature,
displacement and stress fields in an FG hollow cylinder using
a multilayered approach based on the laminated composite
theory. Huang et al. [12] derived the analytical solutions
for FGP beams under both mechanical and electrical loads
from the two-dimensional equations of piezoelectricity, in
which the elastic, piezoelectric and dielectric coefficients of
the piezoelectric beams were assumed to vary along the beam
thickness direction only. Yang and Xiang [13] used the Tim-
oshenko beam theory to investigate the static bending and
dynamic response of FGP actuators under combined ther-
malelectromechanical loading. Ying andWang [14] employed
the separation of variable technique to carry out two-
dimensional elastic-dynamic analysis of simply supported
hollow cylinders of finite length excited by nonuniform
thermal shock. Reference [15] proposed improved layered
shell finite element solution for the coupled thermoelec-
tromechanical responses of smart fiber reinforced composite
shell panels under piezothermoelastic loading and showed
that piezoelectric effect has a significant influence on the
response of such shells. The bending behavior of a circularly
curved FGP cantilever actuator under an applied electrical
load and heat conduction was investigated [16]. Infinitesimal
axisymmetric deformation of a functionally graded shell with
piezoelectric layers perfectly bonded to its inner and outer
surfaces subjected to thermo-electro-mechanical loads was
studied by Alibeigloo [17]. Alashti and Khorsand [18] carried
out three-dimensional static analyses of FG cylindrical shells
with piezoelectric layers under the effect of thermoelectrome-
chanical loads, using the differential quadrature method.

In this paper, a functionally graded cylindrical shell with
piezoelectric layer is investigated. The thermal and mechani-
cal loads are applied on the cylinder asymmetrically. In order
to obtain analytical solutions for temperature, displacements,
and stresses for the three-dimensional piezothermoelastic
problem, it is assumed that the piezoelectric functionally
graded cylindrical shell is composed of 𝑁 fictitious layers
and one piezoelectric layer, and each layer of the functionally
graded material is homogeneous and isotropic.

2. Basic Equations

A piezoelectric functionally graded cylindrical shell with
finite length 𝑙, internal radius 𝑟

𝑎
, external radius 𝑟

𝑏
, and

circumferential angle 𝜃
0
is considered (as shown in Figure 1),

and it is assumed that the piezoelectric layer is perfectly
bonded, the inner radius of piezoelectric layer is 𝑟

𝑐
, and the

radius of the interface between the 𝑖th and (𝑖 + 1)th layer is 𝑟
𝑖
.

Cylindrical coordinates 𝑟, 𝜃, and 𝑧 are used in analysis. This
functionally graded cylindrical shell is simply supported at
its four end edges and subjected to nonuniform steady-state
thermal loads 𝑇

𝑎
(𝜃, 𝑧) and 𝑇

𝑏
(𝜃, 𝑧) on the inner and outer

surface. The temperatures at end edges keep zero. Nonuni-
form pressure loadings 𝑞

𝑎
(𝜃, 𝑧) and 𝑞

𝑏
(𝜃, 𝑧) are applied to the
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Figure 1: A piezoelectric functionally graded cylindrical shell.

inner and outer surfaces of the panel, respectively. Details of
piezoelectric functionally graded cylindrical shell are shown
in Figure 1.

It is assumed that the piezoelectric functionally graded
cylindrical shell is composed of 𝑁 fictitious layers and
one piezoelectric layer, and each layer of the functionally
graded material is homogeneous and isotropic. The law of
mixtures proposed by Kerner, which was derived based on
the assumption that there is a granular phase embedded in a
matrix phase, is applied to describe the variations of material
properties in the radial direction of the functionally graded
cylinder shell. Young’s modulus 𝐸, Poisson’s ratio 𝜇, thermal
conductivity coefficient 𝜆, and thermal expansion coefficient
𝛼 can be expressed as

𝐸 (𝑟) = 𝑉
𝑚
𝐸
𝑚
+ (1 − 𝑉

𝑚
) 𝐸
𝐶
,

𝜇 (𝑟) = 𝑉
𝑚
𝜇
𝑚
+ (1 − 𝑉

𝑚
) 𝜇
𝐶
,

𝜆 (𝑟) = 𝑉
𝑚
𝜆
𝑚
+ (1 − 𝑉

𝑚
) 𝜆
𝐶
,

𝛼 (𝑟) = 𝑉
𝑚
𝛼
𝑚
+ (1 − 𝑉

𝑚
) 𝛼
𝐶
,

(1)

where the subscripts𝑚 and 𝑐 represent themetal and ceramic,
respectively. 𝑉

𝑚
is the volume fraction in the functionally

graded material:

𝑉
𝑚
(𝑟) = (

𝑟 − 𝑟
𝑎

𝑟
𝑏
− 𝑟
𝑎

)

𝑝

. (2)

Here, 𝑝 is a constant material. The effects of the constant 𝑝
on the temperature, displacements, and thermal stresses are
fully discussed in [6, 19]. For the sake of brevity, discussion of
these effects is omitted here.

The basic piezothermoelastic equations for the 𝑖th layer
can be expressed as follows.

2.1. Conduction Equations and Equilibrium Equations. The
heat conduction equation can be expressed as

(
𝜕
2

𝜕𝑟2
+
1

𝑟

𝜕

𝜕𝑟
+
1

𝑟2

𝜕
2

𝜕𝜃2
+
𝜕
2

𝜕𝑧2
)𝑇
𝑖
= 0, (3)
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where 𝑇
𝑖
is the temperature in the 𝑖th layer. While the

equilibrium equation of the piezoelectric functionally graded
cylindrical shell is

𝜕𝜎
𝑟𝑟𝑖

𝜕𝑟
+
1

𝑟

𝜕𝜎
𝑟𝜃𝑖

𝜕𝜃
+
𝜕𝜎
𝑟𝑧𝑖

𝜕𝑧
+
𝜎
𝑟𝑟𝑖
+ 𝜎
𝜃𝜃𝑖

𝑟
= 0,

𝜕𝜎
𝑟𝜃𝑖

𝜕𝑟
+
1

𝑟

𝜕𝜎
𝜃𝜃𝑖

𝜕𝜃
+
𝜕𝜎
𝜃𝑧𝑖

𝜕𝑧
+
2𝜎
𝑟𝜃𝑖

𝑟
= 0,

𝜕𝜎
𝑟𝑧𝑖

𝜕𝑟
+
1

𝑟

𝜕𝜎
𝜃𝑧𝑖

𝜕𝜃
+
𝜕𝜎
𝑧𝑧𝑖

𝜕𝑧
+
𝜎
𝑟𝑧𝑖

𝑟
= 0,

(4)

the electrostatics equation can be written as

𝜕𝐷
𝑟

𝜕𝑟
+
𝐷
𝑟

𝑟
+
1

𝑟

𝜕𝐷
𝜃

𝜕𝜃
+
𝜕𝐷
𝑧

𝜕𝑧
= 0. (5)

The Constitutive equation can be
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𝜎
𝑟𝑟𝑖

𝜎
𝜃𝜃𝑖
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𝜃𝑧𝑖

𝜎
𝑟𝑧𝑖

𝜎
𝑟𝜃𝑖
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=

[
[
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𝐶
11𝑖
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12𝑖
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13𝑖
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21𝑖
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−
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𝛽
𝑟𝑖
𝑇
𝑖

𝛽
𝜃𝑖
𝑇
𝑖

𝛽
𝑧𝑖
𝑇
𝑖

0

0

0
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}

−(

(

𝑒
1
0 0

𝑒
2
0 0

𝑒
3
0 0

0 0 0

0 0 𝑒
5

0 𝑒
6
0

)

)

