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The simplified modified Kawahara equation with variable coefficients is studied by using Lie symmetry method. Then we obtain
the corresponding Lie algebra, optimal system, and the similarity reductions. At last, we also give some new explicit solutions for
some special forms of the equations.

1. Introduction

Lie’s classical theory of symmetries of differential equations
is an inspiring source for various generalizations aiming to
find the ways for obtaining explicit solutions. Lie’s theory
provides a standard method [1–5] for finding the Lie point
symmetry group of a nonlinear system. And above all,
Lie’s method of infinitesimal transformation groups which
essentially reduces the number of independent variables in
partial differential equation (PDE) and reduces the order of
ordinary differential equation (ODE) has been widely used in
equations of mathematical physics. Lie method is an effective
and the simplest method among group theoretic techniques
and a large number of equations [6–11] are solved with the aid
of this method.

In this paper, by using the Lie symmetry group method,
we will consider the following simplified modified Kawahara
equation:

𝑢
𝑡
+ 𝑢
2
𝑢
𝑥
+ 𝛼 (𝑡) 𝑢 + 𝛽 (𝑡) 𝑢

𝑥𝑥𝑥𝑥𝑥
= 0. (1)

Here in (1) the first term represents the evolution term while
the second term represents the nonlinear term. The third
term represents the linear damping [6, 7, 12] while the fourth
term is the dispersion term. The time dependent coefficients
of damping and dispersion are, respectively, 𝛼(𝑡) and 𝛽(𝑡)
which are arbitrary smooth functions of the variable 𝑡. If
𝛼(𝑡) = 0 and 𝛽(𝑡) = constant, (1) becomes the standard
simplified modified Kawahara equation (see [13, 14] and
references therein).

These KdV types of equations have been derived tomodel
many physical phenomena, such as gravity-capillarywaves on
a shallow layer and magneto-sound propagation in plasmas,
(see [14] and references therein). Many studies have been
conducted with these types of equations [6–8, 12–18]. In [14]
similarity solutions for some classes of (1) were considered.
Abundant solitons solutions are obtained by using the tanh
method in [17]. The paper [18] is mainly concerned with
the local well-posedness of the initial-value problems for the
Kawahara and the modified Kawahara equations in Sobolev
spaces.

Our aim in the present work is to perform the variable
coefficients version of the simplified modified Kawahara
equationwith the help of Lie’smethod.Thenwe get symmetry
reductions and group-invariant solutions.

2. Lie Group Classification

2.1. Lie Symmetry Analysis of (1). In this section, we will
perform Lie group method for (1).

If (1) is invariant under a one-parameter Lie group of
point transformations

𝑡
∗
= 𝑡 + 𝜖𝜏 (𝑥, 𝑡, 𝑢) + 𝑂 (𝜖

2
) ,

𝑥
∗
= 𝑥 + 𝜖𝜉 (𝑥, 𝑡, 𝑢) + 𝑂 (𝜖

2
) ,

𝑢
∗
= 𝑢 + 𝜖𝜂 (𝑥, 𝑡, 𝑢) + 𝑂 (𝜖

2
) ,

(2)
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with infinitesimal generator

𝑉 = 𝜏 (𝑥, 𝑡, 𝑢)

𝜕

𝜕𝑡

+ 𝜉 (𝑥, 𝑡, 𝑢)

𝜕

𝜕𝑥

+ 𝜂 (𝑥, 𝑡, 𝑢)

𝜕

𝜕𝑢

, (3)

then the invariant condition reads as

𝜂
𝑡
+ 𝑢
2
𝜂
𝑥
+ 2𝜂𝑢𝑢

𝑥
+ 𝛼

(𝑡) 𝜏𝑢 + 𝛽


(𝑡) 𝜏𝑢
𝑥𝑥𝑥𝑥𝑥

+ 𝛼 (𝑡) 𝜂 + 𝛽 (𝑡) 𝜂
𝑥𝑥𝑥𝑥𝑥

= 0,

(4)

