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We develop a path-planning algorithm to guide autonomous amphibious vehicles (AAVs) for flood rescue support missions.
Specifically, we develop an algorithm to control multiple AAVs to reach/rescue multiple victims (also called targets) in a flood
scenario in 2D, where the flood water flows across the scene and the targets move (drifted by the flood water) along the flood
stream. A target is said to be rescued if an AAV lies within a circular region of a certain radius around the target. The goal is to
control the AAVs such that each target gets rescued while optimizing a certain performance objective. The algorithm design is
based on the theory of partially observable Markov decision process (POMDP). In practice, POMDP problems are hard to solve
exactly, so we use an approximation method called nominal belief-state optimization (NBO). We compare the performance of the
NBO approach with a greedy approach.

1. Introduction

Various guidance algorithms for autonomous amphibious
vehicles (AAVs) are being designed and tested to fight today’s
global warming disasters such as flooding, typhoon, and
hurricane [1–3]. With this motivation, we present a guidance
framework to control multiple AAVs to rescue multiple
victims (henceforth called targets) in a flood situation, where
the flood water (interchangeably called river) flows along a
valley as shown in Figure 1. A target is said to be rescued
when anAAV iswithin the circular region of radius𝑑dist-thresh
on the 2D plane around the target. In general, AAVs are
equipped with various advanced sensors such as polarized
stereo vision, laser scanning, and SONAR [4–6]. The sensors
onboard an AAV generate the (noisy) measurements corre-
sponding to the targets and the river. Our goal is to design
a path-planning algorithm that guides the AAVs so that
every target gets rescued, while maximizing a performance
measure (discussed later). The algorithm runs on a notional
central fusion node, which collects the measurements from
the sensors on-board each AAV, fuses them and updates the
tracks on the targets and the river state (discussed later),

computes the control commands for the AAVs, and sends the
control commands back to the AAVs.

Guidance controlmethods [1, 7–9] forAAVs are normally
based on a standard three-layered system architecture that
requires human-machine interactions. We design the guid-
ance algorithm based on the theory of partially observable
Markov decision process (POMDP) [10, 11]. There are several
other autonomous controlmethods in the literature for AAVs
and underwater vehicles, for example, [12–14]. Our approach
differs from these existing approaches in that we place the
guidance problem in the context of POMDP, wherein this
approach has a look-ahead property, which trades off short-
term for long-term performance.

2. Problem Specification

The AAV guidance problem is specified as follows.

2.1. Targets. In this study, we assume that there are multiple
mobile targets (flood victims) located in a river, being drifted
down by the flood water, as shown in Figure 1.
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Figure 1: Flood scenario.

2.2. Autonomous Amphibious Vehicles (AAVs). There are
multiple autonomous amphibious vehicles (AAVs) located on
the shore, as shown in Figure 1. An AAV is controlled by
the following kinematic controls: forward acceleration and
steering angle. Each AAV is equipped with on-board sensors
that generate measurements of targets and the river depth. In
this problem, AAVs float when moving in the river. For the
purpose of this study, we assume that the number of AAVs
and the number of targets are the same.

2.3. Environmental Conditions. The elevation map of the
region is known a priori. The landscape for this problem
is shown in Figure 1, which shows a river flowing along a
valley from the north toward the south. The state of the river
includes the depth 𝑑ref

𝑘
at a reference point on themap (lowest

point in the landscape, e.g., some location at the bottomof the
valley as shown in Figure 1).

2.4. River Model. Typically a river flows slowly near the
coastlines (where the river is shallow) and flows quickly far
from the coastlines (i.e., toward the center of the river where
the river is deep). In this paper, we assume that the river flows
from the north toward the south in a v-shaped channel as
shown in Figure 1. We adopt the logarithmic velocity profile
to model the velocity of the flow (see [15] for a detailed
description). According to this model, the speed of the river,
at the surface, at the location (𝑝, 𝑞) at time 𝑘 is given by

𝑤𝑘 (𝑝, 𝑞) = 𝐶1 [log (𝑑𝑘 (𝑝, 𝑞)) + 𝐶2] , (1)

where 𝑑𝑘(𝑝, 𝑞) is the depth of the river at the location (𝑝, 𝑞) at
time 𝑘, and 𝐶1 (a function of the viscosity and the density of
flood water) and 𝐶2 are constants (see [15] for more details).

2.5. Observations. The sensors onboard an AAV generate
noisy observations of target locations and the depth of the
river directly beneath the vehicle, that is, the sensors generate
the observations of the depth of the river only when the AAV
is in the river.

2.6. Objective. A target is said to be rescued if there is anAAV
within a circular region of radius 𝑑dist-thresh around the target.
The objective is to minimize the average rescue time, where
the average is over the number of targets, and the rescue time
of a target is defined as the time it takes to rescue the target.

