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We consider a pedestrian tracking system where sensor nodes are placed only at specific points so that the monitoring region is
divided intomultiple smaller regions referred to as microcells. In the proposed pedestrian tracking system, sensor nodes composed
of pairs of binary sensors can detect pedestrian arrival and departure events. In this paper, we focus on pedestrian tracking in
microcells. First, we investigate actual pedestrian trajectories in a microcell on the basis of observations using video sequences,
after which we prepare a pedestrian mobility model. Next, we propose a method for pedestrian tracking in microcells based on
the developed pedestrian mobility model. In the proposed method, we extend the Bayesian estimation to account for time-series
information to estimate the correspondence between pedestrian arrival and departure events. Through simulations, we show that
the tracking success ratio of the proposed method is increased by 35.8% compared to a combinatorial optimization-based tracking
method.

1. Introduction

Wireless sensor network technology has attracted consider-
able attention in recent years. Pedestrian tracking is one of
the most promising applications of wireless sensor networks.
For example, the ability to evaluate the trajectories of pedes-
trians in shopping malls or event sites would allow vendors
and event organizers to arrange goods or exhibitions more
effectively so that they attract the attention of more people. A
variety of sensors have been considered for implementation
of pedestrian tracking by using wireless sensor networks,
such as cameras [1, 2], laser range scanners [3], and binary
sensors [4–12].

Binary sensors, such as infrared and pressure sensors,
are among the most simple, inexpensive, and energy-efficient
sensors. Even though they can detect only the presence
or absence of pedestrians within the sensing range, they
have found widespread adoption for various applications. A
number of pedestrian trackingmethods using a binary sensor
network have been proposed [4–12]. However, the above-
mentioned studies have relied on the assumption that sensor

nodes are deployed uniformly so that the sensing region
covers the entire monitoring region, which requires a large
number of sensor nodes.

In this paper, we consider a pedestrian tracking system
where sensor nodes are placed only at specific points in the
monitoring region, so that the monitoring region is divided
into multiple smaller regions referred to as microcells. Each
sensor node is composed of a pair of binary sensors coupled
with a wireless communication device, and its function is to
detect pedestrian arrival and departure events [13–15]. We
refer to the locations atwhich sensor nodes are placed as gates.
Figure 1 shows a schematic representation of the proposed
tracking system implemented in a university campus. In
the tracking system, sensor information is collected by a
tracking server through a wireless network, and the tracking
server estimates pedestrian trajectories based on sensor
information.

In this paper, we focus on pedestrian tracking in a single
microcell. First, we investigate actual pedestrian trajectories
in a microcell based on video sequences, after which we
develop a pedestrian mobility model. Next, we show that
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Figure 2: Observation environment.

pedestrians move approximately in a straight line and that
pedestrian velocities in a microcell follow a normal distri-
bution. These results suggest that we can estimate pedestrian
trajectories in amicrocell by observing pedestrian arrival and
departure events at specific points (i.e., gates) and estimating
the correspondence between these events. Next, we propose
a novel pedestrian tracking method based on the devel-
oped pedestrian mobility model. In the proposed method,
we extend the Bayesian estimation to account for time-
series information to estimate the correspondence between
pedestrian arrival and departure events. We evaluate the
performance of proposed method in a variety of situations
by using actual and artificial trajectories through simulation
experiments.

The rest of this paper is organized as follows. In Section 2,
we present the observation results of actual pedestrian trajec-
tories and develop a pedestrian mobility model in a micro-
cell. In Section 3, we propose a Bayesian estimation-based
pedestrian tracking method. We evaluate the performance

of proposed method in Section 4. Finally, we conclude this
paper with possible directions of future research in Section 5.

2. Modeling Pedestrian Mobility in a Microcell

In this section, we investigate actual pedestrian trajectories
in a microcell by analyzing video sequences and develop a
pedestrian mobility model.