{

{

{

𝐸
𝑟

𝐸
𝜃

𝐸
𝑧

}

}

}

,

(6)

where

𝛽
𝑟𝑖
= (𝐶
11𝑖
+ 𝐶
12𝑖
+ 𝐶
13𝑖
) 𝛼
𝑖

𝛽
𝜃𝑖
= (𝐶
12𝑖
+ 𝐶
22𝑖
+ 𝐶
23𝑖
) 𝛼
𝑖

𝛽
𝑧𝑖
= (𝐶
13𝑖
+ 𝐶
23𝑖
+ 𝐶
33𝑖
) 𝛼
𝑖

𝑖 = 1, 2, 3, . . . , 𝑁 + 1,

(7)

In the case of the stress-strain relations of functionally
graded cylindrical shell (𝑖 = 1 to𝑁), the terms 𝑒

𝑘
and 𝐸

𝑘
on

the right side in (5) vanished. And𝐶
𝑘𝑙𝑖
, 𝛽 are elastic constants

and thermoelastic coefficients.
The constitutive equations for the electric field are

𝐷
𝑟
= 𝑒
1
𝜀
𝑟𝑟
+ 𝑒
2
𝜀
𝜃𝜃
+ 𝑒
3
𝜀
𝑧𝑧
+ 𝜂
1
𝐸
𝑟
+ 𝑃
1
𝑇
1
,

𝐷
𝜃
= 𝑒
6
𝜀
𝑟𝜃
+ 𝜂
2
𝐸
𝜃
,

𝐷
𝑧
= 𝑒
5
𝜀
𝑟𝑧
+ 𝜂
3
𝐸
𝑧
,

(8)

𝜀
𝑟𝑟𝑖
=
𝜕𝑢
𝑖

𝜕𝑟
; 𝜀

𝜃𝜃𝑖
=
1

𝑟
(
𝜕V
𝑖

𝜕𝜃
+ 𝑢
𝑖
) ;

𝜀
𝑧𝑧𝑖
=
𝜕𝑤
𝑖

𝜕𝑧
; 𝜀

𝑟𝜃𝑖
=
1

𝑟

𝜕𝑢
𝑖

𝜕𝜃
+
𝜕V
𝑖

𝜕𝑟
−
𝜕]
𝑖

𝑟
;

𝜀
𝜃𝑧𝑖
=
𝜕V
𝑖

𝜕𝑧
+
1

𝑟

𝜕𝑤
𝑖

𝜕𝜃
; 𝜀

𝑧𝑟𝑖
=
𝜕𝑢
𝑖

𝜕𝑧
+
𝜕𝑤
𝑖

𝜕𝑟
;

𝐸
𝑟
= −
𝜕𝜙

𝜕𝑟
; 𝐸

𝜃
= −
1

𝑟

𝜕𝜙

𝜕𝜃
; 𝑖 = 1, 2, 3, . . . , 𝑁 + 1.

(9)

2.2. Boundary and Continuity Conditions. Consider the fol-
lowing:

𝜃 = 0, 𝜃
0
: 𝑇
𝑖
= 0 (10a)

𝑧 = 0,
𝑙

𝑟
0

: 𝑇
𝑖
= 0 (10b)

𝑟 =
𝑟
1

𝑟
0

: 𝑇
1
= 𝑇
𝑎
(𝜃, 𝑧) (10c)

𝑟 =
𝑟
𝑁+2

𝑟
0

: 𝑇
𝑁+1

= 𝑇
𝑏
(𝜃, 𝑧) (10d)

𝑟 =
𝑟
𝑖+1

𝑟
0

: 𝑇
𝑖
= 𝑇
𝑖+1
;

𝜆
𝑖

𝜕𝑇
𝑖

𝜕𝑟
= 𝜆
𝑖+1

𝜕𝑇
𝑖+1

𝜕𝑟
, 𝑖 = 1, 2, 3, . . . , 𝑁,

(10e)

where 𝜆
𝑖
and 𝜆

𝑖+1
are the thermal dimensionless conductivity

parameter in 𝑖th and 𝑖 + 1th layer, respectively. 𝑇
𝑎
(𝜃, 𝑧) and

𝑇
𝑏
(𝜃, 𝑧) are temperatures in the inner and outer surfaces.
For the simply supported panel, we assumed that the

edges of the piezoelectric layer are electrically grounded, so
the boundary conditions and continuous conditions between
layers of displacements and stresses can be expressed as

𝜃 = 0, 𝜃
0
: 𝑢
𝑖
= 𝑤
𝑖
= 0; 𝜎

𝜃𝜃𝑖
= 𝜎
𝑟𝜃𝑖
= 𝜎
𝜃𝑧𝑖
= 0;

𝜙 = 0, 𝑖 = 1, 2, 3, . . . , 𝑁 + 1,

(11a)

𝑧 = 0,
𝑙

𝑟
0

: 𝑢
𝑖
= V
𝑖
= 0; 𝜎

𝑧𝑧𝑖
= 𝜎
𝑟𝑧𝑖
= 𝜎
𝜃𝑧𝑖
= 0;

𝜙 = 0, 𝑖 = 1, 2, 3, . . . , 𝑁 + 1,

(11b)

𝑟 =
𝑟
1

𝑟
0

: 𝜎
𝑟,1
= 𝑞
𝑎
(𝜃, 𝑧) ; 𝜎

𝑟𝑧,1
= 𝜎
𝑟𝜃,1
= 0 (11c)

𝑟 =
𝑟
𝑁+1

𝑟
0

: 𝜙 = 0, (11d)

𝑟 =
𝑟
𝑁+2

𝑟
0

: 𝐷
𝑟
= 0; 𝜎

𝑟𝜃,𝑁
= 𝜎
𝑟𝑧,𝑁

= 0; 𝜎
𝑟𝑟,𝑁+1

= 𝑞
𝑏
(𝜃, 𝑧)

𝑟 =
𝑟
𝑖

𝑟
0

: 𝜎
𝑟𝑟𝑖
= 𝜎
𝑟𝑟,𝑖+1

; 𝜎
𝑟𝜃𝑖
= 𝜎
𝑟𝜃,𝑖+1

; 𝜎
𝑟𝑧𝑖
= 𝜎
𝑟𝑧,𝑖+1

;

(11e)
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𝑢
𝑖
= 𝑢
𝑖+1
; V
𝑖
= V
𝑖+1
; 𝑤
𝑖
= 𝑤
𝑖+1
,

𝑖 = 1, 2, 3, . . . , 𝑁 + 1 + 1.

(11f)

To simplify the solving process of the 3Dpiezothermome-
chanical problem, the following dimensionless variables are
introduced:

𝑟 =
𝑟

𝑟
0

, 𝑧 =
𝑧

𝑟
0

, 𝐿 =
𝑙

𝑟
0

, 𝛼
𝑘
=
𝛼
𝑘

𝛼
0

,

𝜆
𝑘
=
𝜆
𝑘

𝜆
0

, 𝑘
𝑘
=
𝑘
𝑘

𝑘
0

, 𝑇
𝑘
=
𝑇

𝑇
0

, 𝑇
𝑎
=
𝑇
𝑎

𝑇
0

,

𝑇
𝑏
=
𝑇
𝑏

𝑇
0

, 𝑞
𝑎
=

𝑞
𝑎

𝛼
0
𝑌
0
𝑇
0

, 𝑞
𝑏
=

𝑞
𝑏

𝛼
0
𝑌
0
𝑇
0

,

𝜎
𝑘𝑙𝑖
=

𝜎
𝑘𝑙𝑖

𝛼
0
𝑌
0
𝑇
0

, 𝜀
𝑘𝑙𝑖
=
𝜀
𝑘𝑙𝑖

𝛼
0
𝑇
0

, {𝑢
𝑖
, V
𝑖
, 𝑤
𝑖
} =

{𝑢
𝑖
, V
𝑖
, 𝑤
𝑖
}

𝛼
0
𝑟
0
𝑇
0

,

𝛼
𝑘𝑖
=
𝛼
𝑘𝑖

𝛼
0

, 𝐶
𝑘𝑙𝑖
=
𝐶
𝑘𝑙𝑖

𝑌
0

, 𝐸
𝑘
=
𝐸
𝑘

𝑑1


𝛼
0
𝑇
0

;