3. Problem Formulation

We cast the AAV guidance problem into the framework of
a partially observable Markov decision process (POMDP). A
POMDP is a mathematical framework useful for solving
resource control problems and enables us to exploit approx-
imation methods for POMDPs to design our AAV guidance
algorithm. A POMDP evolves in discrete time steps.We use 𝑘
as the discrete-time index. To cast theAAVguidance problem
into the POMDP framework, we need to define the following
key components in terms of our guidance problem as follows.

3.1. States. Let 𝑥𝑘 represent the state of the system at time
𝑘. The state of the system includes the state of the vehicles
(AAVs) 𝑠𝑘, river state (depth of the river at a reference
location) 𝑑ref

𝑘
, target state 𝜒𝑘, and track states (𝜉riv

𝑘
, 𝑃

riv
𝑘
,

𝜉
targ
𝑘
, 𝑃

targ
𝑘

), that is, 𝑥𝑘 = (𝑠𝑘, 𝑑
ref
𝑘
, 𝜒𝑘, 𝜉

riv
𝑘
, 𝑃

riv
𝑘
, 𝜉

targ
𝑘
, 𝑃

targ
𝑘

).The
vehicle state 𝑠𝑘 includes the locations and the velocities of
the AAVs at time 𝑘. The river state 𝑑ref

𝑘
is the depth of the

river at the reference point at time 𝑘. The reference point is
the lowest point in the elevation map, that is, some location
at the bottom of the valley in the landscape, as shown in
Figure 1.Here, we assume that the flowdirection of the river is
the same everywhere and is known a priori. The target state
𝜒𝑘 includes the locations and the velocities of the targets at
time 𝑘. The track states represent the state of the tracking
algorithm, where 𝜉riv

𝑘
and 𝑃riv
𝑘

are the mean and the variance,
standard in Kalman filter equations, corresponding to the
river state, and, similarly, 𝜉targ

𝑘
is the mean vector and 𝑃targ

𝑘

is the covariance matrix corresponding to the target state.

3.2. Observations and Observation Law. The vehicle and the
track states are assumed to be fully observable. The river and
the target states are only partially observable.The observation
of the river state at an AAV is given by

𝑧
riv
𝑘
=
{

{

{

𝑑
ref
𝑘
+ 𝑛

riv
𝑘

if AAV is in river,

no measurement otherwise,
(2)

where 𝑛riv
𝑘
∼ N(0, 𝑅𝑘), and 𝑅𝑘 is the measurement variance.

The sensors at an AAV generate the measurement of the river
state onlywhen theAAV is in the river. In practice, the sensors
on an AAV measure the depth of the river exactly below the
AAV. We wrote the observation model (2) as if the sensors
are generating the observations of the depth of the river at the
reference point. The rationale behind this assumption is that
we can always calculate the depth of the river at the reference
point given the elevation map and the observed depth of
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the river at a different location. The observation of the 𝑗th
target at an AAV is given by

𝑧
𝜒
𝑗

𝑘
= {

𝐻𝜒
𝑗

𝑘
+ 𝑛

targ
𝑘

if there is line-of-sight,
no measurement otherwise,

(3)

where𝐻 is the target-state observation model, 𝜒𝑗
𝑘
is the state

of 𝑗th target, and 𝑛targ
𝑘

∼ N(0, 𝑆𝑘), where 𝑆𝑘 is the measure-
ment covariance matrix. The line-of-sight between the target
and the AAV is blocked sometimes, for example, whenever
the target sinks in the water.

3.3. Actions. The actions include the controllable aspects of
the system. In this problem, the actions include the decisions
on the assignment of AAVs to targets, and kinematic control
commands for AAVs. Let 𝑢𝑘 be the action tuple at time 𝑘,
which is given by 𝑢𝑘 = (𝑔𝑘, 𝑎𝑘), where 𝑎𝑘 represents kinematic
control vectors (includes forward acceleration and steering
angle for each AAV), and 𝑔𝑘 is a vector, which represents the
assignment of AAVs to targets, that is, 𝑔𝑘(𝑖) = 𝑗 means that
the 𝑖th AAV is assigned to the 𝑗th target. For the purpose of
this study, the number of AAVs and the targets is the same.
Each AAV is assigned to only one target, and each target gets
assigned only one AAV, that is, 𝑔𝑘 represents a one-to-one
correspondence between the AAVs and the targets.

3.4. State-Transition Law. The state-transition law specifies
the next-state distribution given the current state and the
action. The transition function for the vehicle state is given
by 𝑠𝑘+1 = 𝜓(𝑠𝑘, 𝑎𝑘, 𝜉

riv
𝑘
), where 𝜓 (defined later) represents

the AAV kinematic model, 𝑠𝑘 is the vehicle state, 𝑎𝑘 is the
kinematic control vector (includes forward acceleration and
steering angle), and 𝜉riv

𝑘
is the estimated river state at time 𝑘.