2.1. Observation Overview. We took a video of actual pedes-
trians walking on a road to investigate actual pedestrian
trajectories in a microcell. The video was taken from the
7th floor of the building of the Cybermedia Center, Osaka
University, Japan. Figure 2 shows a sketch and a snapshot of
the observation environment, which corresponds to the gray
microcell and its surrounding environment in Figure 1. In the
observation environment, there are a road and two buildings
on both sides: the Cybermedia Center at the near end,
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Figure 3: Actual and approximated pedestrian trajectories.

and the dining hall is at the opposite side. To go to the dining
hall from the road, pedestrians have to move to avoid the
guard rails.The duration of the recorded video was 600 s, and
the sampling rate was 500ms. In the video sequences, a 6 ×

6m square region was chosen as a microcell (indicated by
the quadrangular region enclosed by red lines in Figure 2).
For the duration of the video, 125 pedestrians passed through
themicrocell.Therefore, the overall arrival rate was 125/600 =
0.208 pedestrians/s. Below, we refer to this rate as cell arrival
rate and denote it as 𝜆. Wemanually obtained the locations of
all pedestrians in all frames.Then, we obtained the trajectory
of each pedestrian by interlinking the pedestrians’ locations
in ascending order in the observation period. To convert
pedestrian trajectories from the camera coordinate system
to a world coordinate system in overhead view, we used
the projective transformation method [16]. We also obtained
pedestrian velocities between two successive locations for
each pedestrian.

2.2. Pedestrian Trajectories in a Microcell. Figure 3(a) shows
the actual pedestrian trajectories, while Figure 3(b) shows
linearly approximated trajectories drawn from the arrival
location of each pedestrian to the corresponding departure
location. Figure 4 shows the cumulative distribution function
of the distance error obtained by comparing the actual
locations with the corresponding approximated locations in
the sampling interval. As shown in Figure 4, the distance
error is within 0.30m in 90% of the cases. Since 0.30m is a
relatively small error compared to the size of pedestrians, the
linear approximation is considered sufficient for obtaining
pedestrian trajectories in a microcell. These results indicate
that we can estimate pedestrian trajectories by obtaining only
the pedestrian arrival and departure locations.
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Figure 4: Cumulative distribution function of the distance error
between the actual locations and the corresponding approximated
locations.

2.3. Pedestrian Velocities in a Microcell. Figure 5 shows the
cumulative distribution function of the pedestrian velocities
obtained in the sampling interval. From the observation
results, the mean pedestrian velocity V and the variance 𝜎

2

were calculated to be 1.35m/s and 5.68 × 10
−2m2/s2, respec-

tively. In the same figure, we also show a normal distribution
𝑁(V, 𝜎

2
) [17] which approximates the observation results.

The experimentally observed pedestrian velocities are found
to be well approximated by the normal distribution. There
are also other distributions which share similar trends with
the observed cumulative distribution function, such as the
log-normal distribution [18], the gamma distribution [19],
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Figure 5: Cumulative distribution function of pedestrian velocities
and its approximation with a normal distribution.

and the Cauchy distribution [20]. We fitted these distribu-
tions to the observed cumulative distribution function and
calculated the mean square error for each case, in which the
normal distribution yielded the smallest error. Therefore, we
considered that pedestrian velocities in a microcell follow a
normal distribution.

We use the normal distribution to model pedestrian
velocities. Therefore, the probability density function of
pedestrian velocities is given by

𝑝vel (V) =

1

√2𝜋𝜎

exp(−

(V − V)2

2𝜎
2

) , (1)

where V is pedestrian velocity. Therefore, the probability
density function of the pedestrian transit time required for
a pedestrian to cover a distance 𝐷 can be written as follows:

𝑝time (𝜏, 𝐷) =

𝐷

𝜏
2

1

√2𝜋𝜎

exp(−

((𝐷/𝜏) − V)2

2𝜎
2

) , (2)

where 𝜏 is the pedestrian transit time. The details of the
derivation of (2) from (1) are presented in the appendix.

