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Community detection in social networks attracts a lot of attention in the recent years. Existing methods always depict the
relationship of two nodes using the temporary connection. However, these temporary connections cannot be fully recognized as the
real relationships when the history connections among nodes are considered. For example, a casual visit in Facebook cannot be seen
as an establishment of friendship. Hence, our question is the following: how to cluster the real friends in mobile social networks? In
this paper, we study the problem of detecting the stable community core in mobile social networks. The cumulative stable contact
is proposed to depict the relationship among nodes. The whole process is divided into timestamps. Nodes and their connections
can be added or removed at each timestamp, and historical contacts are considered when detecting the community core. Also,
community cores can be tracked through the incremental computing, which can help to recognize the evolving of community
structure. Empirical studies on real-world social networks demonstrate that our proposed method can effectively detect stable
community cores in mobile social networks.

1. Introduction

In the recent years, the way of communication among people
has experienced a dramatic change. Thanks to the devel-
opment of mobile communication technology, the relative
geographical topology among passengers can be caught eas-
ily. Hence, clustering people in such mobile social networks,
which can be further used in information recommendation
and other social services, attracts more and more concerns.

There are a lot of literatures concerned with the commu-
nity detection in social networks, including static approach
and dynamic approach. Nodes are usually depicted as people
in the real world, and links are always denoted to be the
contacts among nodes. The static approach focuses on high
aggregation of nodes which have the same features [1, 2].
While the dynamic approach divides the network’s evolving
process into lots of timestamps, they not only pay attention
to clustering nodes in the network but are also concerned
with the computational complexity at each timestamp [3, 4].
At each timestamp, the computational complexity depends
on change of links, rather than all links in the network. It
is very important when analyzing evolution of the network
structure, especially with multiple timestamps. However,
few of these methods consider the stability of communities

between two timestamps. Intuitively, in our real world, the
relationship among people will not change sharply. That is
to say, for a giving link 𝑙

𝑎,𝑏
(𝑡) which denotes a link between

nodes 𝑎 and 𝑏 at time 𝑡, 𝑙
𝑎,𝑏

(𝑡) cannot depict the relationship
between nodes 𝑎 and 𝑏 exactly. The study in [5] considers
the stability in community detection, but it tries to obtain a
community partition under the stablemodularity, rather than
the stable contact.

Moreover, [6] pointed out that intercontact time among
people follows the power-law distribution, which means the
following: (1) we spend most of our time contacting with the
“community” people; (2) there are still a lot of temporary
contacts taking place between “strangers.” If all of the links
are considered when detecting community, some temporary
links among “strangers” will influence the effect. In order to
eliminate the negative influence, only familiar links should be
concerned. And our question is the following: how to find the
real friends having those familiar links with each other in a
mobile social network?

The biggest feature of mobile social network is that
nodes and links are always changing. The studies in [3,
7] have classified all of the situations that occur at each
timestamp into several events, including node add/remove
and link (edge) add/remove. And their experiment results
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demonstrate that discretization of the continuous time is
a useful way to model the evolution of the network. In
this paper, the discretization of the continuous time is still
adopted when modeling the evolution process. However, the
prominent difference of our method compared with others is
the discrimination between familiar link and temporary link.

Based on previous works [8], the number of familiar links
is higher than that of temporary links. In other words, people
who come from the same community have higher contact
frequency than those who come from different communities.
And the changing frequency of familiar link is lower than that
of temporary link. That is to say, people who come from the
same community always keep the relatively stable contact,
while contacts among people who come from different
communities seem to be uncertain.

Based on the discussion above, we use “community core”
to solve our problem. Unlike our definition, the concept
denoted by [5] is based on the nondeterministic community
detection algorithm. Generally speaking, a community core
in mobile social networks is the subset of a community. For
links in the same community core, few changes will occur
between consecutive timestamps.