𝑑
𝑘
=

𝐷
𝑘

𝛼
0
𝑇
0
𝑌
0

𝑑1


, 𝜙
𝑘
=
𝜙
𝑑1


𝛼
0
𝑇
0
𝑟
0

,

𝑒
𝑘
=

𝑒
𝑘

𝑌
0

𝑑1


, 𝜂
𝑘
=

𝜂
𝑘

𝑌
0

𝑑1


2
, 𝑃
1
=

𝑃
1

𝛼
0
𝑌
0

𝑑1


,

(12)

where 𝑟
0
is reference value of radius and 𝑌

0
, 𝛼
0
, 𝑘
0
, 𝜆
0

and 𝑇
0
are reference values of Young’s modulus, thermal

expansion coefficient, thermal diffusion coefficient, thermal
conductivity coefficient, and temperature, respectively, where
𝜎
𝑘𝑙,𝑖

are the stress components, 𝜀
𝑘𝑙,𝑖

are the strain components,
(𝑢
𝑖
, V
𝑖
, 𝑤
𝑖
) are the displacement components, 𝐶

𝑘𝑙,𝑖
are the

elastic stiffness constants, 𝐷
𝑘
are the electric displacement

components, 𝑒
𝑘
are the piezoelectric coefficients, 𝜂

𝑘
are the

dielectric constants, 𝑃
1
is the pyroelectric constant, and 𝑑

1
is

the piezoelectric modulus.
The dimensionless displacement-expressed equilibrium

equations can be expressed as

[𝐶
11𝑖
(
𝜕
2

𝜕𝑟
2
+
1

𝑟

𝜕

𝜕𝑟
) −

𝐶
66𝑖
𝜕
2

𝑟
2

𝜕𝜃
+ 𝐶
55𝑖

𝜕
2

𝜕𝑧
2
−
𝐶
22𝑖

𝑟
2
] 𝑢
𝑖

+
1

𝑟
(𝐶
12𝑖
+ 𝐶
66𝑖
)
𝜕
2V
𝑖

𝜕𝑟𝜕𝜃

−
1

𝑟
2
(𝐶
22𝑖
+ 𝐶
66𝑖
)
𝜕V
𝑖

𝜕𝜃
+ (𝐶
13𝑖
+ 𝐶
55𝑖
)
𝜕
2

𝑤
𝑖

𝜕𝑟𝜕𝑧

+ (𝐶
13𝑖
− 𝐶
23𝑖
)
1

𝑟

𝜕𝑤
𝑖

𝜕𝑧
− 𝛽
𝑟𝑖

𝜕𝑇
𝑖

𝜕𝑟

− (𝛽
𝑟𝑖
− 𝛽
𝜃𝑖
)
𝑇
𝑖

𝑟
+ 𝑒
1

𝜕
2

𝜙

𝜕𝑟
2
+ 𝑒
6

𝜕
2

𝜙

𝑟
2

𝜕𝜃2

+ 𝑒
5

𝜕
2

𝜙

𝜕𝑧
2
+ (𝑒
1
− 𝑒
2
)
1

𝑟

𝜕𝜙

𝜕𝑟
= 0,

(13a)

(𝐶
12𝑖
+ 𝐶
66𝑖
)
1

𝑟

𝜕
2

𝑢
𝑖

𝜕𝑟𝜕𝜃
+ (𝐶
22𝑖
+ 𝐶
66𝑖
)
1

𝑟
2

𝜕𝑢
𝑖

𝜕𝜃

+ 𝐶
66𝑖
(
𝜕
2V
𝑖

𝜕𝑟
2
+
1

𝑟

𝜕V
𝑖

𝜕𝑟
−
V
𝑖

𝑟
2
) + 𝐶

22𝑖

1

𝑟
2

𝜕
2V
𝑖

𝜕𝜃2

+ 𝐶
44𝑖

𝜕
2V
𝑖

𝜕𝑧
2
+ (𝐶
23𝑖
+ 𝐶
44𝑖
)
1

𝑟

𝜕
2

𝑤
𝑖

𝜕𝜃𝜕𝑧

− 𝛽
𝜃𝑖

1

𝑟

𝜕𝑇
𝑖

𝜕𝜃
+ (𝑒
2
+ 𝑒
6
)
1

𝑟

𝜕
2

𝜙

𝜕𝑟𝜕𝜃
= 0,

(13b)

(𝐶
13𝑖
+ 𝐶
55𝑖
)
𝜕
2

𝑢
𝑖

𝜕𝑟𝜕𝑧
+ (𝐶
23𝑖
+ 𝐶
55𝑖
)
1

𝑟

𝜕𝑢
𝑖

𝜕𝑧

+ (𝐶
23𝑖
+ 𝐶
44𝑖
)
1

𝑟

𝜕
2V
𝑖

𝜕𝜃𝜕𝑧
+ 𝐶
55𝑖

𝜕
2

𝑤
𝑖

𝜕𝑟
2

+ 𝐶
55𝑖

1

𝑟

𝜕𝑤
𝑖

𝜕𝑟
+ 𝐶
44𝑖

𝜕
2

𝑤
𝑖

𝑟
2

𝜕𝜃2
+ 𝐶
33𝑖

𝜕
2

𝑤
𝑖

𝜕𝑧
2

− 𝛽
𝑧𝑖

𝜕𝑇
𝑖

𝜕𝑧
+ (𝑒
3
+ 𝑒
6
)
𝜕
2

𝜙

𝜕𝑟𝜕𝑧
+ 𝑒
5

1

𝑟

𝜕𝜙

𝜕𝑧
= 0.

(13c)

The dimensionless displacement-expressed electrostatic
equation can be expressed as

𝑒
1

𝜕
2

𝑢
𝑖

𝜕𝑟
2
+ (𝑒
1
+ 𝑒
2
)
1

𝑟

𝜕𝑢
𝑖

𝜕𝑟
+ 𝑒
6

1

𝑟
2

𝜕
2

𝑢
𝑖

𝜕𝜃2
+ 𝑒
5

𝜕
2

𝑢
𝑖

𝜕𝑧
2

+ (𝑒
2
+ 𝑒
6
)
1

𝑟

𝜕
2V
𝑖

𝜕𝑟𝜕𝜃
− 𝑒
6

1

𝑟
2

𝜕V
𝑖

𝜕𝜃

+ (𝑒
3
+ 𝑒
5
)
𝜕
2

𝑤
𝑖

𝜕𝑟𝜕𝑧
+ 𝑒
3

1

𝑟

𝜕𝑤
𝑖

𝜕𝑧
− 𝜂
1
(
𝜕
2

𝜙

𝜕𝑟
2
+
1

𝑟

𝜕𝜙

𝜕𝑟
)

− 𝜂
2

1

𝑟
2

𝜕
2

𝜙

𝜕𝜃
2
− 𝜂
3

𝜕
2

𝜙

𝜕𝑧
2
+ 𝑝
1
(
𝜕𝑇
𝑖

𝜕𝑟
+
1

𝑟
𝑇
𝑖
) = 0.