2.4. Pedestrian Gate Transition and Gate Arrival Probabili-
ties. To investigate the relationships between the pedestrian
arrival and departure locations, we divide the microcell
into equal-sized grids and obtain 𝑛 segments (gates) at the
boundary. Below, the 𝑖th gate is denoted as 𝑔

𝑖
, and the set

of gates in the microcell is denoted as G. Figure 6 shows the
relationship between microcell and gates for 𝑛 = 16. If a
pedestrian passes through themicrocell as shown in Figure 6,
the arrival and departure events are detected at gates 𝑔

14
and

𝑔
6
, respectively.
We refer to the probability that a pedestrian arrives at gate

𝑔
𝑎
and departs from gate 𝑔

𝑑
as gate transition probability and
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Figure 6: Relationship between a microcell and gates (𝑛 = 16).

denote it by 𝑝transit(𝑔𝑎, 𝑔
𝑑
). The gate transition probability is

calculated from observation as follows:

𝑝transit (𝑔
𝑎
, 𝑔
𝑑
) =

𝑚 (𝑔
𝑎
, 𝑔
𝑑
)

𝑚all
, (3)

where 𝑚(𝑔
𝑎
, 𝑔
𝑑
) indicates the number of pedestrians who

arrive at gate 𝑔
𝑎
and depart from gate 𝑔

𝑑
and 𝑚all indicates

the total number of pedestrians in the video sequences. The
set of gate transition probabilities is denoted by Ptransit =

{𝑝transit(𝑔𝑎, 𝑔
𝑑
) | 𝑔
𝑎

∈ G, 𝑔
𝑑

∈ G}. In addition, we refer to
the probability that a pedestrian arrives at gate 𝑔

𝑎
as gate

arrival probability and denote it by 𝑝arr(𝑔𝑎). The gate arrival
probability is calculated from observation as follows:

𝑝arr (𝑔
𝑎
) =

𝑚 (𝑔
𝑎
)

𝑚all
, (4)

where 𝑚(𝑔
𝑎
) indicates the number of pedestrians who arrive

at gate 𝑔
𝑎
. The set of gate arrival probabilities is denoted by

Parr = {𝑝arr(𝑔𝑎) | 𝑔
𝑎

∈ G}.
Figures 7 and 8, respectively, show the distributions of

gate transition and gate arrival probabilities when 𝑛 is set
to 80, that is, when the width of each gate is 0.3m. The
gate transition probabilities are symmetrical with respect to
the line 𝑦 = 𝑥, and most gate transition probabilities are
zero. These results indicate that there are few bidirectional
paths which are frequently used and that the gate transition
probabilities do not follow a uniform distribution in real-
world environments. From Figure 8, we can see that the
distribution of gate arrival probabilities is also nonuniform.
The gate arrival probability is zero at 40% of the gates and
takes a high value at some adjacent gates. Table 1 summarizes
the parameters and their values in the observed environ-
ment.
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Figure 8: Distribution of gate arrival probabilitiesParr (𝑛 = 80).

2.5. Summary of Pedestrian Mobility in a Microcell. Through
these experiments we found that (1) pedestrians move
approximately along straight lines, (2) pedestrian velocities
follow a normal distribution, and (3) gate transition and
gate arrival probabilities do not follow a normal distribution.
We conjecture that (1) stems from the fact that pedestrians
aim to reach their destination along the shortest path.
Furthermore, we assume that (2) is a general characteristic of
pedestrian movement. Finally, (3) appears to depend on the
environment, for example, the locations and configuration
of facilities. Although our experiment provides only a single
example, we expect that this newknowledgewill be applicable
in other similar environments.

Table 1: Parameters in the observed environment.
Parameter Value
Cell arrival rate 𝜆 0.208 pedestrian/s
Average velocity V 1.35m/s
Variance of velocity 𝜎

2
5.68 × 10

−2m2/s2
Gate transition probabilityPtransit Figure 7 (𝑛 = 80)

Gate arrival probabilityParr Figure 8 (𝑛 = 80)

3. Proposed Pedestrian Tracking Method

Considering the model presented in the previous section,
in this section we propose a Bayesian estimation-based
pedestrian tracking method.