The study in [9] extracts the core structure of social net-
works using (𝛼, 𝛽) community. The authors have discovered
the core structure by lots of overlapping (𝛼, 𝛽) communities.
However, the proposed static heuristic algorithm did not
consider the dynamic features of social networks. The study
in [5] analyzed the community core in evolving networks. By
recursive computation, stable community cores are detected
and well tracked. However, the instability of communities
in [5] is caused by the instability of the nondeterministic
detecting algorithm, which does not suit the community core
detection under the instability of links at each timestamp.

In this paper, we propose a novel approach for community
core detection in mobile social networks. The main idea of
our approach is to find a partition based on stable links in a
giving network. To the best of our knowledge, we are the first
to find the relatively stable community core using the history
cumulative contact in mobile social networks and the first to
find the power-law distribution of these contacts’ changing
between consecutive timestamps. In order to recognize the
change of community core at each timestamp, the tracking
mechanism is also concerned.

The rest of this paper is organized as follows. We intro-
duce the preliminaries used in this paper in Section 2. In
Section 3, we discuss the characteristics of cumulative stable
contact. Then, we present our community core detection and
tracking algorithm separately in Section 4. We evaluate our
algorithms in Section 5, and we finally conclude the work
with Section 6.

2. Preliminary

In this section, we present the notion and themobile network
model that we will use throughout the paper.

Definition 1 (mobile social network). A mobile social net-
work is denoted as 𝐺 = ⟨𝐸, 𝑉⟩, where 𝑉 is the vertex set
and 𝐸 ⊆ 𝑉 × 𝑉 is the link set.

The nodes and links of a mobile social network will
change according to different timestamps. A mobile social
network at 𝑇 = 𝑡 is denoted as 𝐺(𝑡) = ⟨𝐸(𝑡), 𝑉(𝑡)⟩. Here,
𝑉(𝑡) is the set of nodes that appears at 𝑇 = 𝑡, and 𝐸(𝑡) is the
set of links that appears at the same timestamp: 𝑉(𝑡) ⊆ 𝑉,
and 𝐸(𝑡) ⊆ 𝐸.

Topologies of a certain mobile social network are always
changing due to the time variation, which is the most dif-
ference compared with static networks. Like previous works,
we treat the continuous time as a sequence of timestamps.
Furthermore, nodes and links may be different from the
consecutive timestamps. Hence, we use the following four
events to describe the evolution of network: node add, node
remove, link add, and link remove.

Definition 2 (cumulative stable contact, (CSC)). There is a
CSC between two nodes V

𝑖
and V

𝑗
if and only if their history

contact duration is higher than a threshold (we will discuss
this threshold in the following section).

As mentioned before, the temporary link cannot depict
the relationship between two nodes in the mobile social
network. Inversely, two nodes that disconnect at𝑇 = 𝑡 cannot
demonstrate that they are irrelevant. Considering the history
connection among nodes, we use cumulative contact to judge
the stability of links.

Definition 3 (community core set). It is denoted as CRS =

{CO
0
,CO
1
, . . . ,CO

𝑚
}, where CO

𝑖
is a community core and

is a subset of 𝐺 : ⋃
𝑖=0

CO
𝑖
(𝑡) ⊆ 𝐺(𝑡).

The community core at𝑇 = 𝑡 is a partition about the given
network, the same as the concept “community” in previous
works. A community set is defined as a partition of a given
network: CS = {𝐶

0
, 𝐶
1
, . . . , 𝐶

𝑚
}. However, we only focus on

detecting the “useful links” rather than carry on a cluster
process. Hence, some of the nodes and links may not be
included in CRS(𝑡) even if they appear at 𝑇 = 𝑡. Therefore,
the biggest difference between community and community
core is ⋃

𝑖=0
CO
𝑖
(𝑡) ⊆ ⋃

𝑗=0
𝐶
𝑗
(𝑡).

3. Cumulative Stable Link

In this section, we study the characteristics of CSC. First,
a well-known mobile social network is introduced. Then, a
stable link extraction method is proposed to find the CSC.
Finally, we discuss the distribution of the change of CSC
(CCSC).