The river state evolves according to the following equation:

𝑑
ref
𝑘+1

= 𝑑
ref
𝑘
+ 𝑜𝑘, 𝑜𝑘 ∼N (0, 𝑈

riv
𝑘
) , (4)

where 𝑈riv
𝑘

is the process variance corresponding to the river
state evolution. The target state evolves according to

𝜒𝑘+1 = 𝐹𝜒𝑘 + 𝑒𝑘, 𝑒𝑘 ∼N (0, 𝑈
targ
𝑘

) , (5)

where 𝐹 represents the target motion model, and 𝑈targ
𝑘

is
the process covariance matrix corresponding to the target
state evolution. The track states evolve according to the
Kalman filter equations given the observations from the
sensors onboard the AAVs. When the observations are not
available, the track states evolve according to theKalmanfilter
equations, where only the prediction step is performed and the
update step is not performed.

3.5. Cost. Thecost function represents the cost of performing
an action at the current state. The cost function is given by

𝐶 (𝑥𝑘, 𝑢𝑘)=

𝑁

∑

𝑖=1

1 {E [

𝑠
𝑖,pos
𝑘+1

−𝜉
𝑔𝑘(𝑖),targ,pos
𝑘+1


| 𝑥𝑘, 𝑢𝑘]

>𝑑dist-thresh} ,

(6)

where 𝑠𝑖,pos
𝑘+1

represents the 2D position coordinates of 𝑖th
AAV, 𝜉𝑗,targ,pos

𝑘+1
represents the estimated 2D position coordi-

nates of the 𝑗th target at time 𝑘+1, ‖ ⋅ ‖ is the Euclidean norm
(everywhere in this paper), and 1{⋅} is the indicator function
which equals 1 when the expected distance between the AAV
and the target at time 𝑘 + 1 is greater than some threshold
distance 𝑑dist-thresh and 0 otherwise.

3.6. Belief State. The belief state 𝑏𝑘 is the posterior distribu-
tion of the state at time 𝑘. The vehicle and the track states
are assumed to be fully observable, that is, the belief state
corresponding to the vehicle state is given by 𝑏𝑠

𝑘
(𝑠) = 𝛿(𝑠 −

𝑠𝑘), where 𝛿(⋅) is the Kronecker delta function. Similarly,
the belief states corresponding to the track states can be
written in terms of the actual track states. The belief states
corresponding to the river and the target are the posterior
distributions of 𝑑ref

𝑘
and 𝜒𝑘, respectively, given the history of

observations.

4. Objective and Optimal Policy

The goal is to find the action sequence (𝑢0, 𝑢1, . . . , 𝑢𝐻−1) such
that the expected cumulative cost over a time horizon 𝐻 is
minimized. The expected cumulative cost is given by

𝐽𝐻 = E[
𝐻−1

∑

𝑘=0

𝐶 (𝑥𝑘, 𝑢𝑘)] . (7)

We can write the expected cumulative cost in terms of the
belief states given the initial belief state 𝑏0 (similar to the
treatment in [10, 11]) as follows:

𝐽𝐻 (𝑏0) = E[
𝐻−1

∑

𝑘=0

𝑐 (𝑏𝑘, 𝑢𝑘) | 𝑏0] , (8)

where 𝑐(𝑏𝑘, 𝑢𝑘) = ∫𝐶(𝑥, 𝑢𝑘)𝑏𝑘(𝑥)d𝑥, and 𝑏0 is the belief state
at time 𝑘 = 0. From Bellman’s principle of optimality [16], the
optimal objective function value is given by

𝐽
∗

𝐻
(𝑏0) = min

𝑢
{𝑐 (𝑏0, 𝑢) + E [𝐽∗

𝐻−1
(𝑏1) | 𝑏0, 𝑢]} , (9)

where 𝑏1 is the random next belief state, 𝐽∗
𝐻−1

is the optimal
cumulative cost over the horizon𝐻−1, 𝑘 = 1, 2, . . . , 𝐻−1, and
E[⋅ | 𝑏0, 𝑢] is the conditional expectation given the current
belief state 𝑏0 and the current action 𝑢 at time 𝑘 = 0. Let us
define the 𝑄 value of taking action 𝑢 given the current belief
state 𝑏0:

𝑄𝐻 (𝑏0, 𝑢) = 𝑐 (𝑏0, 𝑢) + E [𝐽∗
𝐻−1

(𝑏1) | 𝑏0, 𝑢] . (10)

The optimal policy (from Bellman’s principle) at time 𝑘 = 0
can be written as

𝜋
∗

0
(𝑏0) = argmin

𝑢
𝑄𝐻 (𝑏0, 𝑢) . (11)

In general, it is hard to obtain the 𝑄 value exactly. There
are several approximationmethods in the literature: heuristic
expected-cost-to-go (ECTG) [17], parametric approximation
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[18], policy rollout [19], hindsight optimization [20], and
foresight optimization [21]. In this paper, we use one such
approximation method called nominal belief-state optimiza-
tion (NBO), which was introduced in [11] along with other
approximations and techniques specific to guidance prob-
lems.The rationale behind choosing NBOmethod over other
methods to solve POMDP is that it is relatively inexpensive
in terms of computation time, that is, the computational
requirements are not prohibitive unlike other approximation
methods. The following subsection provides a brief descrip-
tion of the NBO method.