(14)

Using Navier trigonometric series, solutions of (3), (13a) to
(13c) and (14) which satisfy the ends displacements boundary
conditions (11a) to (11b), (14) can be written as

𝑇
𝑖
(𝑟, 𝜃 ⋅ 𝑧) =

∞

∑

𝑛=1

∞

∑

𝑚=1

𝑇
𝑛𝑚𝑖
(𝑟) sin (𝑎𝜃) sin (𝑏𝑧)

𝑖 = 1, 2, 3, . . . , 𝑁 + 1,

(15a)

𝑢
𝑖
(𝑟, 𝜃 ⋅ 𝑧) =

∞

∑

𝑛=1

∞

∑

𝑚=1

𝑢
𝑛𝑚𝑖
(𝑟) sin (𝑎𝜃) sin (𝑏𝑧)

𝑖 = 1, 2, 3, . . . , 𝑁 + 1,

(15b)

V
𝑖
(𝑟, 𝜃 ⋅ 𝑧) =

∞

∑

𝑛=1

∞

∑

𝑚=1

V
𝑛𝑚𝑖
(𝑟) cos (𝑎𝜃) sin (𝑏𝑧)

𝑖 = 1, 2, 3, . . . , 𝑁 + 1,

(15c)
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𝑤
𝑖
(𝑟, 𝜃 ⋅ 𝑧) =

∞

∑

𝑛=1

∞

∑

𝑚=1

𝑤
𝑛𝑚𝑖
(𝑟) sin (𝑎𝜃) cos (𝑏𝑧)

𝑖 = 1, 2, 3, . . . , 𝑁 + 1,

(15d)

𝜙
𝑖
(𝑟, 𝜃 ⋅ 𝑧) =

∞

∑

𝑛=1

∞

∑

𝑚=1

𝜙
𝑛𝑚𝑖
(𝑟) sin (𝑎𝜃) sin (𝑏𝑧)

𝑖 = 𝑁 + 1,

(15e)

where 𝑎 = 𝑚𝜋/𝜃
0, 𝑏 = 𝑛𝜋/𝐿; 𝑇

𝑛𝑚𝑖
, 𝑢
𝑛𝑚𝑖

, V
𝑛𝑚𝑖

, 𝑤
𝑛𝑚𝑖

,
and 𝜙

𝑛𝑚𝑖
are unknown functions, Substituting trigonometric

series (15a) to (15e) into (3) and (13a) to (13c) and (14), we can
obtain

𝑑
2

𝑇
𝑛𝑚𝑖

𝑑𝑟
2
+
1

𝑟

𝑑𝑇
𝑛𝑚𝑖

𝑑𝑟
−
𝑎
2

𝑟
2
𝑇
𝑛𝑚𝑖
− 𝑏
2

𝑇
𝑛𝑚𝑖
= 0,

𝑖 = 1, 2, 3, . . . , 𝑁 + 1,

(16)

[𝐶
11𝑖
(
𝑑
2

𝑑𝑟
2
+
1

𝑟

𝑑

𝑑𝑟
) − 𝑎
2

𝐶
66𝑖

1

𝑟
2
− 𝑏
2

𝐶
55𝑖
− 𝐶
22𝑖

1

𝑟
2
] 𝑢
𝑛𝑚𝑖

− 𝑎 (𝐶
12𝑖
+ 𝐶
66𝑖
)
1

𝑟

𝑑V
𝑛𝑚𝑖

𝑑𝑟
+ 𝑎 (𝐶

22𝑖
+ 𝐶
66𝑖
)
1

𝑟
2
V
𝑛𝑚𝑖

− 𝑏 [(𝐶
13𝑖
+ 𝐶
55𝑖
)
𝑑

𝑑𝑟
+ (𝐶
13𝑖
− 𝐶
23𝑖
)
1

𝑟
]𝑤
𝑛𝑚𝑖
− 𝛽
𝑟𝑖

𝑑𝑇
𝑛𝑚𝑖

𝑑𝑟

− (𝛽
𝑟𝑖
− 𝛽
𝜃𝑖
)
𝑇
𝑛𝑚𝑖

𝑟
+ 𝑒
1

𝑑
2

𝜙
𝑛𝑚𝑖

𝑑𝑟
2
− 𝑎
2

𝑒
6

1

𝑟
2
𝜙
𝑛𝑚𝑖

− 𝑏
2

𝑒
5
𝜙
𝑛𝑚𝑖
+ (𝑒
1
− 𝑒
2
)
1

𝑟

𝑑𝜙
𝑛𝑚𝑖

𝑑𝑟
= 0,

(17a)

𝑎 [(𝐶
12𝑖
+ 𝐶
66𝑖
)
1

𝑟

𝑑

𝑑𝑟
+ (𝐶
22𝑖
+ 𝐶
66𝑖
)
1

𝑟
2
] 𝑢
𝑛𝑚𝑖

+ 𝐶
66𝑖
(
𝑑
2

𝑑𝑟
2
+
1

𝑟

𝑑

𝑑𝑟
−
1

𝑟
2
) V
𝑛𝑚𝑖
− 𝑎
2

𝐶
22𝑖

1

𝑟
2
V
𝑛𝑚𝑖

− 𝑏
2

𝐶
44𝑖
V
𝑛𝑚𝑖
− 𝑎𝑏 (𝐶

23𝑖
+ 𝐶
44𝑖
)
1

𝑟
𝑤
𝑛𝑚𝑖

− 𝑎𝛽
𝜃𝑖

1

𝑟
𝑇
𝑛𝑚𝑖
+ 𝑎 (𝑒

2
+ 𝑒
6
)
1

𝑟
𝜙
𝑛𝑚𝑖
= 0,

(17b)

𝑏 [(𝐶
13𝑖
+ 𝐶
55𝑖
)
𝑑

𝑑𝑟
+ (𝐶
23𝑖
+ 𝐶
55𝑖
)
1

𝑟
] 𝑢
𝑛𝑚𝑖

− 𝑎𝑏 (𝐶
23𝑖
+ 𝐶
44𝑖
)
1

𝑟
V
𝑛𝑚𝑖
+ 𝐶
55𝑖

𝑑
2

𝑤
𝑛𝑚𝑖

𝑑𝑟
2

+ (𝐶
55𝑖

1

𝑟

𝑑

𝑑𝑟
− 𝛼
2

𝐶
44𝑖

1

𝑟
2
− 𝑏
2

𝐶
33𝑖
)𝑤
𝑛𝑚𝑖

− 𝑏𝛽
𝑧𝑖
𝑇
𝑛𝑚𝑖
+ 𝑏 [(𝑒

3
+ 𝑒
6
)
𝑑

𝑑𝑟
+ 𝑒
5

1

𝑟
] 𝜙
𝑛𝑚𝑖
= 0,

(17c)

[𝑒
1

𝑑
2

𝑑𝑟
2
+ (𝑒
1
+ 𝑒
2
)
1

𝑟

𝑑

𝑑𝑟
− 𝑎
2

𝑒
6

1

𝑟
2
− 𝑏
2

𝑒
5
] 𝑢
𝑛𝑚𝑖

− 𝑎 [(𝑒
2
+ 𝑒
6
)
1

𝑟

𝑑

𝑑𝑟
− 𝑒
6

1

𝑟
2
] V
𝑛𝑚𝑖
− 𝑏𝑒
3

1

𝑟
𝑤
𝑛𝑚𝑖

− 𝑏 (𝑒
3
+ 𝑒
5
)
𝑑𝑤
𝑛𝑚𝑖

𝑑𝑟

− [𝜂
1
(
𝑑
2

𝑑𝑟
2
+
1

𝑟

𝑑

𝑑𝑟
) − 𝑎
2

𝜂
2

1

𝑟
2
− 𝑏
2

𝜂
3
]𝜙
𝑛𝑚𝑖

+ 𝑝
1
(
𝑑

𝑑𝑟
+
1

𝑟
)𝑇
𝑛𝑚𝑖
= 0.

