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Helical method of tube formation and Hartree-Fock SCF method modified for periodic solids have been applied in study of
electronic properties of single-wall silicon nanotubes (SWSiNT), silicone sheet, and nanoribbons (SiNR). The results obtained
for nanotubes in wide diameter range of different helicity types have shown that metallics are only SWSiNTs with diameter up to
<6.3 A due to the effect of curvature, which induces coupling of o and 7 orbitals. From the calculated band structure results that,
irrespective of helicity, the SWSiNTs of larger diameter are small-gap semiconductors with direct gap between the Dirac-like cones
of (n*,m) bands. Gap of SWSIiNTs is modulated by fold number of particular tubular rotational axis symmetry and exhibits an
oscillatory-decreasing character with increase of the tube diameter. Oscillations are damped and gap decreases toward 0.33 eV for
tube diameter =116 A. Irrespective of the width, the SiNRs are small-gap semiconductors, characteristic by oscillatory decreasing
gap with increasing ribbon widths. The gap of SWSINTs and SiNRs is tuneable through modulation of tube diameter or ribbon
width, respectively. The SiNRs and SWSiNTs could be fully compatible with contemporary silicon-based microelectronics and

could serve as natural junction and active elements in field of nonomicrotechnologies.

1. Introduction

Discovery of 1D and 2D nanostructural form of carbon, that
is, carbon nanotubes [1] and grapheme [2] with extraordinary
physical properties, initiated opening of a new and rapidly
growing field of research in solid-state chemistry and solid-
state physics with potential applications in diverse area of
nanotechnology including biological and medicinal appli-
cations. Similar electronic properties have been naturally
expected for 1D and 2D nanostructure form of some other
elements of group IV. In particular, in case of silicon it should
be extremely important since highest possible compatibil-
ity for micro/nanojunctions formation with contemporary
“bulk” silicon-based microelectronic can be expected.

It is well known that sp* hybridization with strong in-
plane overlap of m orbitals is responsible for stability of

2D-hP nanostructural form of graphene. On a bulk scale it
gives rise to graphite formation which is most stable crystal
structure of carbon. Since interlayer interactions of 7 orbitals
are much weaker, it enables at certain circumstances to
exfoliate even a single-layer planar sheet of carbon atoms
with 2D-honeycomb pattern—reported method of graphene
discovery. Carbon nanotubes formation and theirs stability
are directly related to stability of graphene.

With valence (s, p,,,,) electrons in 3rd-shell, silicon,
though nearest neighbour of carbon in group IV, exhibits
different properties. Most stable crystal form of silicon is
diamond-like cF8 structure with sp® hybridization, whilst
bulk form of graphite-like silicon structure is unknown.
That was the main reason of uncertainty about possibility of
existence and stability of sp” silicone analogue of graphene,



that is, 2D-hP single-layer Si sheet with honeycomb pattern.
For a long time, an effort to prepare Si-nanostructures has
resulted usually in Si nanowires [3-9] (sp3 -based structures),
rather than to any other form. Since 2002 the first reports on
synthesis of large-diameter silicon nanotubes (up to 50 nm)
have appeared [10-13]. Experimental evidence of tin-wall
and small-diameter silicon nanotubes (¢ = 2nm) forma-
tion [14, 15] came in 2005 and the same authors reported
later [16] that parts of less-oxidized Si-nanotubes possess
hexagonal character which can be interpreted as a mixture of
sp’/sp’ hybridization. Graphene-like pattering has also been
reported [17, 18] at experimental study of silicon nanoribbons
(SiNR). The results of scanning tunnelling microscopy (STM)
and angle-resolved photoemission spectroscopy (ARPES),
published only very recently [19] have shown in a convincing
way that graphene-like silicon sheet was synthesized and
the authors named it silicene. Moreover, it has been shown
[19] that single-layer sheet is lightly buckled 2D-hP structure
with an average Si-Si distance =0.22nm (+0.001 nm) and
electronic dispersion derived by ARPES confirmed presence
of relativistic Dirac fermions, which is the very basic charac-
teristic feature of graphene-like structure.

The buckled structure as a stable form of silicone (or
more precisely, meta-stable allotrope of Si) has been predicted
theoretically [20] by DFT-based study already in 1994. In
combination with finite temperature molecular mechanics
and DFT-based calculations it has been shown [21] that
strictly planar and light buckled silicone sheet have nearly
identical energy minima on adiabatic potential energy sur-
face. For planar structure, however, there is a mixing of
acoustic and optical phonon modes with lowering into
acoustical region with small but imaginary frequency at I
point. In light-buckled structure are acoustic and optical
branches well separated and structure is calculated to be
stable up to 1000 K. For both structures, characteristic is an
optical phonon mode with frequency =600 cm™ at T point
and nearly identical topology of electronic band structures
with Dirac cone at K point and Fermi velocity =~10°m/s.
Calculated hP-lattice constant is 3.83 A and Si-Si distance
2.25 A. The results of applied theoretical calculation methods,
no matter if for strictly planar or light-buckled 2D-hP silicone
sheet yields basically the same electronic dispersion. On the
other side, however, theoretical predictions of electronic band
structure for single-wall silicone nanotubes (SWSINT) are
different.

Simple metallicity condition derived by tight-binding
(TB) approximation for 2D-hP planar graphene sheet and
directly applied for carbon nanotubes [22] can be expressed
in a simple way; for tube with chirality numbers (n, 1)
holds [(n — m) = 3pu] and tube is metallic if (n — m) is
an integer multiple of 3 and semiconducting otherwise. It
has been calculated by the DFT-LDA method [23] and TB-
Hamiltonian approach [24] that this relation is valid also
for SWSINTs. However, for H-terminated SWSiNTs the TB-
Hamiltonian approach yields semiconductor character (gap =
2.2¢V) for all tubes independent on chirality and diameter
[25]. Semiconductor character independent on chirality but
with decreasing gap with increasing tube diameter has been
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reported [26] for anion (silicide-like) form of SWSiNTs
and also for H-teminated SWSiNTs calculated by DFT-TB
approach. Simple metallicity condition has been found to
be valid [27] for SWSiNTs with strictly planar (sp>) parent
layer also within the DFT calculation with plane-wave basis
set. The same method yields [27], however, different results
for SWSIiNTs with buckled (sp®) character of parent layer,
though this type of tube is only of 0.03 eV more stable than
corresponding sp*-based tube. For studied set, irrespective
of chirality, the (n,0) tubes are metallic for n = 5-9 and
semiconductor with decreasing gap with increasing tube
diameter for n = 10-24. Metallicity is ascribed to o*-7"
mixing in small diameter tubes. However, the armchair (n, n)-
type tubes for n = 5-11 are found to be semiconductors with
decreasing gap as tube-diameter increases. The finite tem-
perature molecular mechanics (MM) in combination with
DFT-based calculations with plane-wave basis set applied
in study of SWSiNTs [28] predicted the nanotubes with
light-buckled parent Si 2D-hP sheet (average Si-Si distance
=2.2 A) to be unstable for tube diameter smaller than =7.6 A
(n < 6 for (n,0) and (n,n)-types) but structure can be
stabilized by internal or external adsorption of transition
metal elements. The SWSiNTs (n,0)-type, irrespective of
chirality, are in the range of 6 < n > 11 metallic and
band gap between valence and conduction band opens for
n > 12 (diameter = 14.6A). The authors [28] suppose,
however, that transition from metal to semiconductor may
occur at smaller diameter if GW method of self-energy
calculation is applied and, in general, DFT results may
differ depending on pseudopotentials and approximation of
exchange-correlation potential applied. Instability of small
diameter SWSIiNTs (1 < 6) with sp> distortion has also been
calculated [29] by non-orthogonal DFT-TB in combination
with MM simulation but, in contrast to the results [28], all
types (zig-zag, armchair, or chiral) of SWSiNTs were found,
however, to be semiconductors with small band gaps (<1 eV).
Stabilization of SWSINT by insertion of different metal
atoms inside tube has been studied also by others [30] and
metal character of all small-diameter SWSiNTs, regardless
of chirality, has been predicted [31] also by DFT method
with B3LYP/6-31G exchange-correlation potential. Clusters
of different character and size have also been considered
[32-34] at modelling SWSINTs. Stability of Si-nanotubular
structures has been studied by generalized TB-MM method
[32] and by semiempirical HF-SCF MNDO method with
PM3 parametrization [33]. The MNDO method predicted
[33] that SWSINTs with buckled (sp3) structure could be a
stable structure. Based on different cluster structures, aspects
of electronic structure of SWSiNTs within ab-initio MP2/6-
31G method have also been investigated [34] and conclusion
of authors is that SWSiNTs are possibly metals rather than
wide-gap semiconductors.