where

𝜂
𝑡
= 𝐷
𝑡
(𝜂) − 𝑢

𝑥
𝐷
𝑡
(𝜉) − 𝑢

𝑡
𝐷
𝑡
(𝜏) ,

𝜂
𝑥
= 𝐷
𝑥
(𝜂) − 𝑢

𝑥
𝐷
𝑥
(𝜉) − 𝑢

𝑡
𝐷
𝑥
(𝜏) ,

𝜂
𝑥𝑥
= 𝐷
𝑥
(𝜂
𝑥
) − 𝑢
𝑥𝑡
𝐷
𝑥
(𝜏) − 𝑢

𝑥𝑥
𝐷
𝑥
(𝜉) ,

𝜂
𝑥𝑥𝑥

= 𝐷
𝑥
(𝜂
𝑥𝑥
) − 𝑢
𝑥𝑥𝑡
𝐷
𝑥
(𝜏) − 𝑢

𝑥𝑥𝑥
𝐷
𝑥
(𝜉) ,

𝜂
𝑥𝑥𝑥𝑥

= 𝐷
𝑥
(𝜂
𝑥𝑥𝑥
) − 𝑢
𝑥𝑥𝑥𝑡

𝐷
𝑥
(𝜏) − 𝑢

𝑥𝑥𝑥𝑥
𝐷
𝑥
(𝜉) ,

𝜂
𝑥𝑥𝑥𝑥𝑥

= 𝐷
𝑥
(𝜂
𝑥𝑥𝑥𝑥

) − 𝑢
𝑥𝑥𝑥𝑥𝑡

𝐷
𝑥
(𝜏) − 𝑢

𝑥𝑥𝑥𝑥𝑥
𝐷
𝑥
(𝜉) .

(5)

Here, 𝐷
𝑖
denotes the total derivative operator and is defined

by

𝐷
𝑖
=

𝜕

𝜕𝑥
𝑖
+ 𝑢
𝑖

𝜕

𝜕𝑢

+ 𝑢
𝑖𝑗

𝜕

𝜕𝑢
𝑗

+ ⋅ ⋅ ⋅, 𝑖 = 1, 2, (6)

and (𝑥1, 𝑥2) = (𝑡, 𝑥).
Solving (4) with the help of (5) we obtain

𝜏 = 𝜏 (𝑡) , 𝜉
𝑢
= 0, 𝜂

𝑢𝑢
= 0, (7)

𝛽 (𝑡) 𝜏
𝑡
+ 𝛽

(𝑡) 𝜏 − 5𝛽 (𝑡) 𝜉

𝑥
= 0, (8)

𝜂
𝑥𝑢
− 2𝜉
𝑥𝑥
= 0, (9)

𝜏
𝑡
𝑢
2
− 𝜉
𝑥
𝑢
2
+ 2𝜂𝑢 − 𝜉

𝑡
+ 𝛽 (𝑡) (5𝜂

𝑥𝑥𝑥𝑥𝑢
− 𝜉
𝑥𝑥𝑥𝑥𝑥

) = 0, (10)

𝜂
𝑡
+ 𝛼 (𝑡) 𝜂 + 𝛼 (𝑡) 𝑢𝜏

𝑡
− 𝛼 (𝑡) 𝑢𝜂

𝑢

+ 𝑢𝛼

(𝑡) 𝜏 + 𝑢

2
𝜂
𝑥
+ 𝛽 (𝑡) 𝜂

𝑥𝑥𝑥𝑥𝑥
= 0.

(11)

The structure of the determining equations (10) and (11)
may give the selection of the following three forms for the
coefficient 𝛼(𝑡).

Case 1 (𝛼(𝑡) = 0). In this case, solving (7)–(11) we get

𝜉 = 2𝑐
1
𝑥 + 𝑐
2
, 𝜏 = 2𝑐

3
𝑡 + 𝑐
4
,

𝜂 = (𝑐
1
− 𝑐
3
) 𝑢,

(12)

and (8) becomes

𝛽

(𝑡) (2𝑐

3
𝑡 + 𝑐
4
) + 𝛽 (𝑡) (2𝑐

3
− 10𝑐
1
) = 0, (13)

where 𝑐
1
, . . . , 𝑐

4
are constants.The analysis of (13) leads to the

following three possibilities for 𝛽(𝑡).

(1.1) 𝛽(𝑡) is arbitrary.

For this case, we obtain the vector field

𝑉
1
=

𝜕

𝜕𝑥

. (14)

(1.2) 𝛽(𝑡) = 𝑏
0
( ̸= 0) is a constant.