3.1. Overview. First, we present an overview of the tracking
system. In this paper, we focus on pedestrian tracking in a
microcell constituting a small part of the entire monitoring
region (Figure 1). We should note here that the microcell
is assumed to be sufficiently small area so that pedestrian
trajectories can be approximated linearly. The border of the
microcell is divided into 𝑛 segments (gates), and a sensor
node is placed at each gate. Each sensor node is composed of a
pair of binary sensors with a wireless communication device,
and its function is to detect pedestrian arrival and departure
events. Here, note that we consider that an arrival/departure
event is detected at the location of the sensor node.We denote
an arrival event detected by the sensor node at gate 𝑔

𝑎
at time

𝑡
𝑖
by 𝑒arr(𝑔𝑎, 𝑡

𝑖
) and a departure event detected by the sensor

node at gate 𝑔
𝑑
at time 𝑡

𝑗
by 𝑒dep(𝑔

𝑑
, 𝑡
𝑗
). Sensor information

about arrival/departure events and the timing of events is
collected by a tracking server, which estimates the pedestrian
trajectories based on this information.

Since each arrival and departure event is observed inde-
pendently at each gate, matching arrival and departure events
are required. In this study, matching is performed when the
tracking server obtains information on a departure event.
When such an event is detected, the tracking server must
have more than one arrival event as a candidate for matching
the departure event. To select the appropriate arrival event
from a set of candidate arrival events, we propose a matching
method based on the Bayesian estimation [21] which is
extended to account for time-series information.

3.2. Matching Likelihood. Before presenting the proposed
trackingmethod, we first derive the likelihood that departure
event 𝑒dep(𝑔

𝑑
, 𝑡
𝑗
) corresponds to arrival event 𝑒arr(𝑔𝑎, 𝑡

𝑖
).

We refer to this as matching likelihood and denote it by
𝑝(𝑒arr(𝑔𝑎, 𝑡

𝑖
) | 𝑒dep(𝑔

𝑑
, 𝑡
𝑗
)). We can calculate the matching

likelihood by using the following theorem.

Theorem 1. When the tracking system is in a steady state, the
matching likelihood 𝑝(𝑒

𝑎𝑟𝑟
(𝑔
𝑎
, 𝑡
𝑖
) | 𝑒
𝑑𝑒𝑝

(𝑔
𝑑
, 𝑡
𝑗
)) is written as

follows:

𝑝 (𝑒
𝑎𝑟𝑟

(𝑔
𝑎
, 𝑡
𝑖
) | 𝑒
𝑑𝑒𝑝

(𝑔
𝑑
, 𝑡
𝑗
))

= 𝑝
𝑡𝑖𝑚𝑒

(𝑡
𝑗

− 𝑡
𝑖
, 𝑑 (𝑔
𝑎
, 𝑔
𝑑
)) 𝑝
𝑡𝑟𝑎𝑛𝑠𝑖𝑡

(𝑔
𝑎
, 𝑔
𝑑
) ,

(5)

where 𝑑(𝑔
𝑎
, 𝑔
𝑑
) is the distance between gates 𝑔

𝑎
and 𝑔

𝑑
.
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Proof. Let 𝑒arr(𝑔𝑎) be an arrival event detected at gate 𝑔
𝑎
and

𝑒dep(𝑔
𝑑
) a departure event detected at gate 𝑔

𝑑
. According to

the Bayes theorem, we can obtain the relationship between
the conditional and marginal probabilities of stochastic
events 𝑒arr(𝑔𝑎) and 𝑒dep(𝑔

𝑑
) as

𝑝 (𝑒arr (𝑔
𝑎
) | 𝑒dep (𝑔

𝑑
))

= 𝑝 (𝑒dep (𝑔
𝑑
) | 𝑒arr (𝑔

𝑎
))

𝑝 (𝑒arr (𝑔
𝑎
))

𝑝 (𝑒dep (𝑔
𝑑
))

.

(6)

By taking time into account, (6) can be extended as follows:

𝑝 (𝑒arr (𝑔
𝑎
, 𝑡
𝑖
) | 𝑒dep (𝑔

𝑑
, 𝑡
𝑗
))

= 𝑝 (𝑒dep (𝑔
𝑑
, 𝑡
𝑗
) | 𝑒arr (𝑔

𝑎
, 𝑡
𝑖
))

𝑝 (𝑒arr (𝑔
𝑎
, 𝑡
𝑖
))

𝑝 (𝑒dep (𝑔
𝑑
, 𝑡
𝑗
))

.