Experimental methods and techniques for SWSiNTs
synthesis are in an early period of development. To our
knowledge, so far published results of SWSINTs synthesis
reported production of mixture of different products with
only a small fraction (up to 10%) of tubular structures with
a wide range of diameters. Experimental characterization of
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electronic properties of SWSiNTs has not been published
yet. In these circumstances, theoretical calculations are the
only qualified source available. As presented above, calcu-
lated electronic properties of SWSiNTs are not uniform and
mutually consistent. In our opinion, the reason of differences
in calculated properties is simply due to the character and
parametrization of applied theoretical methods, which are
more or less convenient for study of particular properties,
structural type and composition. It is not the goal of the
present study to analyse which method is most convenient
for SWSINTs calculations. What is crucial in our opinion,
however, is the basic character of tubular electronic band
structure calculation, which is the same for all band structures
(BS) of SWSINTs introduced above. The calculations are
based on well-known “chiral vector” treatment of carbon
nanotube formation [35, 36], which is straightforwardly
applied for subsequent BS calculation of tubular structure.
The chiral numbers (1, m) define two orthogonal unit vectors,
chiral-C and translation-T vector in graphene sheet and
in corresponding reciprocal k-space with allowed discrete
values () in C* direction and continuous translation k-
values in T* direction. The rectangle defined by unit vectors
C and T when rolled up creates translation tubular unit cell
for a tube with circumference |C| and translation modulus
|T|. Translation tubular unit cell contains N irreducible unit
cells of planar 2D-hP graphene sheet. For zig-zag (n,0) and
armchair (n, ) nanotubes N = 27 and number of atoms for
graphene-like structures with 2 atoms in 2D-hP unit cell is
4n. In case of, for example, SWSIiNT with diameter =26 A,
that is, nanotube of (21,0)-type, the BS calculated directly for
translation tubular unit cell in valence electron-basis set (4
AO/atom) is represented by a bundle of 336 bands in contrast
to the BS of 2D-hP silicone sheet with only 8 bands. In case
of graphene and carbon nanotubes, due to decoupling of ¢
and 7 electrons (sp® hybridization of graphene planar 2D-hP
structure), usually m-electron approximation is applied and
BS of tubular structure is calculated by zone-folding method.
In this case, tubular BS is derived from electronic dispersion
of planar grapheme E*" (ky, k), but calculated for k-values

(¢, k) of tubular k-space, that is, E®(k) = E?P (¢, k). This
method is not restricted only for 7-bands dispersion, but it
is used in the same way also for complete (o, 77)-bands dis-
persion calculations. It is evident that zone-folding method
completely neglects the effect of tube curvature, which can
be substantial mainly for small-diameter nanotubes. Tubular
BS calculated directly over tubular translation unit cell covers
the effect of curvature in principle, but it is an open question
if a method, for example, based on a plane-wave basis set, is
suitable for tubular structures calculation.

Nonetheless, no matter the theoretical method applied
and approximation used are, the key point in tubular BS
calculation is the fact that translation tubular unit cell defined
by “chiral vector” treatment is not irreducible unit cell of
tubular structure. As a consequence, the correspondence
between the 8n-bands BS of tubular structure defined by
translation tubular unit cell and the 8-bands BS of planar
parent structure defined by 2D-hP irreducible unit cell is lost
and can hardly be reconstructed. Moreover, it gives rise to

uncertainty about the basic character of calculated BS. It can
be very important mainly for more complex structures with
more than 2 atoms in parent 2D-hP irreducible unit cell, for
example, in case of single-wall boron nanotubes (SWBNT)
with 8 atoms/2D-hP u.c. It has been shown [37] that BS
of SWBNT with the same chiral vector calculated by zone
folding method is substantially different from the BS obtained
by direct calculation based on translation tubular unit cell.
Whilst the first one is metallic, particular bands intersect
Fermi level, the direct calculation results in semiconductor.
Similar situation can not be excluded in a graphene-like
system if coupling of -7 orbitals is induced.

In the present study, instead of commonly applied “chiral
vector” treatment, we have used the helical method [38-
41] of tube formation. Employing the screw symmetry
operations, helical method gives rise to preserving direct
relation between BS of 2D-hP parent structure and tubular
BS. Within this method, the irreducible 2D-hP unit cell
of parent planar structure remains the unit cell also for
tubular 1D-structure. Related to a two-dimensional structure
characterized by translational vectors a and b, any helical tube
can be created [42] by rolling up a ribbon corresponding
to m, translations of the reference unit cell along a and an
“infinite” number of translations (m,,) along b. The helix
is defined by helical parameters (1m,,m,) defining a vector
(m, - a+my - b) that is rolled up perpendicular to the helical
axis. This vector is mapped on a cylinder surface, makes its
circumference, and hence determines the diameter of the
tube. For [(m,, m;), m,,] the reciprocal space is characterized
by a pair of (kg,, k,,)-values, kg, = v/m, (r =0,1,...,m,—1)
and k. € (-1/2,1/2). Now, translations along a correspond
to rotations by ®, = 2nr(r/m,) to which kg, is related.
Translations along b(m,,) are mapped as rototranslations
and can be treated as true translations in an infinite one-
dimensional system, hence giving rise to continuous values
for k,, related to reciprocal rototranslations. As a result, the
BS of tubular structure is characterized by the same number
of bands as the BS of parent 2D-hP structure. To model
the tube in practical calculations, the rototranslations were
terminated after sufficiently large odd number m,,, which is
directly related to the length of created tube (m,, > my),
and a “cyclic cluster” with periodic boundary conditions
was constructed at calculation of matrix elements [43] that
essentially corresponds to the bulk limit.

The results presented in this paper are for nanotubes of
the length of =358 A in the diameter range ~3.7 A-116 A.
It has been shown that of the true metallic character are
only small-diameter SWSiNTs up to ¢ < 6.3A due to
the effect of curvature which induces coupling of o and
7 orbitals. From the calculated band structures follow that
irrespective of helicity, the SWSiNTs of larger diameter are
all small-gap semiconductors with direct gap between the
Dirac-like cones of (7%, ) bands. Gap of SWSiNTs exhibits,
however, an oscillatory-decreasing character with increase of
the tube diameter. In the oscillatory series, minima of the
gap in “saw-teeth” pattern are reached for helicity numbers
m,, that are an integer multiple of 3, whilst m, value itself
directly determines the fold number of particular tubular
rotational axis symmetry. Oscillations are damped and gap



decreases toward ~0.33eV for tube diameter =116 A. For
particular tubular structures, besides the band structure and
corresponding gap, excitation energy and energy of folding
(stretch energy) are also calculated. The results for SiNRs
show, that irrespective of the width, all studied ribbons
are small-gap semiconductors characteristic by oscillatory
decreasing gap with increasing ribbon widths. In general,
obtained results indicate that gap of SWSiNTs and SiNRs
should be tuneable through modulation of tube diameter or
ribbon width, respectively. Calculated electronic properties
indicate that both the SiNRs and SWSIiNTs could be fully
compatible with contemporary silicon-based microelectron-
ics and could serve as natural junction and active element in
field of nonomicrotechnologies.