4.1. NBO Approximation Method. The computational re-
quirements of obtaining the optimal assignments of AAVs
to targets (𝑔𝑘) over a long horizon are prohibitive. Also,
we expect that the optimal assignment of AAVs to targets
(𝑔𝑘) over a long horizon does not change with time. For
these reasons, in the NBO method, we keep the assignment
of AAVs to targets fixed. In other words, in approximating
the expected cost-to-go in (10), 𝑔𝑘 remains fixed over the
planning horizon𝐻. Therefore, we drop the subscript 𝑘 from
𝑔𝑘 in the objective function used in the planning based on
(10), that is, 𝑔𝑘 = 𝑔 for all 𝑘. In the NBO approximation
method, we use the following objective function, written in
terms of belief states:

𝐽𝐻 (𝑏0) = E[
𝐻−1

∑

𝑘=0

𝑐 (𝑏𝑘, 𝑎𝑘, 𝑔) | 𝑏0] , (12)

where 𝑎𝑘 represents the kinematic controls for the AAVs, and
𝑔 is the assignment of AAVs to the targets.

The belief states corresponding to the river state and the
target state are given by

𝑏
riv
𝑘
(𝑑) =N (𝑑 − 𝜉

riv
𝑘
, 𝑃

riv
𝑘
) ,

𝑏
targ
𝑘

(𝜒) =N (𝜒 − 𝜉
targ
𝑘
, 𝑃

targ
𝑘

) ,

(13)

where (𝜉riv
𝑘
, 𝑃

riv
𝑘
, 𝜉

targ
𝑘
, 𝑃

targ
𝑘

) are the track states correspond-
ing to the river and the target states, respectively, which evolve
according to theKalmanfilter equations. In theNBOmethod,
we approximate the objective function as follows:

𝐽𝐻 (𝑏0) ≈

𝐻−1

∑

𝑘=0

𝑐 (�̂�𝑘, 𝑎𝑘, 𝑔) , (14)

where �̂�1, . . . , �̂�𝐻−1 is a nominal belief-state sequence, and the
optimization is over an action sequence 𝑔, 𝑎0, . . . , 𝑎𝐻−1. We
obtain the nominal belief states by evolving the current belief
state with exactly zero-noise sequence over the horizon 𝐻
(similar to the treatment in [10, 11]). Therefore, the objective
function from the NBO method is given by

𝐽NBO (𝑏0) =
𝐻−1

∑

𝑘=0

𝑁

∑

𝑖=1

1 {

𝑠
𝑖,pos
𝑘+1

− 𝜉
𝑔(𝑖),targ,pos
𝑘+1


> 𝑑dist-thresh} ,

(15)

where 𝑠𝑖,pos
𝑘+1

is the nominal position of the 𝑖th AAV (defined
below),N(𝜉

𝑗,targ
𝑘+1

, �̂�
𝑗,targ
𝑘+1

) is the nominal belief state of the 𝑗th

target at time 𝑘 + 1, where 𝜉𝑗,targ,pos
𝑘+1

(component of 𝜉𝑗,targ
𝑘+1

)
represents the position estimate of the target. This nominal
target belief state is obtained by evolving the track state
component 𝜉𝑗,targ

𝑘
with exactly zero-noise sequence as follows:

𝜉
𝑗,targ
𝑘+1

= 𝐹𝜉
𝑗,targ
𝑘

. (16)

The evolution of vehicle state depends on the river state
estimate 𝜉riv

𝑘
. In the NBOmethod, 𝜉riv

𝑘
is replaced with 𝜉riv

𝑘
in

the AAV kinematic model 𝜓(⋅), where (𝜉riv
1
, . . . , 𝜉

riv
𝐻
) are the

nominal track state components corresponding to the river
state, and the obtained positions of the 𝑖th AAV 𝑠

𝑖,pos
𝑘+1

are
called nominal positions.