(7)

In a steady state, we assume that the occurrence rate of arrival
and departure events is independent of time. As a result, (7)
becomes

𝑝 (𝑒arr (𝑔
𝑎
, 𝑡
𝑖
) | 𝑒dep (𝑔

𝑑
, 𝑡
𝑗
))

= 𝑝 (𝑒dep (𝑔
𝑑
, 𝑡
𝑗

− 𝑡
𝑖
) | 𝑒arr (𝑔

𝑎
))

𝑝 (𝑒arr (𝑔
𝑎
))

𝑝 (𝑒dep (𝑔
𝑑
))

.

(8)

Let V be the velocity of a pedestrian passing between two
gates. Also 𝑝(𝑒dep(𝑔

𝑑
, 𝑡
𝑗

− 𝑡
𝑖
) | 𝑒arr(𝑔𝑎)) in (8) can be denoted

by the product of the probability distribution 𝑝(𝑑(𝑔
𝑎
, 𝑔
𝑑
)/V)

of the transit time between gates𝑔
𝑎
and𝑔
𝑑
and the probability

of pedestrian transit fromgate𝑔
𝑎
to gate𝑔

𝑑
in the steady state.

Consequently, (8) can be rewritten as follows by using (6):

𝑝 (𝑒arr (𝑔
𝑎
, 𝑡
𝑖
) | 𝑒dep (𝑔

𝑑
, 𝑡
𝑗
))

= 𝑝 (

𝑑 (𝑔
𝑎
, 𝑔
𝑑
)

V
) 𝑝 (𝑒dep (𝑔

𝑑
) | 𝑒arr (𝑔

𝑎
))

𝑝 (𝑒arr (𝑔
𝑎
))

𝑝 (𝑒dep (𝑔
𝑑
))

= 𝑝time (𝑡
𝑗

− 𝑡
𝑖
, 𝑑 (𝑔
𝑎
, 𝑔
𝑑
)) 𝑝 (𝑒arr (𝑔

𝑎
) | 𝑒dep (𝑔

𝑑
)) .

(9)

In (9), 𝑝(𝑒arr(𝑔𝑎) | 𝑒dep(𝑔
𝑑
)) denotes the probability that a

pedestrianmoves from𝑔
𝑎
to𝑔
𝑑
in the steady state, that is, gate

transition probability 𝑝transit(𝑔𝑎, 𝑔
𝑑
).Therefore, we obtain the

matching likelihood as in (5).

3.3. Bayesian Estimation-Based Tracking Method. We now
propose a tracking method using the results described in
the previous section. We assume that the distribution of gate
transition probabilitiesPtransit, mean velocity V, and variance
of velocity 𝜎

2 is estimated a priori by pre-learning.
The tracking server maintains a set of candidate arrival

events Earr. When the tracking server obtains information
about an arrival event, it adds the arrival event to the
set of candidate arrival events Earr for future matching.
Conversely, when the tracking server obtains information
about a departure event 𝑒dep(𝑔

𝑑
, 𝑡
𝑗
), it starts matching the

departure event to arrival events in the set of candidate arrival
eventsEarr. Here, we denote the 𝑘th candidate arrival event in
the set by 𝑒

(𝑘)

arr(𝑔, 𝑡) ∈ Earr. The tracking server first calculates
the matching likelihood 𝑝(𝑒

(𝑘)

arr(𝑔, 𝑡) | 𝑒dep(𝑔
𝑑
, 𝑡
𝑗
)) for each

candidate arrival event 𝑒
(𝑘)

arr(𝑔, 𝑡) ∈ Earr using (5). Next, it
selects the candidate arrival event 𝑒

(𝑘max)
arr (𝑔

𝑎max
, 𝑡
𝑖max

) with the
highest matching likelihood as the arrival event correspond-
ing to departure event 𝑒dep(𝑔

𝑑
, 𝑡
𝑗
):

𝑒
(𝑘max)
arr (𝑔

𝑎max
, 𝑡
𝑖max

)

= arg max
𝑒
(𝑘)
arr(𝑔,𝑡)∈Earr

𝑝 (𝑒
(𝑘)

arr (𝑔, t) | 𝑒dep (𝑔
𝑑
, 𝑡
𝑗
)) .