3.1. Dataset. Due to the increasing concern about mobile
social networks, various datasets about people’s behavior are
collected by researchers. The studies in [8, 10] have collected
the traces information about attendants of INFOCOM06
and SIGCOMM09 separately. The features of these datasets
are as follows. (1) These datasets include not only the
contact information but also the attributes of attendants. The
SIGCOMM09 has 76 attendants, and the INFOCOM06 has
78 attendants. (2) Both of these datasets contain several days
traces information; more than 300000 timestamps can be
used to describe the evolution of networks.
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SIGCOMM09 collects the traces information among
attendants in SIGCOMM 2009. The dataset not only records
the contact time of each device pair but also includes the
profile of each attendant such as country, city, institute,
and interest. The contact information is recorded in the
form of <timestamp, user id, seen user id,. . .>, which means
the scanning time, the scanning device, and the discovered
device. Hence, the cumulative contact pair at each timestamp
is easier to obtain.

Similar to SIGCOMM09, INFOCOM06 collects the con-
tact traces among attendants in INFOCOM 2006. Each
participant was asked to fill in a questionnaire that included
name, nationality, affiliation, country, and other items. The
contact information is also well refined by the author so that
in the form of <user id, seen (user id), start time, end time,
. . .>, which means scanning device, discovered device and
their duration contact time.

3.2. Stable Link Extraction. Both the SIGCOMM09 and
INFOCOM06 contain connection duration between each
pair of nodes.We use a contactmatrixM denoting the contact
among nodes. 𝑚

𝑖,𝑗
(𝑡) is the cumulative contact duration

between V
𝑖
and V

𝑗
from 𝑇 = 0 to 𝑇 = 𝑡.

The study in [8] has studied the correlation between
regularity and familiarity on Cambridge students, and it is
observed that most of contacts among nodes reveal a short
duration, while few of them have long duration, which is
denoted as “community”. In this paper, we use M = [𝑚



𝑖,𝑗
]

to denote whether V
𝑖
and V

𝑗
have a contact duration higher

than a threshold 𝛿⋅max(𝑚
𝑖,𝑗
).Then, we cluster the attendants

into several groups by their friendship graphs which are
extracted from the two datasets as follows:

𝑚


𝑖𝑗
= {

𝑚
𝑖𝑗
, 𝑚
𝑖𝑗
≥ 𝛿 ⋅max (𝑚) ,

0, 𝑚
𝑖𝑗
< 𝛿 ⋅max (𝑚) .

(1)

3.3. Distribution of CCSC. We first construct a contact
duration matrix M = [𝑚

𝑖,𝑗
], where 𝑚

𝑖,𝑗
presents the his-

tory contact duration between V
𝑖
and V

𝑗
during the whole

lifetime of the network (INFOCOM06: 𝑇 = [6207, 340927];
SIGCOMM09: 𝑇 = [21, 349811]). Without loss of generality,
we denote X and Y as two consecutive M and then compute
the change of history contact (CHC), which is depicted as the
distance of X and Y using

Distance (X,Y) = ∑

𝑗

∑

𝑖

𝑠 (𝑖, 𝑗) ,

𝑠 (𝑖, 𝑗) = {
0, 𝑋

𝑖𝑗
= 𝑌
𝑖𝑗
,

1, 𝑋
𝑖𝑗

̸= 𝑌
𝑖𝑗
.

(2)

The distribution of the distance is plotted in the log-log
scale (Figure 1). The power-law distribution of intercontact
time in the mobile social network is fully discussed in
the existing literatures. However, the change of contacts
in consecutive timestamps does not follow the power-law
distribution. Then, we use M, where 𝑚



𝑖,𝑗
denotes whether a

link between V
𝑖
and V

𝑗
is a CSC or not, and we compute the

distance of two consecutive M; then, the CCSC at different

timestamps is obtained (Figure 1(a)). The distribution of
CCSC is plotted in Figure 1(b) using log-log scale. It is clear
that the CCSC extracted from SIGCOMM09 follows the
power-law distribution, ranging from 2 changes to 6 changes.
In INFOCOM06, when the changes range from 2 to 7, the
CCSC also follows the power-law distribution. The diversity
of distribution between history contact duration and change
of cumulative stable contact might be caused by removal of
the temporary contact. Considering two people in the real
world, the more familiar, the more stable their relationship is.
Moreover, people denoted as “familiar” have longer contact
duration and contact time, which has been proven in previous
works. According to the discussion above, the CSC removes
the temporary links among nodes.