Here, we adopt an approach called “receding horizon
control,” according to which we optimize the action sequence
for 𝐻 time steps at the current time step, implement only
the action corresponding to the current time step, and again
optimize the action sequence for 𝐻 time steps in the next
time step. The length of the planning horizon 𝐻 should be
large enough for an AAV to receive a benefit by moving
toward a target. Due to computational constraints, we cannot
have an arbitrarily long horizon. Therefore, we truncate the
length of the horizon to a few time steps (we set 𝐻 = 6

in our simulations) and append the cost function with an
appropriate expected cost-to-go (ECTG). The following is a
distance-based ECTG:

𝐽
dist-ECTG
𝐻

=

𝑁

∑

𝑖=1


𝑠
𝑖,pos
𝐻

− 𝜉
𝑔(𝑖),targ,pos
𝐻


, (17)

where 𝑠𝑖,pos
𝐻

is the nominal position of the 𝑖th AAV, and
𝜉
𝑗,targ,pos
𝐻

is the estimated location of the 𝑗th target (fromNBO
approach) at time 𝑘 = 𝐻. Therefore, the objective function
from the NBO method is given by

𝐽NBO (𝑏0) =
𝐻−1

∑

𝑘=0

𝑁

∑

𝑖=1

1 {

𝑠
𝑖,pos
𝑘+1

− 𝜉
𝑔(𝑖),targ,pos
𝑘+1


> 𝑑dist-thresh}

+ 𝐽
dist-ECTG
𝐻

,

(18)

where 𝐽dist-ECTG
𝐻

is the distance-based ECTG.

4.2. AAV Kinematics. The kinematic equations of an AAV
vary depending on whether the AAV is in the river or on
the land. When the AAV is in the river, we take into account
the speed of the river to write the kinematic equations. The
steering and thrust generation of the vehicle are modeled
based on the work done by the authors of [2, 22], which
is designed using single drive system. The vehicle is front-
wheel driven on land. When the AAV is in the river, it is
propelled using the centrifugal pump from the front wheels.
The following subsections describe the kinematics of AAV on
the land and in the river.

4.2.1. Kinematics of AAVs on the Land. This subsection pro-
vides the definition of 𝜓, which was introduced in Section 3,
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when the vehicle is on land. Let 𝑠𝑘 = (𝑝𝑘, 𝑞𝑘, V𝑘, 𝜃𝑘) be the
state of the vehicle at time 𝑘, where (𝑝𝑘, 𝑞𝑘) represents the
location of the vehicle on the 2D plane, V𝑘 represents the
speed of the vehicle along the heading direction, and 𝜃𝑘
represents the heading angle of the vehicle at time 𝑘. Let
𝑎𝑘 = (𝑓𝑘, 𝜙𝑘) represent the action vector of the vehicle,
where 𝑓𝑘 represents the acceleration along the direction of
the front wheels, and 𝜙𝑘 represents the steering angle of
the front wheels. The (simplified) schematic of a basic four-
wheeled vehicle is shown in Figure 2. The control variable
𝑓𝑘 lies within the interval [−𝑓land, 𝑓land], where 𝑓land (or
−𝑓land) is the maximum acceleration (or deceleration), and
the control variable 𝜙𝑘 lies within the interval [−𝛿land, 𝛿land],
where 𝛿land is the maximum steering angle. The function 𝜓
can be specified by a set of nonlinear kinematic equations, as
shown below:

𝑝𝑘+1 = 𝑝𝑘 + V𝑘𝑇 cos (𝜃𝑘) ,

𝑞𝑘+1 = 𝑞𝑘 + V𝑘𝑇 sin (𝜃𝑘) ,

V𝑘+1 = V𝑘 + f𝑘𝑇 cos (𝜙𝑘) ,

𝜃𝑘+1 = 𝜃𝑘 −
2f𝑘𝑇2𝐿
𝑊2 + 𝐿2

sin (𝜙𝑘) ,

(19)

where 𝑇 is the length of the time step,𝑊 is the width of the
vehicle, and 𝐿 is the distance between the front axle and the
rear axle.The derivation of the heading angle update (19) is as
follows.When the front wheels of the vehicle are oriented at a
particular angle 𝜙𝑘 with respect to themain axis of the vehicle
(as shown in Figure 2), the heading direction of the vehicle at
time 𝑘 + 1 is derived as follows:

𝛼 = arctan(𝑊
𝐿
) ,

𝜃𝑘+1 = 𝜃𝑘 +
𝑇
2

√𝐿2 +𝑊2
(𝑓
𝜃

𝑘,1
− 𝑓
𝜃

𝑘,2
)

= 𝜃𝑘 +
𝑓𝑘𝑇
2

√𝐿2 +𝑊2
[sin (𝛼 − 𝜙𝑘) − sin (𝛼 + 𝜙𝑘)]

= 𝜃𝑘 −
2𝑓𝑘𝑇
2

√𝐿2 +𝑊2
[cos (𝛼) sin (𝜙𝑘)]

= 𝜃𝑘 −
2𝑓𝑘𝑇
2
𝐿

𝑊2 + 𝐿2
sin (𝜙𝑘) .