(10)

After matching, the tracking server estimates a line from
the location of gate 𝑔

𝑎max
to the location of gate 𝑔

𝑗
as the

pedestrian trajectory.
Since there is a limitation on the transit time in a

microcell, Earr on the tracking server does not need to
contain all arrival events. In the proposed method, candidate
arrival events which have occurred prior to a certain period of
time are removed fromEarr. In addition, the candidate arrival
event 𝑒

(𝑘max)
arr (𝑔

𝑎max
, 𝑡
𝑖max

) is removed from Earr after matching
depending on its matching reliability 𝑟, which is defined as
follows:

𝑟 =

𝑝 (𝑒
(𝑘max)
arr (𝑔

𝑎max
, 𝑡
𝑖max

) | 𝑒dep (𝑔
𝑑
, 𝑡
𝑗
))

∑
𝑒
(𝑘)
arr (𝑔,𝑡)∈Earr

𝑝 (𝑒
(𝑘)

arr (𝑔, 𝑡) | 𝑒dep (𝑔
𝑑
, 𝑡
𝑗
))

. (11)

After matching, if the matching reliability is higher than a
predefined reliability threshold, that is, 𝑟 ≥ 𝑟th, candidate
arrival event 𝑒

(𝑘max)
arr (𝑔

𝑎max
, 𝑡
𝑖max

) is removed fromEarr.
Figure 9 shows an example of pedestrian tracking in

a microcell. In this example, a pedestrian arrives at the
microcell at gate 𝑔

1
at time 𝑡

1
, after which another pedestrian

arrives at gate 𝑔
2
at time 𝑡

2
. Therefore, the tracking server

maintains a set of two candidate arrival events: Earr =

{𝑒
(1)

arr(𝑔1, 𝑡
1
), 𝑒
(2)

arr(𝑔2, 𝑡
2
)}. After a certain amount of time, a

pedestrian departs from the microcell at gate 𝑔
3
at time 𝑡

3
.

At this stage, there are two possible pedestrian trajectories to
gate 𝑔

3
: trajectory 1 from gate 𝑔

1
or trajectory 2 from gate 𝑔

2
.

Among these candidate trajectories, the matching likelihood
for the trajectory fromgate𝑔

1
is higher than that fromgate𝑔

2
.

Therefore, trajectory 1 is selected as the tracking result. If the
matching reliability 𝑟 is higher than the reliability threshold,
candidate arrival event 𝑒

(1)

arr(𝑔1, 𝑡
1
) is removed fromEarr.

4. Performance Evaluation

In this section, we evaluate the proposed method. Although
our method utilizes linearly approximated pedestrian tra-
jectories, which are slightly different from actual pedestrian
trajectories, the difference is negligible, as shown in Section 2.
Therefore, in this section we focus on the estimation accuracy
of the correspondence between arrival and departure events
to evaluate the performance of the proposed method. We
define tracking success ratio as the ratio of the number of
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Figure 9: Example of pedestrian tracking in a microcell.

successful matches to the total number of matches and use
this ratio as a performance evaluation index.

4.1. Comparison with a Combinatorial Optimization-Based
Method Using Actual Pedestrian Trajectories. First, we evalu-
ate the proposed method using actual pedestrian trajectories
obtained in Section 2. To evaluate the basic performance
of the proposed method, we use the parameters and their
values listed in Table 1. The results are compared with those
obtained using a combinatorial optimization-based method
[22] (referred to as the compared method below), which
uses the mean pedestrian velocity V for matching arrival and
departure events. In the compared method, the objective
function 𝑓 is written as

𝑓 = ∑

𝑒arr(𝑔𝑎,𝑡𝑖),𝑒dep(𝑔𝑑 ,𝑡𝑗)∈E

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

(𝑡
𝑗

− 𝑡
𝑖
) −

𝑑 (𝑔
𝑑
, 𝑔
𝑎
)

V

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

, (12)

where E is a set of arrival and departure events in a
specific time period. The combination of pairs of arrival
and departure events for which the objective function 𝑓 is
minimized is selected as the matching result. Although the
accuracy ofmatching increases if the distribution of velocities
is taken into account, the compared method has a larger
search space and higher complexity.