The paper is divided into 4 sections. In Section 1, a
survey of published experimental and theoretical results
concerning 1D silicon nanotubes, 2D ribbons and single-
layer sheet are presented. Short sketch of helical symmetry
used for SWSINT formation and band structure calculation
is presented in Section 2.1. The modified Hartree-Fock SCF
method for periodic solids which is used for band structure
calculations is shortly introduced in Section 2.2. The results
obtained at study of silicon single-layer sheet and ribbons
are presented and discussed in Section 3.1. In Section 3.2,
the results obtained at study of SWSIiNTs are presented and
discussed. Summary of presented results are in Section 4.

2. Methods

2.1. Helical Symmetry of Nanotubes in Band Structure Calcula-
tion. The basic idea of accounting for the helical, screw sym-
metry in nanotubes as suggested in [38-40] and somewhat
differently in [41] was closely followed in our implementation.
Since some technical details are different and can be written
in a simplified manner, we repeat them here in order to clarify
the calculated band structures.

In general, any nanotube with a periodic structure can
be constructed by rolling up a single sheet (ribbon) of a
two-dimensional structure that is finite in one translation
direction and infinite in the other one. We shall restrict
ourselves to nanotubes created from two-dimensional hexag-

onal lattice characterized by two equivalent |a] = |[b]
primitive translational vectors a and b that contain an angle
of 27/3. In particular, real lattice unit vectors are a = —ay,

b = (v/3/2)aX + (1/2)aY and corresponding reciprocal
lattice vectors are a* = (27/a)(1/V3)X - (27/a)Y, b* =
(27t/a)(2/V/3)X with coordinates of the high symmetry
points in k-space I' = (0,0,0), K = (-1/3,2/3,0), M =
(0,1/2,0).

Due to our convention, the translations along the direc-
tion of a will be treated as finite, whereas “infinite” number
of translations is assumed along b. A nanotube characterized
by a general helical vector (m,a + m,,b), with a tube notation
[(m,,my,), m ], is then created from the ribbon that has m,
translations (0, ...,m, — 1) along a and “infinite” number m,,
of translations along b. The finite value m, (m, < m,,) of
helical vector number along b and finite m,, value characterize
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the first complete thread of the helix. Such a ribbon is rolled
up on a cylinder with the diameter

dyr = maa+myb] 1)
T

which follows from the fact that the helical vector (mm,a+m,b)
is rolled up perpendicular to the rotation axis and makes the
circumference of the cylinder. The irreducible computational
tubular unit cell corresponds to that in the two-dimensional
structure except for the geometry relaxation due to the
curvature. Exactly as in the two-dimensional structure that
is infinite in both dimensions, each such unit experiences the
same environment. Original translations along a and b are
now transformed to rototranslations (7, 7,,) characterized by
the pair of operations (z,, ¢,) and (z, ¢,), where z,, z;, are
projections of a and b onto the axis of the nanotube and ¢,,, ¢;,
is the rotation angle related to this translation. Hence for any
point defined in a cylindrical coordinate system (p, ¢, z) is

T.=(pd+o,z+z), i=ab (2)
If we relate a pseudovectors t; to these rototranslations,
in analogy with the two-dimensional planar lattice we can
define reciprocal pseudovectors t; such that

tit; =2nd;. (3)

Let the atomic orbital ; ; be a counterpart of the reference
unit cell atomic orbital xo, in the unit cell defined by 7=

and 7, rototranslations. The structure created by m, roto-
translations 7, (including 0) of the reference computational
cell can be treated as an ideal cyclic cluster with periodic
boundary conditions, since, indeed in the nanotube each
unit has an equivalent surrounding. Consequently, from m,
atomic orbitals y; o (j, = 0,m, — 1) one can create m,
symmetry orbitals:

(Dr lk(Dr
X ey 0 (4)
Vi JZ—:O

where R, = j,t, and there are m, allowed discrete values of
ko, = (r/m,)t, forr =0,...,m,~1. These symmetry orbitals
are propagated due to the 7, to “infinity” (m,, = N > m,, m;,)

providing Bloch orbitals:

X(kir>k®r)
L F T, 0
= lim —— ey * 'Jax-
. Jar0?
N=eo Jo=—N/2 j4=0
where Rj, = j,t, and K’s are any values from the first

Brillouin zone for the one-dimensional system. In the prac-
tical implementation into the codes that generate integrals
in a Cartesian coordinate system, one has to take care of the
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appropriate rotation of the coordinate system for each basis
function center to preserve the rotational symmetry. Expressed
explicitly, rotation and rototranslation operations have to be
subjected not only nuclear centers that results in set of nuclear
coordinates of involved atoms on surface of tube, but to
these operations all basis functions of involved atoms must
be subjected as well, in order to ensure correct directional,
radial, and angular arrangements of p,d,f-AOs on tubular
surface.

In case of nanotubes with helical vectors [(m,,0), m,,],
ke, = ko,t, is related to the true rotational angle in the
m,-fold symmetry, whereas k, = kt,. In this special
case, through the point symmetry operations, the rotational
symmetry can be incorporated as well [41].

2.2. The HF-SCF Cyclic Cluster Method for Band Structure
Calculation. The band structures have been calculated by
computer code Solid2000-NT. The code is based on the
Hartree-Fock SCF (HF-SCF) method for infinite periodic
cyclic 3D cluster [43] with the quasi-relativistic INDO
Hamiltonian [44]. Based on the results of atomic Dirac-
Fock calculations [45, 46], the INDO version used in the
SOLID package is parametrized for nearly all elements of
the Periodic Table. Incorporating the INDO Hamiltonian
into the cyclic cluster method (with Born-Karman boundary
conditions) for electronic band structure calculations has
many advantages and some drawbacks as well. The method
is not very convenient for strong ionic crystals but it yields
good results for intermediate ionic and covalent systems. The
main disadvantage is an overestimation of the total width
of bands which is an inherent feature of the HF-SCF in
application for periodic solids. On the other hand, it yields
satisfactory results for properties related to electrons at the
Fermi level (frontier-orbital properties) and for calculation of
equilibrium geometries [47-49].

In practical calculations, the basic cluster of the dimen-
sion N, x N, x N, is generated by corresponding translations
of the unit cell in the directions of crystallographic axes,
a(N,),b(N,), ¢(N,). In particular, the tubular band structure
calculations have been performed for the basic cyclic clusters
[(m, x my, x 1), m,.]. The basic cyclic cluster of the particular
size generates a grid of (m, x m,) points in k-space. The
HE-SCF procedure is performed for each k-point of the grid
with the INDO Hamiltonian matrix elements that obey the
boundary conditions of the cyclic cluster [43]. The Pyykko-
Lohr quasi-relativistic basis set of the valence electron atomic
orbitals (i.e., 35, 3py, 3p,, and 3p,-AO for Si) has been used.
In the case of SWSINT, there are 2 Si atoms and 8 AO in 2D-
hP unit cell of parent silicone single-layer sheet. The basic
cyclic cluster, for example, for SWSINT [(31,0), 91] with 5642
atoms, generates a grid of 2821 points in k-space and the total
number of STO-type functions in the cluster is 22,568. The
number of STO-type functions is unambiguously determined
by the number of AOs of the valence electrons pertaining to
atoms which constitute the basic cluster. Dimension of the
basic cluster directly determines the number of generated
k-points in the grid, that is, (m, x m,). However, what is
important to be stressed, is the fact that no matter the number

of the AOs in the calculated cyclic cluster the number of
the bands remains always 8 as it corresponds to parent 2D-
hP unit cell of silicone sheet. That is the consequence of
helical method used at tube formation since irreducible 2D-
hP unit cell remains also the unit cell (irreducible) of tubular
structure.