(18)

Furthermore, substituting the trigonometric series (15a)
to (15e) into boundary and continuous conditions (10c) to
(10e) and (11c) to (11f), we can obtain

𝑟 =
𝑟
1

𝑟
0

: 𝑇
𝑛𝑚1
= 𝑇
𝑛𝑚𝑎
, (19a)

𝑟 =

𝑟
𝑁+2

𝑟
0

: 𝑇
𝑛𝑚,𝑁+1

= 𝑇
𝑛𝑚𝑏
, (19b)

𝑟 =
𝑟
𝑖+1

𝑟
0

: 𝑇
𝑛𝑚𝑖
= 𝑇
𝑛𝑚,𝑖+1

;

𝜆
𝑖

𝑑𝑇
𝑛𝑚𝑖

𝑑𝑟
= 𝜆
𝑖+1

𝜕𝑇
𝑛𝑚,𝑖+1

𝜕𝑟

(19c)

𝑟 =
𝑟
1

𝑟
0

:

𝐶
111

𝑑𝑢
𝑛𝑚1

𝑑𝑟
+ 𝐶
121

𝑢
𝑛𝑚1

𝑟
− 𝑎𝐶
121

V
𝑛𝑚1

𝑟

− 𝑏𝐶
131
𝑤
𝑛𝑚1
− 𝛽
𝑟1
𝑇
𝑛𝑚1
= 𝑞
𝑛𝑚𝑎

𝑏𝑢
𝑛𝑚1
+
𝑑𝑤
𝑛𝑚1

𝑑𝑟
= 0,

𝑎
𝑢
𝑛𝑚1

𝑟
+
𝑑V
𝑛𝑚1

𝑑𝑟
−
V
𝑛𝑚1

𝑟
= 0

(20a)

𝑟 =

𝑟
𝑁+2

𝑟
0

:

𝜙
𝑛𝑚,𝑁+1

= 0,

𝑒
1

𝑑𝑢
𝑛𝑚𝑖

𝑑𝑟
+
𝑒
2

𝑟
(𝑢
𝑛𝑚𝑖
− 𝑎V
𝑛𝑚𝑖
) − 𝑏𝑒

3
𝑤
𝑛𝑚𝑖

− 𝜂
1

𝑑𝜙
𝑛𝑚𝑖

𝑑𝑟
+ 𝑝
1
𝑇
𝑛𝑚𝑖
= 0

𝐶
11𝑖

𝑑𝑢
𝑛𝑚𝑖

𝑑𝑟
+ 𝐶
12𝑖
(−
𝑎

𝑟
V
𝑛𝑚𝑖
+ 𝑢
𝑛𝑚𝑖
) − 𝑏𝐶

13𝑖
𝑤
𝑛𝑚𝑖

− 𝛽
𝑟𝑖
𝑇
𝑛𝑚𝑖
+ 𝑒
1

𝑑𝜙
𝑛𝑚𝑖

𝑑𝑟
= 𝑞
𝑛𝑚𝑏
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𝐶
66𝑖
(
𝑎

𝑟
𝑢
𝑛𝑚𝑖
+
𝑑V
𝑛𝑚𝑖

𝑑𝑟
−
V
𝑛𝑚𝑖

𝑟
) +

𝑎𝑒
6

𝑟
𝜙
𝑛𝑚𝑖
= 0,

𝐶
55𝑖
(
𝑑𝑤
𝑛𝑚𝑖

𝑑𝑟
+ 𝑏𝑢
𝑛𝑚𝑖
) + 𝑏𝑒

5
𝜙
𝑛𝑚𝑖
= 0

(20b)

𝑟 =
𝑟
𝑖+1

𝑟
0

:

𝑢
𝑛𝑚𝑖
= 𝑢
𝑛𝑚,𝑖+1

, V
𝑛𝑚𝑖
= V
𝑛𝑚,𝑖+1

, 𝑤
𝑛𝑚𝑖
= 𝑤
𝑛𝑚,𝑖+1

𝐶
11𝑖

𝑑𝑢
𝑛𝑚𝑖

𝑑𝑟
+ 𝐶
12𝑖
(−
𝑎

𝑟
V
𝑛𝑚𝑖
+ 𝑢
𝑛𝑚𝑖
)

− 𝑏𝐶
13𝑖
𝑤
𝑛𝑚𝑖
− 𝛽
𝑟𝑖
𝑇
𝑛𝑚𝑖
= 𝐶
11,𝑖+1

𝑑𝑢
𝑛𝑚,𝑖+1

𝑑𝑟

+ 𝐶
12,𝑖+1

(−
𝑎

𝑟
V
𝑛𝑚,𝑖+1

+ 𝑢
𝑛𝑚,𝑖+1

)

− 𝑏𝐶
13,𝑖+1

𝑤
𝑛𝑚,𝑖+1

− 𝛽
𝑟,𝑖+1
𝑇
𝑛𝑚,𝑖+1

𝐶
66𝑖
(
𝑎

𝑟
𝑢
𝑛𝑚𝑖
+
𝑑V
𝑛𝑚𝑖

𝑑𝑟
−
V
𝑛𝑚𝑖

𝑟
)

= 𝐶
66,𝑖+1

(
𝑎

𝑟
𝑢
𝑛𝑚,𝑖+1

+
𝑑V
𝑛𝑚,𝑖+1

𝑑𝑟
−
V
𝑛𝑚,𝑖+1

𝑟
)

𝐶
55𝑖
(
𝑑𝑤
𝑛𝑚𝑖

𝑑𝑟
+ 𝑏𝑢
𝑛𝑚𝑖
)

= 𝐶
55,𝑖+1

(
𝑑𝑤
𝑛𝑚,𝑖+1

𝑑𝑟
+ 𝑏𝑢
𝑛𝑚,𝑖+1

) .

(20c)

Using the orthogonality of trigonometric functions, we
can obtain

{{{

{{{

{

𝑇
𝑛𝑚𝑎

𝑇
𝑛𝑚𝑏

𝑞
𝑛𝑚𝑎

𝑞
𝑛𝑚𝑏

}}}

}}}

}

=
4𝑟
0

𝜃
0
𝑙
∫

𝜃0

0

∫

𝑙/𝑟0

0

{{{

{{{

{

𝑇
𝑎
(𝜃, 𝑧)

𝑇
𝑏
(𝜃, 𝑧)

𝑞
𝑎
(𝜃, 𝑧)

𝑞
𝑏
(𝜃, 𝑧)

}}}

}}}

}

sin (𝑎𝜃) sin (𝑏𝑧) 𝑑𝜃 𝑑𝑧.

(21)

3. Theoretical Analysis

Based on the series solving method of ordinary differential
equations, if the coefficient items of the ordinary differential
equations were analytical at point (𝑟 − 1) and could be
expressed as Taylor’s series of (𝑟 − 1), the solutions of (17a)–
(17c) and (18) can also be expressed as the following Taylor’s
series [17]:

𝑇
𝑛𝑚𝑖
(𝑟) =

∞

∑

𝑘=1

𝐴
𝑘𝑖
(𝑠) (𝑟 − 1)

𝑘

𝑖 = 1, 𝑁 + 1

𝑢
𝑛𝑚𝑖
(𝑟) =

∞

∑

𝑘=1

𝐵
𝑘𝑖
(𝑠) (𝑟 − 1)

𝑘

𝑖 = 1, 𝑁 + 1

V
𝑛𝑚𝑖
(𝑟) =

∞

∑

𝑘=1

𝐶
𝑘𝑖
(𝑠) (𝑟 − 1)

𝑘

𝑖 = 1, 𝑁 + 1

𝑤
𝑛𝑚𝑖
(𝑟) =

∞

∑

𝑘=1

𝐷
𝑘𝑖
(𝑠) (𝑟 − 1)

𝑘

𝑖 = 1, 𝑁 + 1

𝜙
𝑛𝑚𝑖
(𝑟) =

∞

∑

𝑘=1

𝐹
𝑘𝑖
(𝑠) (𝑟 − 1)

𝑘

𝑖 = 𝑁 + 1.