4. Community Core Evolution

In this section, we first introduce the community core
detection algorithm and then discuss the community core
tracking mechanism in mobile social networks.

4.1. Community Core Detection. Let us first discuss the topol-
ogy change of the network, which is constantly updated by
nodes and links changing through different timestamps. The
increasing nodes or links can be decomposed as a sequence
of node or link insertions, while the decreasing nodes or
links can be decomposed as a sequence of node or link
removals. We define four events that may cause the evolution
of network: node add, node remove, link add, and link
remove. However, in the definition above, the community
core is based on links between two nodes. Hence, a single
node without associated CSC cannot exist in the community
core. Then, we refine the events as shown in Figure 2.

Link Add. The cumulative contact between V
𝑖
and V
𝑗
is higher

than the current threshold; then link 𝑒
𝑖,𝑗

that is associated
with two nodes V

𝑖
and V
𝑗
is added to a community core CO.

Both V
𝑖
and V
𝑗
will be added to CO, even if any of them did

not belong to CO.

Link Remove. The cumulative contact between V
𝑖
and V

𝑗

is lower than the current threshold; then link 𝑒
𝑖,𝑗

that is
associated with two nodes V

𝑖
and V

𝑗
is removed from a

community core CO. If V
𝑖
or V
𝑗
has no link associated with

other nodes in CO, then the corresponding node will be
removed from CO.

The basic operation procedure of community core detec-
tion at one timestamp is described in Figures 3 and 4. We
extract the decreasing and increasing links at each timestamp
and then use LRS and LAS to denote the decreasing link set
and the increasing link set separately.

Giving a certain community core partition, the Link
Remove will result in deleting existing community cores
(Figure 3), while Link Add will result in expanding the com-
munity core or inserting a new community core (Figure 4).
The procedure can be divided into two phases. Firstly, we
treat the Link Remove set and refine the existing community
core through the existence of connected path. If there is no
path connected, the link will be removed from CO. Secondly,
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Figure 1: (a) Distribution of history contact duration. (b) Distribution of CCSC.
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Figure 2: Two events cause the structure variation of network. (a) A link between nodes 𝑏 and 𝑐 is added into the network because 𝑚


𝑏,𝑐
>

𝛿 ∗max(𝑚). (b) A link between nodes 𝑑 and 𝑒 is removed from the network because 𝑚


𝑑,𝑒
< 𝛿 ∗max(𝑚).

Select linkij in LRS Yes LRS ≠ 𝜙 No End

�i and �j in the same core No Remove linkij in LRS

Split the core into
two parts

No

There is a path
from �i to �j

Yes

No

No

YesYes

Yes

�i or �j not in CRS(t + 1)NoRemove linkij in
CRS(t + 1)

Remove node not in
CRS(t + 1)

CRS(t + 1) ←− CRS(t)

m
ij < 𝛿 × max(m)

�i and �j in CRS(t + 1)

Figure 3: Basic operation procedure of link remove.



The Scientific World Journal 5

Select linkij in LAS Yes

Yes

LAS ≠ 𝜙 No End

No Remove linkij in LAS
The one neighbor node
joins into the other core No

�i and �j have more
than one neighbor

No
No

�i and �j in the same core Yes

Yes

Add linkij in CRS(t + 1)
Create a new

community core

�i in COp and �j in COq Yes

Yes

�i and �j have only
one neighbor

Merge the two
community cores

CRS(t + 1) ←− CRS(t + 1)

Update M(t + 1)

m
ij > 𝛿 × max(m)

(COp,q in CRS(t + 1))

Figure 4: Basic operation procedure of link add.
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Figure 5: Six events provide variation of community cores. The red solid/dash line denotes the link add/remove separately, and different
colors mean different community cores.

by updating the max contact duration, addition link and its
nodes will be added into the existing community core or a
new community core.