Equation (1) admits a three-dimensional Lie algebra
spanned by

𝑉
1
=

𝜕

𝜕𝑥

, 𝑉
2
=

𝜕

𝜕𝑡

,

𝑉
3
= 𝑥

𝜕

𝜕𝑥

+ 5𝑡

𝜕

𝜕𝑡

− 2𝑢

𝜕

𝜕𝑢

.

(15)

(1.3) 𝛽(𝑡) = 𝑏
0
e𝑚𝑡, 𝑏
0
, 𝑚( ̸= 0) are constant.

We obtain the corresponding two Lie point symmetry
generators

𝑉
1
=

𝜕

𝜕𝑥

, 𝑉
2
=

𝜕

𝜕𝑡

+

𝑚

5

𝑥

𝜕

𝜕𝑥

+

𝑚

10

𝑢

𝜕

𝜕𝑢

. (16)

Case 2 (𝛼(𝑡) is a nonzero constant as 𝑎). Similarly, in this case,
solving (7)–(11) for the infinitesimals, we obtain

𝜉 = 2𝑐
1
𝑥 + 𝑐
3
, 𝜏 = −

𝑐
2

𝑎

e2𝑎𝑡 + 𝑐
4
,

𝜂 = (𝑐
1
+ 𝑐
2
e2𝑎𝑡) 𝑢,

(17)

and (8) becomes

𝛽

(𝑡) (−

𝑐
2

𝑎

e2𝑎𝑡 + 𝑐
4
) + 𝛽 (𝑡) (−2𝑐

2
e2𝑎𝑡 − 10𝑐

1
) = 0, (18)

where 𝑐
1
, . . . , 𝑐

4
are constants.The analysis of (18) gives rise to

the following four possibilities for 𝛽(𝑡).

(2.1) 𝛽(𝑡) is arbitrary.

For this case, we obtain the vector field

𝑉
1
=

𝜕

𝜕𝑥

. (19)

(2.2) 𝛽(𝑡) = 𝑏
0
( ̸= 0) is a constant.

We have the corresponding two-dimensional Lie algebra

𝑉
1
=

𝜕

𝜕𝑥

, 𝑉
2
=

𝜕

𝜕𝑡

. (20)
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(2.3) 𝛽(𝑡) = 𝑏
0
e−2𝑎𝑡, 𝑏

0
is a constant.

Equation (1) admits a three-dimensional Lie algebra
spanned by

𝑉
1
=

𝜕

𝜕𝑥

, 𝑉
2
= e2𝑎𝑡 𝜕

𝜕𝑡

− 𝑎e2𝑎𝑡𝑢 𝜕
𝜕𝑢

,

𝑉
3
= 5

𝜕

𝜕𝑡

− 2𝑎𝑥

𝜕

𝜕𝑥

− 𝑎𝑢

𝜕

𝜕𝑢

.

(21)

(2.4) 𝛽(𝑡) = 𝑏
0
e𝑚𝑡(𝑏
0
̸= 0) is a constant.

Substituting 𝛽(𝑡) into (18), one can get

𝑐
2
e2𝑎𝑡 (𝑚

𝑎

+ 2) = 10𝑐
1
− 𝑐
4
𝑚, (22)

where 𝑚 ̸= − 2𝑎. We obtain the corresponding two-
dimensional Lie algebra

𝑉
1
=

𝜕

𝜕𝑥

,

𝑉
2
=

𝜕

𝜕𝑡

+

𝑚

5

𝑥

𝜕

𝜕𝑥

+

𝑚

10

𝑢

𝜕

𝜕𝑢

.

(23)

Case 3 (𝛼(𝑡) = 1/𝑡). In this case, solving (7)–(11), we get

𝜉 = 𝑐
3
𝑥 + 𝑐
4
, 𝜏 = −𝑐

1
𝑡
2
− 2𝑐
2
𝑡 + 𝑐
3
𝑡,

𝜂 = (𝑐
1
𝑡 + 𝑐
2
) 𝑢,

(24)

and (8) becomes

𝛽

(𝑡) (−𝑐

1
𝑡
2
− 2𝑐
2
𝑡 + 𝑐
3
𝑡) + 𝛽 (𝑡) (−4𝑐

3
− 2𝑐
2
− 2𝑐
1
𝑡) = 0,

(25)

where 𝑐
1
, . . . , 𝑐

4
are constants. Similarly, the analysis of (25)

gives rise to the following three possibilities for 𝛽(𝑡).