(20)

4.2.2. Kinematics of AAVs on the River. This subsection
provides the definition of 𝜓, when the vehicle is in the river.
The kinematic equations of the AAV motion are as follows:

𝑝𝑘+1 = 𝑝𝑘 + V𝑘𝑇 cos (𝜃𝑘) + 𝑤
𝑥

𝑘
(𝑝𝑘, 𝑞𝑘) 𝑇,

𝑞𝑘+1 = 𝑞𝑘 + V𝑘𝑇 sin (𝜃𝑘) + 𝑤
𝑦

𝑘
(𝑝𝑘, 𝑞𝑘) 𝑇,

(21)

where 𝑤𝑥
𝑘
(𝑝𝑘, 𝑞𝑘) and 𝑤

𝑦

𝑘
(𝑝𝑘, 𝑞𝑘) are the estimated speeds

of the river at the location (𝑝𝑘, 𝑞𝑘) in 𝑥 and 𝑦 directions,
respectively, which are obtained from the river state estimate
𝜉
riv
𝑘

and the rivermodel presented in Section 2.The speed and

𝐿

𝜃𝑘
𝛼

𝑊

𝑓𝑘

𝜙𝑘
𝑓𝜃
𝑘,1

𝑓𝜃
𝑘,2


𝑘

(𝑝𝑘, 𝑞𝑘)

Figure 2: Free body diagram of an AAV.

the heading angle update equations remain the same as in the
case of land. When in water (or river), the control variable
𝑓𝑘 lies within the interval [−𝑓water, 𝑓water], where 𝑓water is
the maximum acceleration, and 𝜙𝑘 lies within the interval
[−𝛿water , 𝛿water], where 𝛿water is the maximum steering angle.
Typically, the values of 𝑓water and 𝛿water are much smaller
compared to that of 𝑓land and 𝛿land.

5. Simulation

We implement the NBOmethod inMATLAB, andwe use the
command fmincon (MATLAB’s optimization tool) to solve
the optimization problem. For performance comparison, we
also implement a greedy approach, where we optimize only
the current kinematic control for the AAVs such that the
following symmetric-distance-based cost is minimized:

𝐽Greedy (𝑏𝑘) =
𝑁

∑

𝑖=1

min
𝑗


𝑠
𝑖,pos
𝑘+1

− 𝜉
𝑗,targ,pos
𝑘+1



+

𝑁

∑

𝑗=1

min
𝑖


𝑠
𝑖,pos
𝑘+1

− 𝜉
𝑗,targ,pos
𝑘+1


,

(22)

where 𝑠𝑖,pos
𝑘+1

and 𝜉𝑗,targ,pos
𝑘+1

are the nominal positions (obtained
by evolving the belief states with zero noise) of the 𝑖th AAV
and the 𝑗th target at time 𝑘 + 1, respectively. Our simulation
environment is two dimensional, that is, the AAVs, the river,
and the targets move in 2D. According to the river model, the
speed of the river stream 𝑤𝑘 at a location (𝑝, 𝑞) is given by
𝑤𝑘(𝑝, 𝑞) = 𝐶1[log(𝑑𝑘(𝑝, 𝑞))+𝐶2], where 𝑑𝑘(𝑝, 𝑞) is the depth
of the river at (𝑝, 𝑞), and 𝐶1 and 𝐶2 are constants. Since the
depth of the river is not fully observable, we estimate 𝑑𝑘(𝑝, 𝑞)
as follows. The elevation map of the landscape is known
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Figure 3: Simulation of Scenario I with NBO approach, average
rescue time = 36 steps.

a priori, that is, if we know the depth of the river at a
particular location, we can obtain the depth of the river at
all locations. Therefore, we estimate the depth of the river
at location (𝑝, 𝑞), that is, 𝑑𝑘(𝑝, 𝑞) using the estimated depth
of the river at the reference point 𝑑ref

𝑘
(= 𝜉

riv
𝑘
). Therefore,

the estimated speed of the river at location (𝑝, 𝑞) is given
by 𝑤𝑘(𝑝, 𝑞) = 𝐶1[log(𝑑𝑘(𝑝, 𝑞)) + 𝐶2]. We set the length of
the horizon 𝐻 to 6 time steps, and the length of the times
step 𝑇 to 1 second. In the simulations, the flooded river flows
along a valley in the landscape from the north toward the
south as shown in Figure 1. Since the simulations are in 2D,
the river flows toward the −𝑦 direction, and the river speed
in 𝑥 direction (toward the east) is zero at every location.
Therefore, the estimated speeds of the river at location (𝑝, 𝑞)
in𝑥 and𝑦 directions are given by𝑤𝑥

𝑘
(𝑝, 𝑞) = 0 and𝑤𝑦

𝑘
(𝑝, 𝑞) =

−𝐶1[log(𝑑𝑘(𝑝, 𝑞)) + 𝐶2]. Here, we model the dynamics of the
target motion by the constant velocity model (see [23] for the
definition of the variables 𝐹 and 𝑈targ in (5)).