4.2. Evolution of Community Core. In order to study the
evolution process of community core, we should track the
community core at each timestamp. How to distinguish two
community cores in the consecutive timestamps is the biggest
problem about tracking.

4.2.1. Model. According to Definition 3, the evolution of
community core can be presented by CRS

0
,CRS
1
, . . . ,CRS

𝑘
,

. . . . For a community core at 𝑇 = 𝑡, CRS(𝑡) = {CO
0
,CO
1
,

. . . ,CO
𝑚
}, and 𝐿(𝑡) = {𝑙

0
, 𝑙
1
, . . . , 𝑙
𝑛
} is denoted as the label set

of community cores identifying a community core at 𝑇 = 𝑡

uniquely. In the previous literatures, there can be seen a broad
consensus on the basic events that can be used to describe the
evolution of dynamic communities [3, 7, 11]. We extend and
specify these events as shown in Figure 5.
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Figure 6: Description of two datasets. SIGCOMM09 records the discrete contact time among nodes, while INFOCOM06 records the
continuous contact time. (a) Total link number (SIGCOMM09), (b) total link number (INFOCOM06), (c) link add (SIGCOMM09),
(d) link add (INFOCOM06), (e) link remove (SIGCOMM09), (f) link remove (INFOCOM06), (g) network feature (SIGCOMM09), and
(h) network feature (INFOCOM06).

Birth. It is the emergence of a new community core at 𝑇 =

𝑡 + 1, and there is no corresponding community core in
CRS(𝑡). A community core COnew which is labeled as 𝑙new is
created in CRS(𝑡 + 1) at 𝑇 = 𝑡 + 1, while COnew ∉ CRS(𝑡).
That is, for any 𝑙new ∈ 𝐿(𝑡 + 1), there is 𝑙new ∉ 𝐿(𝑡).

Death. It is the disappearance of a community core COold at
𝑇 = 𝑡 + 1 as COold exists in CRS(𝑡) at 𝑇 = 𝑡. There is no
corresponding community core in CRS(𝑡 + 1). If we use 𝑙old
denoting core label of COold, then the death of a community
coreCOold means 𝑙old ∈ 𝐿(𝑡), and, for any 𝑙

𝑠
∈ 𝐿(𝑡+1), 𝑙

𝑠
̸= 𝑙old.

Merging. It means that two community cores merge into one
community core at 𝑇 = 𝑡 + 1.

Splitting. A community core is divided into two separate
community cores.

Growth. A node joins into a community core. And this will
result in no changes between 𝐿(𝑡) and 𝐿(𝑡 + 1).

Contraction. A nodemoves out of a community core.This also
will result in no changes between 𝐿(𝑡) and 𝐿(𝑡 + 1).

4.2.2. Tracking Community Cores. In the context of themodel
described above, the most important thing is to identify
the changes of community cores. Three questions should be
answered. (1) Where does the core come from? (2) What
happened to community core after updating? (3)Where is the
core going?

The study in [12] is concerned with tracking communities
based on detected communities, using the Jaccard coeffi-
cient. Differing from this method, we track these cores by
enhancing our algorithm. When the algorithm runs, the
tracking process works simultaneously, which is triggered by
the variation of links.

According to our algorithm, there exist only contact
frequency between two core nodes lower than 𝛿 ⋅ max(𝑚

𝑖,𝑗
),

and there is no other path connecting these two nodes in
the original core; the splitting process will be triggered.
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Figure 7: Number of changes in 0-1 matrix between two consecutive timestamps. Above: number of changes in SIGCOMM09 under 𝛿 = 0.2,
0.4, 0.6, and 0.8 (from (a) to (d)). Below: number of changes in INFOCOM06 under 𝛿 = 0.2, 0.4, 0.6, and 0.8 (from (e) to (h)).