That is the crucial and substantial difference in com-
parison with conventionally used chiral-vector method of
tube formation, for example, as used for carbon nanotubes
[35, 36]. If chiral method was used for, for example, (31,0) tube
construction, which is equivalent to [(31, 0), m,,] tube within
the helical treatment (diameter ~ 38.81 A), then chiral,
translational tubular unit cell would contain 62 irreducible
unit cells of 2D-hP character; that is, 124 Si atoms and band
structure would be a bundle of 496 bands. In light of that, the
question if tubular band structure calculated within chiral-
vector treatment of tube formation represents a true tubular
band structure is legitimate. Reliable answer to this question
can be obtained from experimental momentum distribution
curves of highly resolved ARPES of single-wall nanotubes
which are, however, unavailable so far.

The precision of the results of band structure calculation
within the cyclic cluster treatment increases with increasing
dimension of the basic cluster. It has been shown [43, 47—
49], however, that there is an effect of saturation, a bulk
limit beyond which the effect of increasing dimension,
on for example, total electronic energy, orbital energies,
HOMO-LUMO difference and so on, is negligibly small.
In practice, dimension of the basic cluster and parameters
selection (e.g., for calculation of 8 integrals) is a matter
of reasonable compromise between computational efficiency
and compatibility of calculated electronic properties and
equilibrium geometry with respect to some reference or
experimental data. In the present study of silicon compounds,
the scaling parameter 1.0 (standard INDO scaling of f
integrals for molecular system calculations is 0.75) has been
used in calculations of the one-electron off-diagonal two-
center matrix elements of the Hamiltonian (S-“hopping”
integrals). Using this scaling parameter, the best agreement
with experimental data of bulk silicon (diamond-like cF8
structure) has been reached. Calculated band gap is 1.242 eV
(exp. 1166 eV) and equilibrium Si-Si distance is 0.240 nm
(exp. 0.235nm), allowed direct excitation energy is 0.826 eV
and lowest spin-flip excitation is also 0.826 eV It should be
kept in mind, however, that the basic efficiency and accuracy
are restricted by the INDO method parametrization and
character of the HF-SCF method itself.

3. Results and Discussion

3.1. Band Structure of Silicone Sheet and Silicone Ribbons.
As mentioned in the introduction, the single layer sheet of
silicone with 2D-hP honeycomb structure can be considered
as a parent structure for SWSiNT formation. The DFT-based
simulations [21] yield strictly planar and low-buckled honey-
comb structures with nearly the same energetic minima, but
for planar type the phonon dispersion reveals hybridization
of some optical and acoustic phonon branches with lowering
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FIGURE 1: Band structure of “infinite” (N, = N,, = 91) silicone sheet
(a) and band structure with a gap at K-point of silicone nanoribbon
“infinite” in a-direction (N, = 91) and finite (N, = 5) in b-direction
(b). Doted line indicates Fermi level.

into acoustical region and with imaginary frequency at T
point. The low-buckled structure yields very small (zero at
I' point) but positive frequency of this branch all over I'-K
direction. Both structures are characteristic with the same
optical phonon branch, with frequency 600 cm™" at T point.

The HF-SCF method used in the present study yields
only slight puckering which is only several meV more stable
than planar structure. Since the topology of band structure
of both structural types is basically identical we use, in what
follows, the planar type as a parent structure for SWSiNTs
formation. Two Si atoms (Sil: 1/3, 2/3; Si2: 2/3, 1/3) constitute
the unit cell with optimized lattice parameter a = b =3.933 A
and equilibrium Si-Si distance is 2.270 A, which is in good
agreement with experimental [19] value 2.2 A and published
theoretical [20-29] DFT and TB results, that is, 2.2-2.4 A.

The band structure of planar silicone sheet calculated for
basic cyclic cluster (91 x 91 x 1) is in Figure 1(a).

As it can be expected, topology of the band structure of
silicone sheet, Figure 1(a), is similar to that of graphene. Dis-
persion of (7%, 7r) bands at K-point is linear with “massless”
relativistic Dirac fermions. Fermi-level velocity (v = E/hk)
calculated from the band structure is 2.110° m/s. Comparing
to v = 1.3 10° m/s calculated from the experimental ARPES
dispersion [19], Fermi velocity calculated from the band
structure is overestimated which is a consequence of exag-
geration of the total bandwidth within the HF-SCF method.

An interesting result [19] of the experimental ARPES is
the fact that the apex of the mr-band dispersion is =0.3 eV
below Fermilevel. It indicates that studied 2D-silicone sample
was rather a small-gap (=0.6eV) semiconductor and not
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FIGURE 2: Dependence of calculated gap of silicone nanoribbons as
a function of ribbon width rw = Nya - v/3/2 for fixed ribbon length
rl = N, a. Parameters of the ribbons are N, = 91 for N, = 3-39 and
lattice constant a = 3.933 A.

a semimetal (zero-gap semiconductor) as it should corre-
spond to ideal “infinite” single-layer sheet with relativistic
Dirac fermions.

It is well known that on the nanoscale, electronic proper-
ties are very sensitive to aspects of dimensionality—quantum
confinement effect.

In Figure 2, we present dependence of calculated gap
between (71*,7) bands at K-point as a function of ribbon
width (rw = Nya - V/3/2), expressed over the number of
N,, translations of 2D-hP unit cell in b axis direction, going
from “infinite” silicene sheet (N, = N, = 91) down to a very
narrow nanoribbon (N, = 91, N, = 3-39, with odd integers).
As it can be seen, the overall tendency is gap decreasing with
increasing ribbon width, reaching zero-gap value in the limit
of infinite 2D-hP layer—(N, = N, = 91). An interesting
aspect is a kind of oscillatory behavior of gap dependence
for neighboring triads, that is, gap(3 - (N, — 2)) < gap(3 -
N,) < gap(3 - (N, + 2)). Similar oscillatory dependence has
been reported [21] for triads 3p, 3(p + 1), 3(p + 2) — p
integer, in armchair-type (chiral-method convention) of bare
and H-saturated silicone nanoribbons within DFT-based
simulation. We note that our results are obtained for zig-
zag type of silicone nanoribbons. Calculated gap-dependence
should be an explanation of the observed ARPES results. As
an example, the band structure of the nanoribbon N, = 91,
N, = 5, that is, length =35.8 nm and width =1.7 nm, with
opened gap 0.82eV at K-point (excitation energy 0.278 eV),
is presented in Figure 1(b).