We calculate the tracking success ratio for both the
proposed method and the compared method using the data
set of actual pedestrian trajectories.The tracking success ratio
of the proposed method is 1, while that of the compared
method reaches a maximum of 0.736, amounting to an
improvement of 35.8% in tracking success ratio with the
proposed method. It should, however, be noted that the
tracking success ratio in this evaluation reaches 1 since the
cell arrival rate in the actual data set is relatively low, and
we assume that the parameters of the proposed method are
known. In the following sections, we evaluate the proposed
method in a variety of situations.

4.2. Effect of Reliability Threshold. In this section, we present
a simulation using artificial pedestrian trajectories to investi-
gate the performance of the proposed method in a variety of

situations. In the simulation, the size of the microcell is set to
6 × 6m and the number of gates 𝑛 is set to 80. A pedestrian
arrives at gate 𝑔

𝑘
in accordance with a Poisson process

with a gate arrival rate 𝜆
𝑘
. The gate arrival rate 𝜆

𝑘
is the

product of the cell arrival rate 𝜆 and gate arrival probability
𝑝arr(𝑔𝑘) ∈ Parr. The departure gate of the pedestrian is
determined according to gate transition probabilitiesPtransit,
where we assume that the pedestrian moves to the departure
gate along a straight line. The pedestrian velocities follow a
normal distribution. In this simulation, we use the parameter
settings shown in Table 1 for the mean velocity V, variance
of velocity 𝜎

2, gate transition probabilities Ptransit, and gate-
arrival probability Parr. The observation duration is set to
600 s, and the cell arrival rate 𝜆 is set to 1, 2, or 3 pedestrians/s.
The correspondence between arrival and departure events is
estimated using the proposed method. The following results
are averaged over 100 iterations.

Figure 10 shows a plot of the relation between tracking
success ratio and the reliability threshold 𝑟th, where we
can see that there is an optimal value for the reliability
threshold which maximizes the tracking success ratio. The
optimal reliability threshold was between 0.8 and 0.9 in
this evaluation. The reason why there is an optimal value
is as follows. When the reliability threshold 𝑟th is too low,
candidate arrival events are easily deleted from the set of
candidate arrival events even in the case of a mismatch. As a
result, the number of mismatches increases and the tracking
success ratio decreases. In contrast, when the reliability
threshold is too high,more candidate arrival events remain in
the set of candidate arrival events, increasing the possibility
for a mismatch.

In addition, as shown in Figure 10, the tracking success
ratio is higher for lower cell arrival rates. This is because the
number of candidate arrival events for matching a departure
event is higher for higher cell arrival rates, and as a result it
becomes difficult to estimate the correct arrival event.

4.3. Effect of Distribution of Gate Transition Probabilities.
Then, we investigate how the distribution of gate transition
probabilities Ptransit affects the tracking success ratio. We
used two types of gate transition probability distributions:
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Figure 10: Tracking success ratio plotted against the reliability
threshold 𝑟th.

a uniformdistribution and an observation-based distribution
(Figure 7). In this section, the reliability threshold 𝑟th is set to
0.9.

Figure 11 shows the relationship between the tracking
success ratio, the pedestrian cell arrival rate, and the distri-
bution of gate transition probabilities. The tracking success
ratio is lower for higher cell arrival rates, and this trend is
independent of the distribution of transition probabilities.
However, when we used the observed distribution of gate
transition probabilities, the tracking success ratio remains
much higher for different cell arrival rates as compared to
the results obtained with the uniform distribution of gate
transition probabilities. From this result, we conclude that
the proposed method is more suitable for situations where
pedestrian transition is nonuniform.

4.4. Effect of Learning Period. In the previous sections, we
used the same values for the parameters in the mobility
model in the simulation and for the parameters in the
proposed method. In practical situations, the parameters
of the proposed method are obtained by prelearning. In
this section, we investigate the effect of the duration of the
learning period on the tracking success ratio of the proposed
method. In this simulation, the observation period is set
to 3600 s and the cell arrival rate is set to 2 pedestrians/s.
We calculate the distribution of gate transit probabilities
Ptransit using the beginning (i.e., the learning period) of the
observation period and then evaluate the tracking success
ratio of the entire observation period.