(3.1) 𝛽(𝑡) is arbitrary.

For this case, we obtain the vector field

𝑉
1
=

𝜕

𝜕𝑥

. (26)

(3.2) 𝛽(𝑡) = 𝑏
0
( ̸= 0) is a constant.

We obtain the corresponding two-dimensional Lie alge-
bra

𝑉
1
=

𝜕

𝜕𝑥

, 𝑉
2
= 𝑥

𝜕

𝜕𝑥

+ 5𝑡

𝜕

𝜕𝑡

− 2𝑢

𝜕

𝜕𝑢

. (27)

(3.3) 𝛽(𝑡) = 𝑏
0
/𝑡
2, 𝑏
0
( ̸= 0) is a constant.

The Lie algebra is extended by the symmetry generators

𝑉
1
=

𝜕

𝜕𝑥

, 𝑉
2
= 𝑡
2 𝜕

𝜕𝑡

− 𝑡𝑢

𝜕

𝜕𝑢

,

𝑉
3
= 𝑥

𝜕

𝜕𝑥

− 5𝑡

𝜕

𝜕𝑡

+ 3𝑢

𝜕

𝜕𝑢

.

(28)

Table 1: Commutator table of the Lie algebra of (1.2).

[𝑉
𝑖
, 𝑉
𝑗
] 𝑉

1
𝑉
2

𝑉
3

𝑉
1

0 0 𝑉
1

𝑉
2

0 0 5𝑉
2

𝑉
3

−𝑉
1

−5𝑉
2

0

Table 2: Adjoint table of the Lie algebra of (1.2).

Ad 𝑉
1

𝑉
2

𝑉
3

𝑉
1

𝑉
1

𝑉
2

𝑉
3
− 𝜖𝑉
1

𝑉
2

𝑉
1

𝑉
2

𝑉
3
− 5𝜖𝑉

2

𝑉
3

𝑒
𝜖
𝑉
1

𝑒
5𝜖
𝑉
2

𝑉
3

Table 3: Commutator table of the Lie algebra of (2.3).

[𝑉
𝑖
, 𝑉
𝑗
] 𝑉

1
𝑉
2

𝑉
3

𝑉
1

0 0 −2𝑎𝑉
1

𝑉
2

0 0 −10𝑎𝑉
2

𝑉
3

2𝑎𝑉
1

10𝑎𝑉
2

0

2.2. Optimal System of One-Dimensional Lie Algebras. First
of all, we briefly review the main definitions [1] which will be
used in the following sections.

Definition 1 (see [1]). Let 𝐺 be a Lie group. An optimal
system of s-parameter subgroups is a list of conjugacy
inequivalent s-parameter subgroups with the property that
any other subgroup is conjugate to precisely one subgroup
in the list. Similarly, a list of s-parameter subalgebras forms
an optimal system if every s-parameter subalgebra of 𝑔 is
equivalent to a uniquemember of the list under some element
of the adjoint representation: ℏ = 𝐴𝑑 𝑔(ℎ), 𝑔 ∈ 𝐺.

To obtain the optimal system, we apply the formula [1]

𝐴𝑑 (exp (𝜖𝑉
𝑖
)) 𝑉
𝑗
= 𝑉
𝑗
− 𝜖 [𝑉

𝑖
, 𝑉
𝑗
] +

1

2

𝜖
2
[𝑉
𝑖
, [𝑉
𝑖
, 𝑉
𝑗
]] − ⋅ ⋅ ⋅ ,

(29)

where 𝜖 is a real constant. Here [𝑉
𝑖
, 𝑉
𝑗
] is the commutator for

the Lie algebra given by

[𝑉
𝑖
, 𝑉
𝑗
] = 𝑉
𝑖
𝑉
𝑗
− 𝑉
𝑗
𝑉
𝑖
. (30)

The commutator table of the Lie point symmetries of (1.2)
and the adjoint representations of the symmetry group of (1.2)
on its Lie algebra are given in Tables 1 and 2, respectively.
In the same way, the commutator table and the adjoint
representations of (2.3), (2.4), and (3.3) are given in Tables 3,
4, 5, 6, 7, and 8, respectively.We give inTable 9 optimal system
of subalgebras for (1.2), (2.3), (2.4), and (3.3), respectively.