(22)

Substituting series (22) into (16) to (18), comparing the
coefficient of (𝑟 − 1)𝑘, we can obtain the following recurrence
equation:

− (𝑘 + 2) (𝑘 + 1)𝐴
𝑘+2,𝑖

= (2𝑘 + 1) (𝑘 + 1)𝐴
𝑘+1,𝑖

+ 𝑘
2

𝐴
𝑘𝑖
− (𝑎
2

+ 𝑏
2

)𝐴
𝑘𝑖

− 2𝑏
2
𝑘
𝑖

𝜆
𝑖

𝐴
𝑘−1,𝑖

− 𝑏
2
𝑘
𝑖

𝜆
𝑖

𝐴
𝑘−2,𝑖

(23)

− (𝑘 + 2) (𝑘 + 1) 𝐵
𝑘+2,𝑖

= (2𝑘 + 1) (𝑘 + 1) 𝐵
𝑘+1,𝑖

+ (𝑘
2

−
𝐶
22𝑖
+ 𝑏
2

𝐶
55𝑖
+ 𝑎
2

𝐶
66𝑖

𝐶
11𝑖

)𝐵
𝑘𝑖
− 2𝑏
2
𝐶
55𝑖

𝐶
11𝑖

𝐵
𝑘−1,𝑖

− 𝑏
2
𝐶
55𝑖

𝐶
11𝑖

𝐵
𝑘−2,𝑖

− 𝑎

(𝐶
12𝑖
+ 𝐶
66𝑖
)

𝐶
11𝑖

(𝑘 + 1) 𝐶
𝑘+1,𝑖

+ 𝑎

(𝐶
22𝑖
+ 𝐶
66𝑖
)

𝐶
11𝑖

𝐶
𝑘𝑖
− 𝑎𝑘

(𝐶
12𝑖
+ 𝐶
66𝑖
)

𝐶
11𝑖

𝐶
𝑘𝑖

− 𝑏

(𝐶
13𝑖
+ 𝐶
55𝑖
)

𝐶
11𝑖

(𝑘 + 1)𝐷
𝑘+1,𝑖

− 2𝑏

𝑘 (𝐶
13𝑖
+ 𝐶
55𝑖
)

𝐶
11𝑖

𝐷
𝑘,𝑖

− 𝑏

(𝐶
13𝑖
− 𝐶
23𝑖
)

𝐶
11𝑖

𝐷
𝑘,𝑖
−
𝛽
𝑟𝑖

𝐶
11𝑖

(𝑘 + 1)𝐴
𝑘+1,𝑖

− 𝑏[

(𝑘 − 1) (𝐶
13𝑖
+ 𝐶
55𝑖
)

𝐶
11𝑖

+

(𝐶
13𝑖
− 𝐶
23𝑖
)

𝐶
11𝑖

]𝐷
𝑘−1,𝑖

−
(2𝑘 + 1) 𝛽

𝑟𝑖
− 𝛽
𝜃𝑖

𝐶
11𝑖

𝐴
𝑘,𝑖
−
𝑘𝛽
𝑟𝑖
− 𝛽
𝜃𝑖

𝐶
11𝑖

𝐴
𝑘−1,𝑖

+ (𝑘 + 2) (𝑘 + 1)
𝑒
1

𝐶
11𝑖

𝐹
𝑘+2,𝑖

+
(𝑘 + 1) [(2𝑘 + 1) 𝑒

1
− 𝑒
2
]

𝐶
11𝑖

𝐹
𝑘+1,𝑖

+
1

𝐶
11𝑖

(𝑘
2

𝑒
1
− 𝑘𝑒
2
− 𝑎
2

𝑒
6
) 𝐹
𝑘,𝑖

− 𝑏
2
𝑒
5

𝐶
11𝑖

𝐹
𝑘,𝑖
− 𝑏
2
𝑒
5

𝐶
11𝑖

(2𝐹
𝑘−1,𝑖

+ 𝐹
𝑘−2,𝑖
)

(24a)
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− (𝑘 + 2) (𝑘 + 1) 𝐶
𝑘+2,𝑖

= (2𝑘 + 1) (𝑘 + 1) 𝐶
𝑘+1,𝑖

+ (𝑘
2

−
𝑎
2

𝐶
22𝑖
+ 𝑏
2

𝐶
44𝑖

𝐶
66𝑖

− 1)𝐶
𝑘,𝑖
− 2
𝑏
2

𝐶
44𝑖

𝐶
66𝑖

𝐶
𝑘−1,𝑖

−
𝑏
2

𝐶
44𝑖

𝐶
66𝑖

𝐶
𝑘−2,𝑖

+ 𝑎
𝐶
12𝑖
+ 𝐶
66𝑖

𝐶
66𝑖

(𝑘 + 1) 𝐵
𝑘+1,𝑖

+ 𝑎𝑘
𝐶
12𝑖
+ 𝐶
66𝑖

𝐶
66𝑖

𝐵
𝑘,𝑖
+ 𝑎
𝐶
22𝑖
+ 𝐶
66𝑖

𝐶
66𝑖

𝐵
𝑘,𝑖

− 𝑎𝑏
𝐶
23𝑖
+ 𝐶
44𝑖

𝐶
66𝑖

(𝐷
𝑘𝑖
+ 𝐷
𝑘−1,𝑖
) −
𝑎𝛽
𝜃𝑖

𝐶
66𝑖

(𝐴
𝑘𝑖
+ 𝐴
𝑘−1,𝑖
)

− 𝑎
𝑒
2
+ 𝑒
6

𝐶
66𝑖

[(𝑘 + 1) 𝐹
𝑘+1,𝑖

+ 𝑘𝐹
𝑘𝑖
]

(24b)
− (𝑘 + 2) (𝑘 + 1)𝐷

𝑘+2,𝑖

= (2𝑘 + 1) (𝑘 + 1)𝐷
𝑘+1,𝑖

+ (𝑘
2

−
𝑎
2

𝐶
44𝑖
+ 𝑏
2

𝐶
33𝑖

𝐶
55𝑖

)𝐷
𝑘𝑖
− 2𝑏
2
𝐶
33𝑖

𝐶
55𝑖

𝐷
𝑘−1,𝑖

− 𝑏
2
𝐶
33𝑖

𝐶
55𝑖

𝐷
𝑘−2,𝑖

+ 𝑏

(𝐶
13𝑖
+ 𝐶
55𝑖
)

𝐶
55𝑖

(𝑘 + 1) 𝐵
𝑘+1,𝑖

+
𝑏

𝐶
55𝑖

[2𝑘 (𝐶
13𝑖
+ 𝐶
55𝑖
) + (𝐶

23𝑖
+ 𝐶
55𝑖
)] 𝐵
𝑘,𝑖

− 𝑎𝑏

(𝐶
23𝑖
+ 𝐶
44𝑖
)

𝐶
55𝑖

(𝐶
𝑘,𝑖
+ 𝐶
𝑘−1,𝑖
)

− 𝑏
𝛽
𝑧𝑖

𝐶
55𝑖

(𝐴
𝑘,𝑖
+ 2𝐴
𝑘−1,𝑖

+ 𝐴
𝑘−2,𝑖
) +
(2𝑘 + 1) 𝑏𝑒

5

𝐶
55𝑖

𝐹
𝑘,𝑖

+ 2𝑏𝑘
𝑒
3

𝐶
55𝑖

𝐹
𝑘,𝑖
+
𝑏

𝐶
55𝑖

[(𝑘 − 1) 𝑒
3
+ 𝑘𝑒
5
] 𝐹
𝑘−1,𝑖

(24c)