Hence, V
𝑖
and V

𝑗
have their isolate core sets separately. We

use node ID as the core label when creating a new community
core. Initially, each node will be tagged a community label as
itself. The benefits are as follows. Firstly, the finite namespace
of core label will not cause muddle of naming. Secondly,
community core can be tracked easier when a community
core is created again. The tracking algorithm uses node
ID as initial community core ID if the node is extracted
to a community core, and when a node is removed from
community core set, the node ID is restored.

Basic operation procedure of tracking is given as follows.

Switch (events)
Case Birth (V

𝑖
and V
𝑗
form a new core):

𝐿 (𝑡 + 1) ← 𝑙new, 𝑙new = 𝑖 or 𝑗; (3)

Case Death (CO
𝑖
∈ CRS(𝑡) but CO

𝑖
∉ CRS(𝑡 + 1)):

Every node in CO
𝑖
labeled as its node ID.

CaseMerging (CO
𝑖
and CO

𝑗
merge into on core):

Nodes with fewer core members change their
IDs to the other core.

Case Splitting (V
𝑖
and V
𝑗
have no path to connect):

Delete 𝑙old in 𝐿(𝑡 + 1), and 𝐿(𝑡 + 1) ← 𝑖, 𝑗, V
𝑖
and

V
𝑗
change label as their node ID.

Case Growth (V
𝑖
join into an existing community

core):

V
𝑖
changes label as the community core.

Case Contraction (V
𝑖
moves out of community core):

V
𝑖
changes label as its node ID.

5. Evaluation

In this section, we discuss the evolution of community core,
which is detected and tracked by our algorithm. COPRA
[13] is a well-known efficient algorithm of fast community
detection, and we choose COPRA to compare with our algo-
rithm.

5.1. Contact Variation. In order to reveal the community
core evolution briefly, we first show the contact variation
of both SIGCOMM09 and INFOCOM06 under the whole
lifetime (Figure 6). Due to the difference of data preprocess-
ing, SIGCOMM09 records the discrete contact time among
nodes, while INFOCOM06 records the continuous contact
time. According to the description of SIGCOMM09, each
device performs a periodic Bluetooth device discovery every
120 ± 10.24 seconds (randomized) for 10.24 seconds. When
a device finds others, it records the current time. However,
this mechanism can only record one contact time in a period
for the same pair, which will miss some contact information.
Hence, the total link change, link add, and link remove of
SIGCOMM09 almost have no differences.

5.2. Change of 0-1 Contact Matrix. According to M, the 0-
1 contact matrix B = [𝑏

𝑖,𝑗
] can be obtained. M changes

when the time increases, and the maximum contact duration
among nodes may be changed, which results in the variation
of B. The change of B during the whole collection procedure
is plotted in Figure 7. Consider the following:

𝑏
𝑖𝑗
=

{

{

{

1, 𝑚


𝑖𝑗
≥ 𝛿 ⋅max (𝑚



) ,

0, 𝑚


𝑖𝑗
< 𝛿 ⋅max (𝑚



) .

(4)
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Figure 8: Number of nodes in community core. (a) Variation in number of nodes in community core in SIGCOMM09. (b) Variation in
number of nodes in community core in INFOCOM06. (c) Average number of nodes in community core in the two datasets under different
𝛿.

As shown in Figure 7, most of the changes occur at
the beginning of collection, and they are then gradually
diminished over time.The number of changes reduces by the
increasing of 𝛿. Meanwhile, in SIGCOMM09, the maximum
changes of 0-1 contact matrix under 𝛿 = 0.2, 0.4, 0.6, 0.8 are
8, 6, 4, and 2, respectively, while in INFOCOM06, the values
are 12, 4, 2, and 2. With 𝛿 increasing, the maximum changes
of 0-1 contact matrix are reduced.