Remark 2. For simplicity, we will refer to the equation
corresponding to the case (1.3) as (1.3), and so on.

Remark 3. For brevity we only consider the optimal system
for the equation concerned in case (1.2) in detail and the rest
will be listed in Table 9 as they can be derived in a similar
manner.
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Table 4: Adjoint table of the Lie algebra of (2.3).

Ad 𝑉
1

𝑉
2

𝑉
3

𝑉
1

𝑉
1

𝑉
2

𝑉
3
+ 2𝑎𝜖𝑉

1

𝑉
2

𝑉
1

𝑉
2

𝑉
3
+ 10𝑎𝜖𝑉

2

𝑉
3

𝑒
−2𝑎𝜖𝑉1

𝑒
−10𝑎𝜖

𝑉
2

𝑉
3

Table 5: Commutator table of the Lie algebra of (2.4).

[𝑉
𝑖
, 𝑉
𝑗
] 𝑉

1
𝑉
2

𝑉
1

0 0
𝑉
2

0 0

Table 6: Adjoint table of the Lie algebra of (2.4).

Ad 𝑉
1

𝑉
2

𝑉
1

𝑉
1

𝑉
2

𝑉
2

𝑉
1

𝑉
2

Table 7: Commutator table of the Lie algebra of (3.3).

[𝑉
𝑖
, 𝑉
𝑗
] 𝑉

1
𝑉
2

𝑉
3

𝑉
1

0 0 𝑉
1

𝑉
2

0 0 5𝑉
2

𝑉
3

−𝑉
1

−5𝑉
2

0

Table 8: Adjoint table of the Lie algebra of (3.3).

Ad 𝑉
1

𝑉
2

𝑉
3

𝑉
1

𝑉
1

𝑉
2

𝑉
3
− 𝜖𝑉
1

𝑉
2

𝑉
1

𝑉
2

𝑉
3
− 5𝜖𝑉

2

𝑉
3

𝑒
𝜖
𝑉
1

𝑒
5𝜖
𝑉
2

𝑉
3

3. Symmetry Reductions and Exact
Group-Invariant Solutions

In this section, we will use Table 9 to obtain symmetry
reductions and exact group-invariant solutions for (1.2),
(2.3), (2.4), and (3.3).

3.1. Symmetry Reductions and Exact Solutions to (1.2)

3.1.1.𝑉
1
. For the generator𝑉

1
, the group-invariant solution is

𝑢 = 𝑓(𝜉), where 𝜉 = 𝑡 is the group-invariant, the substitution
of this solution into (1.2) gives the trivial solution 𝑢(𝑥, 𝑡) = 𝐶,
and 𝐶 is a constant.

3.1.2.𝑉
2
+ 𝜆𝑉
1
. For the linear combination𝑉

2
+𝜆𝑉
1
, we have

𝑢 = 𝑓 (𝜉) , (31)

where 𝜉 = 𝑥−𝜆𝑡 is the group-invariant. Substituting (31) into
(1.2), we reduce it to the following ODE:

𝑏
0
𝑓
(5)
+ 𝑓
2
𝑓

− 𝜆𝑓

= 0. (32)

3.1.3. 𝑉
3
. For the generator 𝑉

3
, we have

𝑢 = 𝑡
−(2/5)

𝑓 (𝜉) , (33)

where 𝜉 = 𝑥𝑡
−(1/5) is the group-invariant. Substituting (33)

into (1.2), we reduce it to the following ODE:

5𝑏
0
𝑓
(5)
+ 5𝑓
2
𝑓

− 2𝑓 − 𝜉𝑓


= 0, (34)

where 𝑓 = 𝑑𝑓/𝑑𝜉.

3.2. Symmetry Reductions and Exact Solutions to (2.3)

3.2.1. 𝑉
1
. For the generator 𝑉

1
, we get that the group-

invariant solution of (2.3) is 𝑢(𝑥, 𝑡) = 𝑐𝑒
−𝑎𝑡, where 𝑐 is an

arbitrary constant.