3.2. Band Structure of SWSiNTs. Helical method of tube
formation and standard crystallographic convention of hP
lattice (a,b angle 277/3, the fractional coordinates of atoms
in the unit cell; Sil:1/3, 2/3, 0; Si2:2/3, 1/3, 0) result in
substantial difference of tubular band structure and in dif-
ferent appearance of the termination (ends) of tube compar-
ing to conventional chiral-vector treatment (a,b angle /3,
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FIGURE 3: (color online) The appearance of the tube terminations
for (a) [(7,7),m,, = 31] and (b) [(7,0),m,, = 31] helical types of
SWSiNTs with the same diameter ~8.76 A.

the fractional coordinates of atoms in the unit cell; Sil: 1/3,1/3,
0; Si2:2/3, 2/3, 0) which is usually applied in study of carbon
nanotubes. Until the chiral convention leads into armchair
appearance of tubular ends for (n,n)-type structure and
zig-zag edges for (n,0)-type, in case when crystallographic
convention for hP lattice and helical method is used, the
appearance of tube-terminations is different. For helical type
[(m,m), m.], which has the same radius as chiral (m,0)-
type, ends of tube are also of zig-zag appearance but terminal
atoms lay in a plane which is oblique with respect to the tube
axis. However, for helical type [(m,0), m,] (with the same
radius as [(m,m), m,]-type within the helical treatment),
terminal atoms lay in a plane which is perpendicular to the
tube axis but ends of tube are again of zig-zag appearance.
It should be remarked that to a chiral armchair tube (1, n)
corresponds a helical tube of the type [(2n, n), m,,] with zig-
zag termination. This is the consequence of crystallographic
hP lattice primitive vectors convention and of applied screw-
symmetry operations (rototranslations) at helical method of
tube formation. As an illustrative example, the SWSINT of
different helicities are presented in Figures 3(a) and 3(b).
Substantial differences are in calculated band structures.
The crucial reason is the fact that, within the conventional
chiral-vector treatment, tubular (translational) unit cell is not
the irreducible unit cell of tubular structure. It contains N
irreducible unit cells of parent 2D-hP structure. In case of
2D silicone (or graphene) it means 2N times more atoms
in tubular translation unit cell comparing to parent 2D-hP
unit cell. For 2D silicone and/or graphene types (1,0) and
(n,n) in chiral treatment notation N = 2un, number of
atoms is 4n and number of bands 16n. It not only increases
number of bands from 8 to 8N (in valence electron basis set)

but band structure itself is N-times folded in particular k-
direction. It is clear that in those circumstances relation to
band structure of parent 2D-hP is lost and can hardly be
reconstructed, mainly in case of complex compounds with
more than 2 atoms in 2D unit cell, for example, boron
nanotubes with 8-B atoms in 2D-hP unit cell [27]. The
smallest diameter of so far synthesized SWSINT [14-16] is
about 20 A. It roughly corresponds to (21,0)-type of SWSINT.
Within the conventional chiral treatment, it yields band
structure with 672 bands. In contrast to that, due to screw-
symmetry operations, the irreducible 2D-hP unit cell remains
also the unit cell of tubular structure and no matter of
helical vector parameters [(1m,, my,), m,,], tubular and parent
2D-hP band structures within the helical treatment of tube
formation are represented by the same number of bands. For
valence basis set, in case of SWSiNT (or SWCNT) it is always
8 bands.

The next point which has to be mentioned is zone-
folding method [35, 36] frequently used for tubular band
structure calculations of graphene-like structures. Accord-
ing to this, tubular band structure dispersion E®(K,,K,)
is derived directly from the planar 2D-hP graphene-sheet
dispersion E*° (k,, k,) by simple replacement of planar 2D-
hP k-values (k,,k,) by tubular k-values (y,k,), that is,
E® = EZD(y, k). Now, however, p is a set of discrete
values related to the number N of 2D-hP unit cells in
tubular unit cell, that is, (4 = 0,1,...,(N - 1)) and k,,
is continuous in the range (0,+m/T) with T standing for
translation modulus of tubular unit cell. For strictly planar
graphene sheet with sp* hybridization, the 7 orbitals (p,-
AO) are perpendicular to o-orbitals (hybridized s, p,., p,-
AOs) which lay in plane of graphene sheet and both sets of
orbitals are due to symmetry reason decoupled. Within the
tight-binding method and nearest-neighbor approximation
it enables to derive simple analytic expression for sr-band
dispersion, which is then used for tubular band structure
calculations by zone-folding method as usually presented
in numerous publications related to electronic structure of
carbon and/or graphene-like nanotubes. In planar graphene
layer, the 7 bands are near to Fermi level and are dominant
for electronic and optical properties, whilst little attention
is paid to o-bands which are more distant from the Fermi
level. But application of this simple picture, namely, strict sp®
hybridization and zone-folding treatment (focusing mainly
on 7 bands), need not be the right choice in study of
electronic structure of all graphene-like nanotubes. Direct
calculations of tubular band structure on first-principles
DFT level have revealed that calculated zone-folding band
structures, mainly for small-diameter tubular structures, do
not correspond to the reality. Striking differences are mainly
for nanotubes of more complex compounds, for example,
for boron nanotubes with 8-B atoms in 2D-hP lattice (Ba8
structure) where band structure for a given chirality (1, n) is
metallic within zone folding treatment but of semiconductor
character when band structure is calculated directly for
nanotube [27]. The reason of this is the effect of sheet
folding, which is not reflected in zone-folding approximation
based on planar 2D-hP band structure (strict -0 orbitals
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FIGURE 4: Band structure of ((a), (b)) [(3,0),91], ¢ ~ 3.75A and ((c), (d)) [(5,0),91], ¢ =~ 6.26 A SWSiNTs. Comparison of band structures
calculated by ((a), (c)) zone-folding method and ((b), (d)) calculated directly by helical method of tube formation which account for effect of

tube curvature; for details see the text.

decoupling), just calculated for tubular k-values (u, k,,). In
real tubular systems, mainly with strong curvature (small-
diameter tubes), the strict decoupling of 77-o orbitals is not
valid any more and, character of system becomes rather a
kind of sp®-sp’ hybridization mixture.

In general, unlike of carbon with stable bulk solids of sp*
character (graphite), silicone prefers structures that are rather
of sp character. Stable is diamond-like cF8 structure of bulk
silicon but, silicon analogue of graphite is not known. Also
recently synthesized single-layer silicone sheet [19], despite
of honeycomb structure, is slightly buckled.

In this respect, the effect of curvature on band structure
of SWSINTs can be expected to be even stronger than in
case of carbon nanotubes. The effect of zone-folding is very
pronounced for tubular band structure calculation within
helical method of tube formation with irreducible unit cell,
when direct correspondence between tubular band structure
and parent 2D-hP band structure is preserved. In Figure 4,
band structures of small-diameter, ¢ =~ 3.75 A—[(3,0),91]
and ¢ =~ 6.26 A—[(5,0),91] SWSiNTs are presented. As
it can be expected, zone-folding band structures of (3,0)—
Figure 4(a) and (5,0)—Figure 4(c) obey simple metallicity
condition [(n —m) = 3u], that is, tube is metallic if (n — m) is
multiple of 3 and semiconducting otherwise. In the presented
figures, two panels (K-G-M) on the left side represent band
structure of parent single-layer planar 2D-hP silicone sheet
and following panels are zone-folding band structures for
allowed discrete helical tubular ky-“vector” values ky, = r/m,
along translation path (0,0) — (0,1/2) for r = 0 and for
[(r/mg 1/2) = (r/mg,0) | (=r/my,0) — (=r/my 1/2)],

with 7 # 0 arrangements. For (3,0)-SWSINT, r = 0, £1, m,, =
3 and for (5,0)-SWSINT, r = 0,+1,+2, m, = 5. As it
can be expected for zone-folding method, the band structure
topology for r = 0 is identical with that in G(= I)-M
for parent 2D-hP (cf. G-M < 0-M in Figures 4(a) and
4(c)). Metallicity, or rather semimetal character (formation
of “Dirac cone”-like topology, direction 1-r in Figure 4(a)), for
(3,0)-SWSINTT, is due to dispersion of (7", ) bands for r = 1,
that is, ky, = —1/3 (formally equal to the value of K-point
coordinate of 2D-hP in b* direction).