5.3. Selected Node Count. One of the biggest differences
between community and community core is the number of
clustered nodes. In other words, the community core of a
mobile social network is the subset of the whole community.
According to previous works in [8], few of nodes can be

classified as “familiar strangers” and “friends,” and nodes in
the “community” are even less. Hence, only the node pairs
which have high contact frequency can be selected to the
community core.

Intuitively, improving 𝛿 will result in fewer selected
contacts and nodes, which is illustrated in Figures 8(a) and
8(b). Let us first consider SIGCOMM09, when time goes
by, the selected nodes become more and more stable. In
the first day of data collection, the selected node changes
dramatically, especially under the low 𝛿. Then, the stable
duration of selected nodes prolonged, and the selected nodes
no longer have change after about 2∗10

5 seconds. Compared
with different 𝛿, the lower 𝛿 will result in a higher selected
nodes, which is meaningless for community cores (when
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Figure 9: Number of nodes in community detected by COPRA. (a) Node number at each timestamp in communities (SIGCOMM09).
(b) Number of node changes in community between two consecutive timestamps (SIGCOMM09). (c) Node number at each timestamp in
communities (SIGCOMM09). (d) Number of node changes in community between two consecutive timestamps (INFOCOM06).

𝛿 = 0.2, during the data collection, the maximum selected
nodes in SIGCOMM09 are 61, and the maximum selected
nodes in INFOCOM06 are 71), while the higher the 𝛿 is, the
fewer nodes are selected to construct the community core. A
brief comparison of average selected nodes under different
𝛿 is depicted in Figure 8(c). The same as discussed above,
the average of selected nodes decreases when 𝛿 increases.
Although the selected nodes increase with the decreasing
of 𝛿, the variation of selected nodes in INFOCOM06 still
has little difference. Unlike SIGCOMM09 the selected nodes
in INFOCOM06 change frequently, even at the end of the
data collection. This phenomenon can reflect the fact that
in SIGCOMM09, the “friends” of attendants are relatively
stable, and participants usually contact with familiar people,

while in INFOCOM06, contacts among strangers are more
frequent than in SIGCOMM09; hence, the selected node
changes more often. Nevertheless, the variation of selected
nodes in SIGCOMM09 and INFOCOM06 is relatively stable
after 2∗10

5 seconds, which is important according to features
of community core.

The number of nodes in communities detected by
COPRA is depicted in Figure 9.Different fromour algorithm,
the number of nodes detected by COPRA is highly unstable.
And the number of changes between two consecutive times-
tamps is also very large compared with our algorithm.

5.4. Number of Community Cores. A community core set is
composed of selected nodes, which divides a mobile social
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Figure 10: Number of changes in core matrix between two consecutive timestamps. Above: number of changes in SIGCOMM09 under 𝛿 =
0.2, 0.4, 0.6, and 0.8 (from (a) to (d)). Below: number of changes in INFOCOM06 under 𝛿 = 0.2, 0.4, 0.6, and 0.8 (from (e) to (h)).

network into pieces of closely connected fragments. Hence,
the community core number in a community set determines
the fragmentation degree of this mobile social network. After
running our algorithm, the community core count in each
timestamp under different 𝛿 is obtained (Figure 10).

As depicted in Figure 11(a), after about 2 ∗ 10
5 seconds,

the community count under each different 𝛿 becomes fixed,
which is the same as the selected nodes. However, the core
number in INFOCOM06 is more complicated. Like the
variation of selected node, the number of community core
fluctuates with time changes; see Figure 11(b).

As mentioned before, this is due to the frequent contact
among strangers. In other words, attendants in SGICOMM09
have a more fixed social circle than in INFOCOM06. The
last but the most important feature of community core count
is that the core number is not monotonically changing with
changes.We can see in Figure 11(c) that themaximumaverage
core count (≈7.71) in SIGCOMM09 appears when 𝛿 = 0.2.
After a reduction to 𝛿 = 0.4, the average core count rises
approximate to 4.87 when 𝛿 = 5. The same phenomenon
appears in INFOCOM06: the core count reaches the max
value at 𝛿 = 4 (≈9.31). Then, it declines approximate to 8.4
at 𝛿 = 5 and grows approximate to 9.05 at 𝛿 = 6. The
reason for this situation can be explained by two sides. On
one hand, the higher will filter out more contacts, which
makes more fragments of the mobile network and increases
the number of community cores. On the other hand, some
network fragments with low contact frequency will be moved
out of the community core set entirely, which results in the
reduction of cores. Hence, the number of cores fluctuates
under the different.