In the simulations, an AAV is represented by a rectangle,
and the line connecting the rectangles represents the tra-
jectory of the AAV. We define a performance metric called
average rescue time—the average of the rescue times of each
target (the rescue time of a target is the time elapsed after the
start of the simulation until it is rescued). The POMDP cost
function defined in Section 3 is reflective of this performance
metric. We simulate three scenarios: Scenario I, Scenario II,
and Scenario III. In Scenario I, there are two AAVs, each one
located on the opposite banks of the river, and two targets are
moving (being drifted by the moving water) in the river, as
shown in Figure 3. Figure 3 shows a snapshot of the scenario
at the end of the simulation with the NBO approach, where
the average rescue time is 36 time steps. We also simulate

Starting locations of targets

River flow 
direction

AAV’s starting
location

AAV’s starting
location

𝑦

𝑥

Figure 4: Simulation of Scenario I with greedy approach, average
rescue time = 64 steps.

Starting locations of targets

River flow direction
𝑦

𝑥

AAV’s starting
locations

Figure 5: Simulation of Scenario II with NBO approach, average
rescue time = 45 steps.

Scenario I with the greedy approach, as shown in Figure 4,
where the average rescue time is 64 time steps. In Scenario
II, there are two AAVs on the left bank of the river, and two
targets aremoving in the river.We simulate this scenario with
both the NBO and the greedy approaches. Figure 5 shows the
snapshot of the scenario with the NBO approach at the end
of the simulation, where the average rescue time is 45 time
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Figure 6: Simulation of Scenario II with the greedy approach,
average rescue time = 62 steps.
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 direction

Figure 7: Simulation of Scenario III with NBO approach, average
rescue time = 48 steps.

steps, and Figure 6 shows the simulation of the same scenario
with the greedy approach, where the average rescue time is
62 time steps. In Scenario III, there are three AAVs (two on
the left bank of the river and one on the right), and three
targets aremoving in the river.We simulate this scenario with
both the NBO and the greedy approaches. Figure 7 shows the
scenario with the NBO approach, where the average rescue
time is 48 time steps, and Figure 8 shows the simulation
of the same scenario with the greedy approach, where the
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River flow
 direction

AAV’s starting
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𝑥

Figure 8: Simulation of Scenario III with the greedy approach,
average rescue time = 76 steps.
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Figure 9: Performance comparison for Scenario I: NBO approach
versus greedy approach.

average rescue time is 76 time steps. The simulation of these
scenarios demonstrates that the NBO approach achieves a
better coordination among the AAVs compared to the greedy
approach while rescuing the targets, as evident from the
average rescue times.

We compare the performance of the NBO approach
with that of the greedy approach through Monte-Carlo
simulations. We simulate the above scenarios with the NBO
and the greedy approaches separately for 50 Monte-Carlo
runs. In each scenario, we compute the average rescue time
in every run for both the NBO and the greedy approaches.
Figures 9, 10, and 11 show the plots of the cumulative
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Figure 10: Performance comparison for Scenario II: NBO approach
versus greedy approach.
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Figure 11: Performance comparison for Scenario III: NBO approach
versus greedy approach.

frequencies of average rescue times for the NBO and the
greedy approaches for Scenarios I, II, and III, respectively.
Figures 9, 10, and 11 demonstrate that the NBO approach
significantly outperforms the greedy approach.

The algorithm (NBO) runtime to compute the control
commands for three AAVs (in Scenario III) in any time step
in MATLAB is approximately 4 seconds on a lab computer
(Intel Core i7-860 Quad-Core Processor with 8MB Cache
and 2.80GHz speed).This runtime can be greatly reduced on
a better processor and by further optimizing the code. Since
the algorithm runtime is not prohibitive, it can be used in real
time (i.e., for practical purposes).

6. Conclusions, Remarks, and Future Scope

We designed a guidance algorithm for autonomous amphibi-
ous vehicles (AAVs) to rescue moving targets in a 2D flood
scenario, where the floodwater flows across the scene, and the
targets move in the flood water. We designed this algorithm
based on the theory of partially observable Markov decision
process (POMDP). Since a POMDP problem is intractable
to solve exactly, we used an approximation method called
nominal belief-state optimization (NBO). We simulated a
few scenarios to demonstrate the coordination among the
AAVs achieved by the NBO approach. We defined a per-
formance metric called average rescue time to compare the
performance of our approach with a greedy approach. Our
results show that the NBO approach outperforms the greedy
approach significantly. This was expected because unlike
the greedy approach the NBO approach has a lookahead
property, that is, the NBO approach trades off the short-
term performance for the long-term performance. Although
the greedy approach achieves coordination among the AAVs
in that the AAVs eventually rescue all the targets, but the
performance in terms of average rescue time, which is crucial
in these kinds of rescue missions, is poor compared to our
NBO approach. In our future work, we would like to develop
methods to further improve our NBO approach (e.g., NBO
with adaptive horizon). We would also like to extend our
approach to a decentralized AAV guidance problem to rescue
multiple targets. In this decentralized case, we will induce
coordination among the AAVs to rescue multiple targets by
appropriately optimizing the communication (at the network
level) between the AAVs along with the kinematic controls
for the AAVs.