Band structures calculated directly, that is, when curva-
ture effect is naturally incorporated over screw-symmetry
operations, reveal dramatic changes in band structure topol-
ogy for both small-diameter SWSiNTs. In Figure 4(b), the
band structure of (3,0) SWSINT with metal-like character
is displayed. As it can be seen, one can hardly assignee
metalicitty of this tube in 0- M direction, thatis, path (0,0) —
(0,1/2), to a pure r-band. It looks rather like bended o* band
which from the antibonding region decreases toward Fermi
level, crosses it and at M-point is sank below it. Metallicitty
in direction 1-r-M, that is, path [(-1/3,1/2) — (-1/3,0) |
(1/3,0) — (1/3,1/2)] in Figure 4(b) is due to a band
which is again a kind of mixture of 7-o character, in spite
of fact that band crossing above Fermi level resemble the
shape of 77* -7 Dirac-like cone. Strong curvature effect persists
also in (5,0) SWSiNT—in Figure 4(d). Surprisingly, this tube
is also metallic; in 0-M direction, that is, path (0,0) —
(0,1/2), and in 2-r-M direction, that is, path (-2/5,1/2) —
(=2/5,0) | (2/5,0) — (2/5,1/2). Whilst, like for (3, 0) tube,
metalicitty in 0-M direction resembles bending of ™ band,
the metalicity in 2-r-M direction is more of 7-band character.
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F1GURE 5: Calculated DOS for (a) silicone sheet and (b) [(5,0),91]-
type SWSINT with splitting on PDOS contributions from ¢ and 7
bands. Vertical dotted line indicates Fermi level.

Indeed, contribution to total density of states (DOS) at
Fermi level from ¢ bands (AO—3s, 3p,,3p, ) is not negligible;
PDOS,, is =18% and PDOS, from p, orbitals is =72%. In
Figure 5, density of states (DOS, PDOS,, and PDOS,) for
silicone sheet Figure 5(a) and [(5,0),91]-SWSINT Figure 5(b)
are presented. In overall, however, the DOS at Fermi level for
[(5,0),91]-SWSINT is very small, =0.044.

Topology of the band structure of [(5,0),91]-SWSINT
is very sensitive to electron-vibration coupling. Already
at displacement of 0.039 A/Si-atom out of equilibrium at
vibration motion in stretching Si-Si mode, instability of the
tubular band structure with characteristic fluctuation of band
structure topology at Fermi level is induced. In particular,
in this vibration displacement, degeneracy of o-bands below
Fermi level at I'(0)-point at equilibrium geometry is lifted
and maximum (an analytic critical point—ACP) of the upper
o-band is shifted above Fermi level. In vibration motion
it represent periodic fluctuation of ACP across the Fermi
level—cf. Figures 6(a) and 6(b) for path 0-M.

This type of band structure fluctuation was observed
for the first time in superconducting MgB, [50, 51] and
it is related to the breakdown of the Born-Oppenheimer
approximation [52-54]. The mentioned aspect of band struc-
ture instability is important for crossing of the system from
adiabatic metal-like state into antiadiabatic state which, if
stabilized, is directly related to superconducting state tran-
sition [42, 52, 55-57]. Study of this problem, that is, aspects
of antiadiabatic state stabilization and superconducting state
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FIGURE 6: Effect of electron-vibration coupling on band structure
topology at Fermi level for (5, 0), 91]-type SWSINT. Band structure
at (a) equilibrium undergoes topology change at Fermi level for
(b) displacement of 0.039 A/Si-atom out of equilibrium at vibration
motion in stretching Si-Si mode; cf. path 0-M for (a)/(b) panels.

transition, is out of the scope of the present paper and it will
be published elsewhere.

The SWSINTs of the helicity [(5,3),91]-¢ ~ 5.46 A, and
((5,5),91] with the same radius ¢ ~ 6.26 A as the [(5,0), 91]
type, are semiconductors with indirect gap. In Figure 7,
the band structure of [(5,5),91]-SWSINT at equilibrium
Figure 7(a) and distorted geometry in Si-Si stretching mode
displacement Figure 7(b) is displayed. As it can be seen, the
same displacement amplitude, which for (5,0)-type induces
band structure instability, in spite of o-band splitting at I'(0)-
point, leaves this tube in adiabatic state without topology
change at Fermi level—maximum of o-band does not cross
Fermi level.

As an illustration of the fact that simple metallicity
condition [(n—m) = 3p] related to (7", 7r) bands topology do
not hold for band structures which incorporate the effect of
folding, we present the band structures of the SWSiNTs with
larger diameters, that is, with smaller curvature than in case
of the [(3,m,,),91] and [(5,m,,), 91] tubes. In Figure 8, band
structure of the [(21, 0), 91]-type SWSINT is displayed for full
set [(r/21,1/2) — (r/21,0) | (-r/21,0) — (-r/21,1/2)] of
allowed k¢, with arrangements r = 0,7 = +1, +2,...,£10.

The SWSINTs of the type [(21,m,),91; odd my] are
metallic within zone-folding approximation (not displayed)
for m, = (0,3,9,15,21) and semiconductors for m, =
(1,5,7,11,13,17,19). However, due to the nanotubes curva-
ture, the band structures of the all of SWSINTs of the type
[(21,m,),91], no matter the m, value (odd)are, are of small-
gap semiconductor characters (0.46-0.78 ¢V, see Table 1).
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FIGURE 7: Effect of electron-vibration coupling on band structure
topology at Fermi level for [(5, 5), 91]-type SWSINT. Band structure
at (a) equilibrium remains without change of topology at Fermi
level (cf. path 0-M for (a)/(b) panels) for (b) vibration motion in
stretching Si-Si mode, which induces topology change in [(5,0),91]-
type SWSINT; cf. Figure 6(b)/Figure 7(b).

Similar situation is for SWSiNTs of the type [(23,m,),91].
Now, however, metallic within the zone-folding approxima-
tion (not displayed) are SWSiNTs for odd m;, = (5,11,17).
But, again, due to the real nanotubes curvature, the band
structures of the all of SWSINTs of the type (23,my,)
are of small-gap semiconductor characters (1.31-1.39 eV, see
Table 1). In Figure 9, the band structure of SWSINT of the
type [(23,5),91] is displayed.

All studied SWSiNTs with diameter ¢ > 7 A are semi-
conductors without indication of instability toward electron-
vibration coupling. Dependence of the mean gap on average
value of diameter (averaged over my, for fixed m, in particular
helical group [(m,,m,),91]) in the diameter range ~3.7 A-
61 A is shown in Figure 10.

The numerals at the peaks, minima and maxima, are
m,-values of particular helical group. As it can be seen, the
gap of SWSINTs exhibits an oscillatory-decreasing charac-
ter with increase of the tube diameter. In the oscillatory
series, minima of the gap in “saw-teeth” pattern are reached
for helicity numbers m, that are an integer multiple of 3
whilst, m, value itself directly determine the fold-number
of tubular rotational axis symmetry for particular helical
type of [(m,,m,), m,] tube. Oscillations are damped and
gap decreases toward ~0.33eV for tube diameter =116 A. It
should be stressed, however that gap (and diameter) within
the particular m,-helical group is not uniform but depends
on the helical vector (m,,m,), which by itself determines
the tube circumference (diameter) and also the gap through
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FIGURE 8: Band structure of [(21,0),91] SWSINT for full set of
allowed k¢, that is, [(-r/21,1/2) — (-r/21,0) | (r/21,0) —
(r/21,1/2)], with arrangements (a) r = 0, r = +1,+2,+3,+4 and
(b) r = £5,46,...,+10.

the m,-value. As an illustration, dependence of the gap for
fixed m,-value on running my,(< m,)values for selected
helical [(m,, m,,), 91] groups is shown in Figure 11.