Stability is very important to the community core. Com-
pared with Figures 11 and 12, the community core is much

more stable than traditional community detection algorithm.
The number of communities detected by COPRA is depicted
in Figure 12, which reveals high instability. And the number
of changes between two consecutive timestamps is also very
large compared with our algorithm.

5.5. Change of Core Matrix. In order to evaluate the change
of community core set between consecutive timestamps, we
use the distance function discussed in Section 3.3 to illustrate
the difference between consecutive community core sets.

The distance function requires that the twomatrices have
the same line and row number. However, the nodes and links
in the community core set between consecutive timestamps
are different. According to the tracking algorithm, nodes in
themobile social networks are assigned an initial community
core label which is equal to their node ID. And the finite
namespace of core label ensures that the label will not
be beyond the scope of node ID. Then, we construct a
community core matrix CM = [𝑐𝑚

𝑖,𝑗
], where

𝑐𝑚
𝑖𝑗
=

{

{

{

node ID, 𝑖, 𝑗 ∉ CRS,

core ID, 𝑖, 𝑗 ∈ CRS.
(5)

Note that although node ID is considered in computation,
it will not influence the final result of distance.

The distance under different 𝛿 is depicted in Figure 10.
It can be observed that the majority of consecutive core
matrices have no changes. Only few of them have 1 dif-
ferent element, and the variation of 2 elements is even
less (Figure 13). With 𝛿 increasing, the variation of core
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Figure 11: Number of community cores. (a) Variation in number of community core in SIGCOMM09. (b) Variation in number of community
cores in INFOCOM06. (c) Average number of community cores in the two datasets under different 𝛿.

matrix reduces accordingly. This illustrates that the higher
the 𝛿 is, the more sensitive the community core becomes.
Considering the variation time, most of the changes occur at
the beginning of data collection, which is also consistent with
the change of selected nodes and the core number.

5.6. Community Core Tracking. In this part, we focus on the
visualization of community core evolution. First, we extract

the core ID of each node from community core matrix. If a
node does not belong to any cores, it is labeled as its node
ID. Then, we get the community core at each timestamp.
Finally, the ID including only one node is removed. The
community core set extracted from the two datasets is
presented in Figure 14. According to the selected node and
the core number under the different 𝛿, we choose 𝛿 = 0.4 in
SIGCOMM09 and 𝛿 = 0.6 in INFOCOM06 to display the
evolution of community cores.
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Figure 12: Number of communities detected by COPRA. (a) Number of communities at each timestamp (SIGCOMM09). (b) Number of
community changes between two consecutive timestamps (SIGCOMM09). (c) Number of communities at each timestamp (INFOCOM06).
(d) Number of community changes between two consecutive timestamps (INFOCOM06).

Figures 14(a) and 14(c) include nodes in the community
cores and the noncore nodes. If a node does not belong to
any community cores, its ID will be a straight line. Besides, if
a node is selected as the community core, the ID will change
to the core ID. Figures 14(b) and 14(d) are the refined core
traces, including nodes belonging to the community cores
only. Compared with Figure 11, the evolution of community
cores appears directly.

6. Conclusions

In this paper, we mainly analyze the community core in
mobile social networks. Firstly, the change of cumulative
stable contact is discussed. And then, we propose the

community core detection algorithm to extract the commu-
nity core from two experimental mobile social networks.
Finally, we introduce a label-based community core tracking
algorithm, which can briefly display the evolution of commu-
nity core. Compared with traditional community detection
algorithms, we show that the community core extracted by
our algorithm is stable and that it can be further used in
network analysis in mobile social networks.
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