(𝑘 + 2) (𝑘 + 1) 𝐹
𝑘+2,𝑖

= − (2𝑘 + 1) (𝑘 + 1) 𝐹
𝑘+1,𝑖

− (𝑘
2

+
𝑎
2

𝜂
2

𝜂
1

+
𝑏
2

𝜂
3

𝜂
1

)𝐹
𝑘𝑖

+
𝑏
2

𝜂
3

𝜂
1

(2𝐹
𝑘−1,𝑖

+ 𝐹
𝑘−2,𝑖
)

+
𝑝
1

𝜂
1

[(𝑘 + 1)𝐴
𝑘+1,𝑖

+ (2𝑘 + 1)𝐴
𝑘,𝑖
+ 𝑘𝐴
𝑘−1,𝑖
]

+
𝑒
1

𝜂
1

(𝑘 + 2) (𝑘 + 1) 𝐵
𝑘+2,𝑖

+
𝑒
1

𝜂
1

(2𝑘 + 1) (𝑘 + 1) 𝐵
𝑘+1,𝑖

+
𝑒
2

𝜂
1

(𝑘 + 1) 𝐵
𝑘+1,𝑖

+
1

𝜂
1

(𝑒
1
𝑘
2

+ 𝑒
2
𝑘 − 𝑎
2

𝑒
6
− 𝑏
2

𝑒
5
) 𝐵
𝑘,𝑖

− 2
𝑏
2

𝑒
5

𝜂
1

𝐵
𝑘−1,𝑖

− 𝑎
(𝑒
2
+ 𝑒
6
)

𝜂
1

(𝑘 + 1) 𝐶
𝑘+1,𝑖

−
𝑏
2

𝑒
5

𝜂
1

𝐵
𝑘−2,𝑖

−
𝑎𝑒
2
𝑘 + 𝑎𝑒

6
(𝑘 − 1)

𝜂
1

𝐶
𝑘,𝑖

− 𝑏
(𝑒
3
+ 𝑒
5
)

𝜂
1

(𝑘 + 1)𝐷
𝑘+1,𝑖

−
1

𝜂
1

𝑏𝑒
3
(2𝑘 + 1)𝐷

𝑘,𝑖

−
2𝑏𝑒
5
𝑘

𝜂
1

𝐷
𝑘,𝑖
−
𝑏𝑘𝑒
3

𝜂
1

𝐷
𝑘−1,𝑖

−
𝑏 (𝑘 − 1) 𝑒

5

𝜂
1

𝐷
𝑘−1,𝑖
,

(24d)

where 𝐴
−1,𝑖
= 𝐴
−2,𝑖
= 0. From the recurrence equations (23)

and (24a) to (24d), we can see that all coefficients𝐴
𝑘𝑖
,𝐵
𝑘𝑖
,𝐶
𝑘𝑖
,

𝐷
𝑘𝑖
, and 𝐹

𝑘𝑖
in Taylor’s series can be briefly expressed by 𝐴

𝑜𝑖
,

𝐴
1𝑖
, 𝐵
𝑜𝑖
, 𝐵
1𝑖
; 𝐶
𝑜𝑖
, 𝐶
1𝑖
;𝐷
𝑜𝑖
,𝐷
1𝑖
; 𝐹
𝑜𝑖
, and 𝐹

1𝑖
:

𝐴
𝑘𝑖
= 𝜉
𝑘

1𝑖
𝐴
0𝑖
+ 𝜉
𝑘

2𝑖
𝐴
1𝑖
; (25a)

𝐵
𝑘𝑖
= 𝜁
𝑘

1𝑖
𝐵
0𝑖
+ 𝜁
𝑘

2𝑖
𝐵
1𝑖
+ 𝜁
𝑘

3𝑖
𝐶
0𝑖
+ 𝜁
𝑘

4𝑖
𝐶
1𝑖

+ 𝜁
𝑘

5𝑖
𝐷
0𝑖
+ 𝜁
𝑘

6𝑖
𝐷
1𝑖
+ 𝜁
𝑘

7𝑖
𝐹
0𝑖
+ 𝜁
𝑘

8𝑖
𝐹
1𝑖

+ 𝜁
𝑘

9𝑖
𝐴
0𝑖
+ 𝜁
𝑘

10𝑖
𝐴
1𝑖
,

(25b)

𝐶
𝑘𝑖
= 𝐿
𝑘

1𝑖
𝐵
0𝑖
+ 𝐿
𝑘

2𝑖
𝐵
1𝑖
+ 𝐿
𝑘

3𝑖
𝐶
0𝑖

+ 𝐿
𝑘

4𝑖
𝐶
1𝑖
+ 𝐿
𝑘

5𝑖
𝐷
0𝑖
+ 𝐿
𝑘

6𝑖
𝐷
1𝑖
+ 𝐿
𝑘

7𝑖
𝐹
0𝑖

+ 𝐿
𝑘

8𝑖
𝐹
1𝑖
+ 𝐿
𝑘

9𝑖
𝐴
0𝑖
+ 𝐿
𝑘

10𝑖
𝐴
1𝑖
,

(25c)

𝐷
𝑘𝑖
= 𝜌
𝑘

1𝑖
𝐵
0𝑖
+ 𝜌
𝑘

2𝑖
𝐵
1𝑖
+ 𝜌
𝑘

3𝑖
𝐶
0𝑖

+ 𝜌
𝑘

4𝑖
𝐶
1𝑖
+ 𝜌
𝑘

5𝑖
𝐷
0𝑖
+ 𝜌
𝑘

6𝑖
𝐷
1𝑖
+ 𝜌
𝑘

7𝑖
𝐹
0𝑖

+ 𝜌
𝑘

8𝑖
𝐹
1𝑖
+ 𝜌
𝑘

9𝑖
𝐴
0𝑖
+ 𝜌
𝑘

10𝑖
𝐴
1𝑖
,

(25d)

𝐹
𝑘𝑖
= 𝛾
𝑘

1𝑖
𝐵
0𝑖
+ 𝛾
𝑘

2𝑖
𝐵
1𝑖
+ 𝛾
𝑘

3𝑖
𝐶
0𝑖
+ 𝛾
𝑘

4𝑖
𝐶
1𝑖

+ 𝛾
𝑘

5𝑖
𝐷
0𝑖
+ 𝛾
𝑘

6𝑖
𝐷
1𝑖
+ 𝛾
𝑘

7𝑖
𝐹
0𝑖
+ 𝛾
𝑘

8𝑖
𝐹
1𝑖

+ 𝛾
𝑘

9𝑖
𝐴
0𝑖
+ 𝛾
𝑘

10𝑖
𝐴
1𝑖
,

(25e)

where the coefficients 𝜉𝑘
1𝑖
, 𝜉𝑘
2𝑖
; 𝜁𝑘
1𝑖
∼ 𝜁
𝑘

10𝑖
; 𝐿𝑘
1𝑖
∼ 𝐿
𝑘

10𝑖
; 𝜌𝑘
1𝑖
∼

𝜌
𝑘

10𝑖
and 𝛾𝑘

1𝑖
∼ 𝛾
𝑘

10𝑖
can be derived from the recurrence

equations (23) and (24a) to (24d). Substituting the solved
series coefficients (25a) to (25d) into Taylor series (22), we
can obtain 𝑇

𝑛𝑚𝑖
(𝑟), 𝑢
𝑛𝑚𝑖
(𝑟), V
𝑛𝑚𝑖
(𝑟), 𝑤

𝑛𝑚𝑖
(𝑟) and 𝜙

𝑛𝑚𝑖
(𝑟).

Where 𝐴
0𝑖
, 𝐴
1𝑖
; 𝐵
0𝑖
, 𝐵
1𝑖
; 𝐶
0𝑖
, 𝐶
1𝑖
; 𝐷
0𝑖
, 𝐷
1𝑖
; 𝐹
0𝑖
and 𝐹

1𝑖

are unknown constants and they can be determined by
substituting solutions (24a)–(24d) into the boundary and
continuous conditions (19a) to (19c) and (20a) to (20c).