For nanotubes with larger diameters, it can be seen
that for some next-neighbor helical groups m,, (m, + 2),
depending on particular helical vectors (m,,m,) and (m, +
2, my,), for some my, values is diameter of m,,-tube greater then
diameter of (1m,+2)-type but gap in (m,, m,,) group is smaller
than the gap in (m, + 2,m,) group—cf., for example groups
(21, my) and (23, m,,) presented in Table 1.

The energy of folding per Si atom presented in Table 1
is calculated as the difference between the total electronic
energy of SWSINT [(m,,m,,), 91] and total electronic energy
of 2D-hP silicone single layer sheet (91 x 91 x 1), that is,
E¢i = (Ext — Egn)/2. As it can be expected, energy expense
for tube formation decreases with increasing diameter of
nanotube. As far as the cohesive energy is concerned, with
respect to the INDO parameterization, only relative values
are relevant. Calculated relative cohesive energy per atom (at
0K) of infinite 2D-hP silicone sheet with respect to cohesive
energy of most stable bulk silicon form with cF8 structure

(diamond-like) can be calculated as AE,., = (—ELS /ng; +

Efgﬁ‘P/mSi). Since silicon ¢F8 and 2D-hP (also SWSINT)
have the same number of Si atoms in respective unit cells
then, ng; = mg; = 2, calculated relative cohesive energy of 2D-
hP silicene sheet per Si atom is AE, .., = 1.9 eV/Si. It means
that cF8 bulk silicon is more stable by 1.9 eV/Si than 2D-hP
silicone sheet. Relative cohesive energies of SWSiNTs can be
calculated straightforwardly by adding 1.9eV to the corre-

sponding energy of folding. The value AE, ., = 1.9eV/Si
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TaBLE 1: Calculated basic physical parameters of selected [(1,, m,,), 91]-types of SWSiNTs.

oy () SWSNTdameer Al G i) oo Beweser e
(3,0) 3.756 metallic 1.002 0.995 1.355
(3,3) 3.756 metallic 0.342 0.317 0.811
(5,0) 6.260 metallic 1.996 1.993 0.495
(5,3) 5.457 2.547 (indirect) 2.766 2.763 0.634
(5,5) 6.260 2.938 (indirect) 3.564 3.652 0.482
(7,0) 8.764 3.526 (indirect) 3.384 3.382 0.220
(73) 7.617 3.857 (direct) 3.552 3.550 0.295
(75) 7.819 3.752 (indirect) 3.386 3.385 0.280
(7.7) 8.764 3.238 (direct) 2.669 2.667 0.222
(9,0) 11.268 1.455 (direct) 0.913 0.912 0.134
(9,3) 9.937 1.661 (direct) 1.157 1.156 0.173
(9,5) 9.778 1.575 (direct) 1.075 1.074 0.178
9,7) 10.248 1.232 (direct) 0.719 0.717 0.164
(9,9) 11.268 1.276 (direct) 0.736 0.734 0.181
(11,0) 13.772 2.355 (direct) 1.838 1.837 0.086
(11,3) 12.331 2.267 (direct) 1.799 1.798 0.109
(11,5) 11.944 2.301 (direct) 1.832 1.831 0.116
11,7) 12.074 2.376 (direct) 1.902 1.901 0.113
11,9) 12.706 2.521 (direct) 2.025 2.024 0.102
(11,11) 13.772 2.678 (direct) 2.162 2.161 0.086
(13,0) 16.276 2.499 (direct) 2.004 2.003 0.061
(13,3) 14.761 2.465 (direct) 1.993 1.992 0.074
(13,5) 14.220 2.451 (direct) 1.987 1.986 0.079
(13,7) 14.109 2.409 (direct) 1.947 1.946 0.081
(13,9) 14.439 2.314 (direct) 1.846 1.845 0.077
(13,11) 15.179 2.198 (direct) 1.718 1.717 0.070
(13,13) 16.276 2.110 (direct) 1.615 1.614 0.061
(15,0) 18.780 0.806 (direct) 0.329 0.328 0.047
(15,3) 17.212 0.973 (direct) 0.513 0.512 0.056
(15,5) 16.562 1.092 (direct) 0.642 0.641 0.060
(15,7) 16.276 1.154 (direct) 0.707 0.706 0.062
(15,9) 16.372 1.117 (direct) 0.669 0.668 0.062
(15,11) 16.844 0.991 (direct) 0.537 0.536 0.058
(15,13) 17.662 0.765 (direct) 0.301 0.299 0.053
(15,15) 18.780 0.749 (direct) 0.272 0.271 0.047
(17,0) 21.284 1.763 (direct) 1.301 1.301 0.035
(17,3) 19.677 1.693 (direct) 1.247 1.246 0.042
(17,5) 18.946 1.648 (direct) 1.209 1.208 0.045
a77) 18.529 1.621 (direct) 1.187 1.186 0.047
(17,9) 18.443 1.625 (direct) 1.191 1191 0.047
a711) 18.697 1.663 (direct) 1.227 1.226 0.046
(17,13) 19.275 1.726 (direct) 1.285 1.284 0.043
(17,15) 20.149 1.798 (direct) 1.348 1.347 0.039
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TaBLE 1: Continued.

Helicty () SWSINTdiameter (] Gaplev]  Jeelioneneiey e e fodimer [ev]
(1717) 21.284 1.860 (direct) 1.399 1.399 0.035
(19,0) 23.788 1.756 (direct) 1.309 1.308 0.028
(19,3) 22.151 1.748 (direct) 1.314 1.313 0.032
(19,5) 21.358 1.742 (direct) 1314 1.313 0.035
(19,7) 20.834 1.734 (direct) 1.311 1.310 0.037
(19,9) 20.611 1.719 (direct) 1.298 1.297 0.038
(19,11) 20.687 1.692 (direct) 1.270 1.269 0.037
(19,13) 21.062 1.653 (direct) 1.228 1.228 0.036
(19,15) 21.722 1.610 (direct) 1180 1.799 0.034
(19,17) 22.640 1.571 (direct) 1133 1133 0.031
(19,19) 23.788 1.541 (direct) 1.094 1.904 0.028
(21,0) 26.292 0.531 (direct) 0.096 0.095 0.024
(21,3) 24.630 0.616 (direct) 0.191 0.190 0.027
(21,5) 23.788 0.678 (direct) 0.261 0.260 0.029
(21,7) 23.187 0.736 (direct) 0.323 0.323 0.030
(21,9) 22.847 0.773 (direct) 0.363 0.363 0.031
(2L1) 22.778 0.777 (direct) 0.368 0.365 0.031
(21,13) 22.984 0.741 (direct) 0.330 0.330 0.031
(21,15) 24.457 0.657 (direct) 0.243 0.242 0.029
(21,17) 24.181 0.497 (direct) 0.077 0.077 0.028
(21,19) 25134 0.406 (direct) 0.020 0.021 0.026
(21,21) 26.292 0.459 (direct) 0.026 0.025 0.023
(23,0) 28.796 1.538 (direct) 1115 1114 0.019
(23,3) 27114 1.497 (direct) 1.084 1.083 0.022
(23,5) 26.233 1.466 (direct) 1.058 1.058 0.023
(23,7) 25.567 1.437 (direct) 1.034 1.033 0.024
(23,9) 25.134 1.415 (direct) 1.014 1.014 0.025
(23,11) 24.946 1,405 (direct) 1.006 1.006 0.025
(23,13) 25.009 1411 (direct) 1011 1011 0.026
(23,15) 25.321 1.431 (direct) 1.030 1.029 0.025
(23,17) 25.872 1.462 (direct) 1.058 1.057 0.024
(23,19) 26.648 1.498 (direct) 1.089 1.088 0.022
(23,21) 27.629 1.533 (direct) 118 118 0.021
(23,23) 28.796 1.563 (direct) 1143 1141 0.019
(31,0) 38.812 1.101 (direct) 0.718 0.718 0.011
(31,17) 33.665 1.079 (direct) 0.714 0.714 0.014
(31,31) 38.812 1.002 (direct) 0.622 0.622 0.011
(45,0) 56.341 0.314 (direct) 0.001 0.001 0.005
(45,13) 50.221 0.344 (direct) 0.020 0.020 0.006
(45,35) 51.241 0.344 (direct) 0.020 0.020 0.006
(45,45) 56.341 0.332 (direct) 0.003 0.003 0.005
(51,0) 63.853 0.314 (direct) 0.038 0.038 0.004
(51,23) 55.387 0.347 (direct) 0.040 0.040 0.005