Acknowledgments

Thisworkwas supported in part by the Fulbright Foundation.
The authors would also like to acknowledge Colorado State
University’s support via the Libraries Open Access Research
and Scholarship Fund (OARS).

References

[1] M. Frejek and S. Nokleby, “Design of a small-scale autonomous
amphibious vehicle,” in Proceedings of IEEE Canadian Confer-
ence on Electrical and Computer Engineering (CCECE ’08), pp.
781–786, Niagara Falls, Canada, May 2008.

[2] E. Papadopoulos andM.Misailidis, “On differential drive robot
odometry with application to path planning,” in Proceedings of
the European Control Conference, pp. 5492–5499, Kos, Greece,
July 2007.

[3] Y. Tee, Y. Tan, B. Teoh, E. Tan, and Z. Wong, “A compact design
of zero-radius steering autonomous amphibious vehicle with
direct differential directional drive—UTAR-AAV,” in Proceed-
ings of IEEE International Conference on Robotics, Automation
and Mechatronics (RAM ’10), pp. 176–181, Singapore, June 2010.

[4] Q. P. Ha, T. H. Tran, S. Scheding, G. Dissanayake, and H. F.
Durrant-Whyte, “Control issues of an autonomous vehicle,” in
Proceedings of the 22nd International Symposium on Automa-
tion and Robotics in Construction (ISARC ’05), Ferrara, Italy,
September 2005.



Mathematical Problems in Engineering 9

[5] W. Masayoshi, “Research and development of electric vehicles
for clean transportation,” Journal of Environmental Sciences, vol.
21, no. 6, pp. 745–749, 2009.

[6] T. Brunl, Embedded Robotics, Springer, Berlin, Germany, 3rd
edition, 2008.

[7] T. H. Tran, Q. P. Ha, R. Grover, and S. Scheding, “Modelling
of an autonomous amphibious vehicle,” in Proceedings of the
Australasian Conference on Robotics and Automation (ACRA
’04), Canberra, Australia, December 2004.

[8] R. Manduchi, A. Castano, A. Talukder, and L.Matthies, “Obsta-
cle detection and terrain classification for autonomous off-road
navigation,” Autonomous Robots, vol. 18, no. 1, pp. 81–102, 2005.

[9] S. Lacroix, A. Mallet, D. Bonnafous et al., “Autonomous rover
navigation on unknown terrains: functions and integration,”
International Journal of Robotics Research, vol. 21, no. 10-11, pp.
917–942, 2002.

[10] S. Ragi and E. K. P. Chong, “Dynamic UAV path planning for
multitargte tracking,” in Proceedings of the American Control
Conference (ACC ’12), pp. 3845–3850, Montreal, Canada, June
2012.

[11] S. A. Miller, Z. A. Harris, and E. K. P. Chong, “A POMDP
framework for coordinated guidance of autonomous UAVs for
multitarget tracking,” EURASIP Journal on Advances in Signal
Processing, vol. 2009, Article ID 724597, 17 pages, 2009.

[12] T. H. Tran, Modelling and control of unmanned ground vehicles
[Ph.D. thesis], 2007.

[13] S. A.Watson and P.N.Green, “Design considerations formicro-
autonomous underwater vehicles (𝜇AUVs),” in Proceedings of
the IEEE International Conference on Robotics, Automation and
Mechatronics (RAM ’10), pp. 429–434, Singapore, June 2010.

[14] S. A. Watson and P. N. Green, “Propulsion systems for micro-
autonomous underwater vehicles (𝜇AUVs),” in Proceedings of
IEEE International Conference on Robotics, Automation and
Mechatronics (RAM ’10), pp. 435–440, Singapore, June 2010.

[15] L. D. Landau, FluidMechanics, chapter IV, Pergamon Press, 2nd
edition, 2000.

[16] R. Bellman,Dynamic Programming, PrincetonUniversity Press,
Princeton, NJ, USA, 1957.

[17] C. Kreucher, A. O. Hero, K. Kastella, and D. Chang, “Efficient
methods of non-myopic sensor management for multitarget
tracking,” inProceedings of the 43rd IEEEConference onDecision
and Control (CDC ’04), pp. 722–727, Paradise Island, Bahamas,
December 2004.

[18] D. P. Bertsekas and J. N. Tsitsiklis, Neuro-Dynamic Program-
ming, Athena Scientific, Belmont, Mass, USA, 1996.

[19] D. P. Bertsekas and D. A. Castañon, “Rollout algorithms for
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