Substituting solutions 𝑇
𝑛𝑚𝑖
(𝑟), 𝑢
𝑛𝑚𝑖
(𝑟), V
𝑛𝑚𝑖
(𝑟), 𝑤

𝑛𝑚𝑖
(𝑟),

and 𝜙
𝑛𝑚𝑖
(𝑟) into trigonometric series (15a)–(15e), we can

obtain the steady-state piezothermomechanical solution for
the finite cylindrical composite panel. Furthermore, using
geometric equation and constitutive equation, the analytical
solutions of thermo-mechanical stresses for the laminated
cylinder can be obtained.
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Figure 2:Dimensionless temperature distribution: (a) at section 𝜃 =
𝜋/6, (b) 𝑅 = 1.042.

4. Numerical Results and Discussion

To illustrate the above analysis, we investigate the piezother-
moelastic stresses in a functionally graded cylindrical shell
with a piezoelectric layer on outside. The dimensions 𝐿 = 6,
𝜃
0
= 𝜋/3, 𝑅

𝑎
= 0.95, and 𝑅

𝑏
= 1.042, the thickness of piezo-

electric layer is 0.002, the thickness of each layer is assumed
to be equivalent.The reference values of temperature, Young’s
modulus, and thermal expansion coefficient are 𝑇

0
= 200K,

𝐸
0
= 300GPa, and 𝛼

0
= 4.9 × 10

−5 K−1, respectively.
In this paper, the functionally graded finite cylindermade

of mullite and molybdenum is analyzed. The thermoelastic
properties of mullite and molybdenum are given as follows
[11, 19]:

𝐸
𝑚
= 330GPa, 𝜇

𝑚
= 0.3; 𝜆

𝑚
= 138W/mK;

𝛼
𝑚
= 4.9 × 10

−6

/K

𝐸
𝑐
= 330GPa, 𝜇

𝑐
= 0.3; 𝜆

𝑐
= 138W/mK;

𝛼
𝑐
= 4.9 × 10

−6

/K.

(26)
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Figure 3: Dimensionless axial displacement distribution: (a) at
section 𝜃 = 𝜋/6, (b) 𝑅 = 1.042.

The material properties of piezoelectric layer (cadmium
selenite) are summarized as

𝐶
11
= 83.6GPa, 𝐶

22
= 𝐶
33
= 74.1GPa

𝐶
23
= 45.2GPa, 𝐶

12
= 𝐶
13
= 39.3GPa,

𝐶
66
= 13.17GPa, 𝑒

1
= 0.347C/m2,

𝑒
2
= 𝑒
3
= −0.16C/m2, 𝑒

5
= 𝑒
6
= −0.138C/m2,

𝜂
1
= 9.03 × 10

−11 C2/Nm2,

𝜂
2
= 𝜂
3
= 8.25 × 10

−11 C2/Nm2,

𝑃
1
= −2.94 × 10

−6 C/m2 K,

𝑑
1
= −3.92 × 10

−12 C/N, 𝜆 = 8.6W/mK.

(27)
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Figure 4: Distribution of dimensionless radial stress: (a) 𝑍 = 3.0,
𝜃 = 𝜋/6, (b) 𝜃 = 𝜋/6.

And it is assumed that the cylindrical shell is subjected to
the following nonumiform thermal and mechanical loadings
on its outer surfaces:

𝑇
𝑎
(𝜃, 𝑧) = 0 at 𝑅

𝑎
= 0.95

𝑇
𝑏
(𝜃, 𝑧) = 200 × sin [3𝜃] × sin [𝜋𝑧

6
] at 𝑅

𝑏
= 1.04

𝑞
𝑎
(𝜃, 𝑧) = 0 at 𝑅

𝑎
= 0.95

𝑞
𝑏
(𝜃, 𝑧) = −10

8

× sin [3𝜃] × sin [𝜋𝑧
6
] at 𝑅

𝑏
= 1.042.

(28)

Figures 2 to 8 illustrate the numerical results of dimen-
sionless temperature, displacement, and stresses of function-
ally graded cylindrical shell with piezoelectric layer.

Figure 2 shows the numerical results of dimensionless
temperature distributions. Due to the graded variation of the
material properties along the radial direction, the tempera-
ture reduced in a nonlinear form through thickness direction.
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Figure 5: Distribution of dimensionless circumferential stress: (a)
𝑍 = 3.0, 𝜃 = 𝜋/6, (b) 𝜃 = 𝜋/6.

For the thermal load is a function of sin, the maximum
temperature in each layer is located along the axial 𝑧 = 3.

Figure 3 shows the axial displacement; the magnitude of
axial displacement becomes larger near the outer surface.
Figures 4 to 12 show the numerical results of dimensionless
radial, hoop, axial, and shear stresses, respectively. The radial
stress increases from the inner surface to outer surface
nonlinearly; the radial stress is compressive for the inner
heating and pressure loads.

Figure 5(a) shows the variation of circumferential stress
on the thickness direction at point 𝑍 = 3.0, 𝜃 = 𝜋/6. Due to
the assumed thermomechanical loadings, the circumferential
stress is compressive stress at the inner surface and is tensile
stress at the outer surface. Because of the mismatch material
properties, the circumferential stress is not continuous across
the interfaces. Due to the assumed thermomechanical load-
ing, the distribution of circumferential stress is nonuniform.
It can be seen that maximum values of the circumferential
stress occur at the same surface where the temperature
loadings are applied. Similar distributions of circumferential
stress can be obtained at other sections in the thickness
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Figure 10: Distribution of dimensionless electric potential: (a) at section 𝑍 = 3, (b) 𝑅 = 1.04.
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Figure 11: Distribution of dimensionless electric displacement 𝐷
𝑅
: (a) at section 𝑅 = 1.04, (b) 𝑍 = 3.
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direction. For the sake of brevity, the distributions in other
thickness section are omitted here. Figure 6(a) shows the
distributions of axial stress on the variation of thickness
direction at 𝑍 = 3 and 𝜃 = 𝜋/6. in Figure 6(b), due
to the assumed boundary condition and thermomechanical
loading, the axial stress is tensile stress at the inner surface
and varies from compressive to tensile stress, which is similar
to circumferential stress.

Figures 7 to 9 show the distributions of three shear
stresses at different sections. It is seen that the maximum
values of all three shear stresses are smaller than those of
normal stresses. Due to the assumed thermo-mechanical
loadings, distributions of the three shear stresses show
different distribution. According to the boundary condition
and material properties, the maximum shear stresses 𝜎

𝑅𝜃

and 𝜎
𝑅𝑍

appear at the middle radius, while the shear stress
𝜎
𝜃𝑍

varies from compressive stress to tensile stress along
its length. The maximum shear stress 𝜎

𝑅𝑍
appears at the

middle along the length and themiddle thickness. Figures 10,
11, and Figure 12 show the variation of electric potential
and displacement along the thickness; the electric potential
distribution is similar to the temperature distribution. The
electric displacement varied nonlinearly.

5. Conclusions

The piezothermoelastic analysis for a functionally graded
cylindrical shell with piezoelectric layer is presented in this
paper. The cylindrical shell is simply supported at four end
edges and subjected to thermomechanical loadings on its
outer surfaces. The piezoelectric layers are polarized along
radial direction as a sensor. An exact 3D analytical solution
is derived by using multilayered approximate approach and
series solving method. Referred to the presented solution,
other temperature boundary conditions can be solved by
suitable forms of series solutions to satisfy both temperature
and simply supported boundary conditions. It is also worth
noting that the trigonometric series, which are used to
separate variables, are only suitable for simply supported at
four end edges. For other supported boundary conditions,
another suitable series form must be considered to satisfy
the related boundary conditions. For different functionally
graded material, this analytical method can also be used.
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