(51,51) 63.853 0.329 (direct) 0.018 0.018 0.003
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FIGURE 9: Band structure of [(23,5),91] SWSINT for full set of
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(r/23,1/2)], with arrangements (a) r = 0, r = +1,+2,+3,+4 and
(b) r = +5,%6,..., 11
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FIGURE 10: Calculated gap of SWSINTs as a function of nanotube
diameter. The numbers at the peaks are m,-values of particular
helical group which determine directly also the fold-number of
particular tubular rotational axis symmetry. Horizontal dotted line
indicates calculated gap (1.24 eV) of bulk silicon with cF8 diamond-
like structure.

calculated within the INDO parametrization seems to be
overestimated, however. Nonetheless, since single layer 2D-
hP silicene sheet has been synthesized [19], that is, this
structure is thermodynamically (meta-) stable; then it can
be assumed (and calculated data support it) that SWSiNTs
formation should be kinetically driven process and synthesis
should be a matter of tuning proper experimental conditions.

The excitation energies presented in Table 1 are calculated
within the single-Slater determinant approximation opti-
mized for the ground electronic state E,p (¥,). The direct
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FIGURE 11: (color online) Dependence of the gap for fixed m,-value
on running m,, (< m,) values for selected helical [(m,,m,,), 91]-types
of SWSiNTs. The numbers at particular curves are m,-values.

allowed excitation energy, Eix = EIIQ0 (‘I’é_}l) — Egg,(¥),
is vertical excitation from the ground state HOMO orbital
to nearest LUMO on global energy scale (allowed due to
symmetry) with final singlet state configuration. The lowest
spin-flip excitation energy, ng = E;O (‘I’g 1) = Egg,(¥p), is
calculated as a lowest excitation which should be possible at
some circumstances (e.g., due to electron-vibration coupling)
from the ground state global HOMO orbital to nearest
LUMO in a k-point of some path of first Brillouin zone with
final triplet state configuration. It should be mentioned that
within the Hartree-Fock method, calculated k-dependent gap
energy, that is, gapy = & umo — €Lumos is different from
excitation energy. It is due to the fact, that total electronic
energy is not the simple summation over lowest doubly occu-
pied orbitals. The difference is due to the presence of two-
electron terms (coulomb J;; and exchange K; ; integrals) in
orbital energy terms ¢; = hy;+3.,(2];;— K;;) and, consequently,
have to be subtracted in total energy calculation, that is, E =

28— 22— K ).

4. Conclusions

We have performed comprehensive theoretical study of
silicon nanoribbons and single-wall silicon nanotubes of the
length ~358 A and diameter range ~3.7 A-116 A with parent
honeycomb structure that is compatible with structural
pattering of recently synthesized silicon single-layer sheet
with Si-Si distance ~2.2 A. For tubular structure construction
and band structure calculations, helical treatment based
on screw-symmetry operations has been used. Within this
treatment, the irreducible unit cell of parent 2D-hP structure
(2 Si-atoms/unit cell) remains irreducible unit cell also for
tubular structure. Consequently, calculated band structure of
a single-wall silicon nanotube, irrespective of diameter and
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helicity/chirality, is in the valence electron basis set repre-
sented always by 8 bands for particular-allowed “rotational
wave number” k,. In this way, direct correspondence with
band structure of the parent 2-D hP silicon sheet is preserved.
By contrast, if standard chiral-vector treatment is used, the
translation tubular unit cell consist of N (N = 2n, for (n,0)
or (n,n) chiral vectors) irreducible unit cells of parent 2D-hP
structure and calculated tubular band structure is represented
by an obscure bundle of bands, which is a well-known
picture from usually published band structures of graphene-
like nanotubes. Moreover helical treatment covers directly,
through screw symmetry operations, curvature effect of tube
formation on resulting band structure, the effect which is
completely neglected within the zone-folding method. That
is the reason why for the same (n,m)-type chiral vector,
the basic character of band structure calculated directly for
translation tubular unit cell is often different as that calculated
by zone-folding method.

For study of electronic structure properties of sili-
con nanoribbons (SiNR) and single-wall silicon nanotubes
(SWSINT), the Hartree-Fock self-consistent field method
modified for periodic solids with INDO Hamiltonian and
parametrization that reproduces experimental geometry and
gap of bulk silicon in diamond-like cF8 structure, has been
used.

The results obtained for SWSiNTs of the length of =358 A
in diameter range ~3.7 A-116 A of different helicity-types
have shown that only small-diameter SWSiNTs up to ¢ <
6.3 A are metallic due to the effect of curvature which
induces coupling of o and 77 orbitals. Nonetheless, these tubes
in particular [(5,0),91]-SWSINT exhibit electronic structure
instability with respect to electron-vibration coupling which
is manifested by band structure fluctuation characteristic for
transition into antiadiabatic state. This type of fluctuation
is closely related to possibility of transition into supercon-
ducting state if antiadiabatic state is stabilized. Study of this
problem is out of the scope of the present paper, however.

From the calculated band structures follow that irrespec-
tive of helicity, the SWSiNTs of larger diameter are all small-
gap semiconductors with direct gap between the Dirac-like
cones of (n*,7) bands. Gap of SWSiNTs exhibits, however,
an oscillatory-decreasing character with increase of the tube
diameter. In the oscillatory series, minima of the gap in
“saw-teeth” pattern are reached for helicity numbers m, that
are an integer multiple of 3, whilst m, value itself directly
determine the fold-number of particular tubular rotational
axis symmetry. Oscillations are damped and gap decreases
toward ~0.33eV for tube diameter =116 A. Irrespective of
the width, the SiNRs are all small-gap semiconductors,
characteristic by oscillatory decreasing gap with increasing
ribbon widths. From the results follows that gap of SWSiNTs
and SiNRs is tuneable through modulation of tube diameter
or ribbon width, respectively.

Calculated basic physical parameters, for example, gap,
excitation energy, energy of folding, and relative cohesive
energy, indicate that both the SiNRs and SWSiNTs could be
fully compatible with contemporary silicon-based microelec-
tronics and could serve as natural junction and active ele-
ments in nano/microtechnologies, including optoelectronics.
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