Figure 12 shows the tracking success ratio plotted against
the learning period. To show that there is an upper limit to the
tracking success ratio, we also show the tracking success ratio
when the entire observed period of 3600 s is used as a learning
period (Figure 12).The tracking success ratio clearly increases
together with the learning period since with longer learning
periods we can obtain more precise parameter values. When
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Figure 11: Tracking success ratio plotted against the distribution of
gate transition probabilities.
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Figure 12: Tracking success ratio during a 3600 s simulation period
plotted against the learning period.

the learning period is set to 600 s, the tracking success ratio
is at the upper limit. In addition, the tracking success ratio
is almost at the upper limit when the learning period is set
to 300 s. Therefore, the learning period can be set to a value
between these values.

5. Conclusions and Future Work

In this paper, first we presented a model of pedestrian
mobility in a microcell on the basis of observation of
actual pedestrian trajectories. We showed that pedestrians
move along approximately straight lines and that pedestrian
velocities follow a normal distribution. Based on these results,
we proposed a novel method for pedestrian tracking in
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a microcell. In the proposed method, we extend Bayesian
estimation to account for time-series information in order
to estimate the correspondence between pedestrian arrival
and departure events. Through simulations, we evaluated the
basic performance of the proposed method in a variety of
situations and demonstrated that the tracking success ratio
of the proposed method is improved by 35.8% compared to a
combinatorial optimization-based tracking method.

In this paper, we focused on pedestrian tracking in a
microcell. In future work, we plan to develop an inter-
microcell pedestrian tracking method by using results
obtained in this paper. We also plan to evaluate the proposed
method using actual pedestrian trajectories under different
environments in terms of location, season, and time in order
to investigate the feasibility of the method in real-world
environments.

Appendix

Theorem A.1. Assume that pedestrian velocity follows a nor-
mal distribution with a mean value V and variance 𝜎

2. The
probability density function of the distribution of pedestrian
transit time 𝜏 necessary for a pedestrian to cover a distance 𝐷

can be written as

𝑝
𝑡𝑖𝑚𝑒

(𝜏, 𝐷) =

𝐷

𝜏
2

1

√2𝜋𝜎

exp(−

((𝐷/𝜏) − V)2

2𝜎
2

) . (A.1)

Proof. Since pedestrian velocity follows a normal distribu-
tion, the probability density function of the distribution of
pedestrian velocities can be written as

𝑝vel (V) =

1

√2𝜋𝜎

exp(−

(V − V)2

2𝜎
2

) . (A.2)

Let 𝐹time(𝜏, 𝐷) = 𝑝[𝑇 < 𝜏] and 𝐹vel(V) = 𝑝[𝑉 <

V] be the cumulative distribution functions of (A.1) and
(A.2), respectively, where 𝑉 and 𝑇 are random variables. The
following relationships exist among the probability density
functions and the cumulative distribution functions:

𝑝vel (V) =

𝑑

𝑑V
𝐹vel (V) ,

𝑝time (𝜏, 𝐷) =

𝑑

𝑑𝜏

𝐹time (𝜏, 𝐷) .

(A.3)

Here, 𝐹time(𝜏, 𝐷) can be written as follows:

𝐹time (𝜏, 𝐷)

= 𝑝 [𝑇 < 𝜏] = 𝑝 [

𝐷

𝑉

< 𝜏]

= 𝑝 [

𝐷

𝜏

< 𝑉] = 1 − 𝑝 [𝑉 <

𝐷

𝜏

]

= 1 − 𝐹vel (
𝐷

𝜏

) .

(A.4)

By differentiating (A.4) with respect to the transit time 𝜏, we
obtain

𝑝time (𝜏, 𝐷) =

𝑑

𝑑𝜏

𝐹time (𝜏, 𝐷)

= −

𝑑

𝑑𝜏

𝐹vel (
𝐷

𝜏

)

= −𝑝vel (
𝐷

𝜏

)

𝑑

𝑑𝜏

(

𝐷

𝜏

)

=

𝐷

𝜏
2
𝑝vel (

𝐷

𝜏

) .

(A.5)

By substituting (A.2) into (A.5), we obtain (A.1).
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