3.2.2. 𝑉
3
. For the generator 𝑉

3
, we have

𝑢 = 𝑒
−𝑎𝑡/5

𝑓 (𝜉) , (35)

where 𝜉 = 𝑥𝑒2𝑎𝑡/5. Substituting (35) into (2.3), one can get

5𝑏
0
𝑓
(5)
+ 5𝑓
2
𝑓

+ 4𝑎𝑓 + 2𝑎𝜉𝑓


= 0, (36)

where 𝑓 = 𝑑𝑓/𝑑𝜉.

3.2.3. 𝑉
2
+ 𝜇𝑉
1
. (i) For 𝜇 ̸= 0, we have

𝑢 = 𝑓 (𝜉) e−𝑎𝑡, (37)

where 𝜉 = 𝑥 + (𝜇e−2𝑎𝑡/2𝑎). Substituting (37) into (2.3) yields

𝑏
0
𝑓
(5)
+ 𝑓
2
𝑓

− 𝜇𝑓

= 0. (38)

(ii) For 𝜇 = 0, we get

𝑏
0
𝑓
(5)
+ 𝑓
2
𝑓

= 0. (39)

3.3. Symmetry Reductions and Exact Solutions to (2.4)

3.3.1. 𝑉
1
. For the generator 𝑉

1
, we get that the group-

invariant solution of (2.4) is

𝑢 (𝑥, 𝑡) = 𝑐𝑒
−𝑎𝑡
, (40)

where 𝑐 is an arbitrary constant.

3.3.2. 𝑉
2
. For this case, we have

𝜉 = 𝑥e−(𝑚𝑡/5), 𝑢 = e𝑚𝑡/10𝑓 (𝜉) ; (41)

then substituting (41) into (2.4) gives rise to

10𝑏
0
𝑓
(5)
+ 10𝑓

2
𝑓

+ 10𝑎𝑓 − 2𝑚𝜉𝑓


+ 𝑚𝑓 = 0. (42)
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Table 9: Optimal system of subalgebras of some special cases of (1.1).

Equation number Equations Optimal system
(1.2) 𝑢

𝑡
+ 𝑢
2
𝑢
𝑥
+ 𝑏
0
𝑢
𝑥𝑥𝑥𝑥𝑥

= 0 𝑉
1
, 𝑉
2
+ 𝜆𝑉
1
, 𝑉
3

(2.3) 𝑢
𝑡
+ 𝑢
2
𝑢
𝑥
+ 𝑎𝑢 + (𝑏

0
𝑒
−2𝑎𝑡
)𝑢
𝑥𝑥𝑥𝑥𝑥

= 0 𝑉
1
, 𝑉
2
+ 𝜇𝑉
1
, 𝑉
3

(2.4) 𝑢
𝑡
+ 𝑢
2
𝑢
𝑥
+ 𝑎𝑢 + (𝑏

0
𝑒
𝑚𝑡
)𝑢
𝑥𝑥𝑥𝑥𝑥

= 0 𝑉
1
, 𝑉
2

(3.3) 𝑢
𝑡
+ 𝑢
2
𝑢
𝑥
+ (1/𝑡)𝑢 + (𝑏

0
/𝑡
2
)𝑢
𝑥𝑥𝑥𝑥𝑥

= 0 𝑉
1
, 𝑉
2
+ 𝜇𝑉
1
, 𝑉
3

Here 𝜇 = 0, 𝜇 = ±1, and 𝜆 is a nonzero constant.

3.4. Symmetry Reductions and Exact Solutions to (3.3)

3.4.1. 𝑉
1
. For the generator 𝑉

1
, we get that the group-

invariant solution of (3.3) is

𝑢 (𝑥, 𝑡) =

𝑐

𝑡

, (43)

where 𝑐 is an arbitrary constant.

3.4.2. 𝑉
3
. For the generator 𝑉

3
, we have

𝑢 = 𝑡
−(3/5)

𝑓 (𝜉) , (44)

where 𝜉 = 𝑥𝑡1/5. Substituting (44) into (3.3), one can get

5𝑏
0
𝑓
(5)
+ 5𝑓
2
𝑓

+ 2𝑓 + 𝜉𝑓


= 0, (45)

where𝑓 = 𝑑𝑓/𝑑𝜉.

3.4.3. 𝑉
2
+ 𝜇𝑉
1
. (i) For 𝜇 ̸= 0, we have

𝑢 =

1

𝑡

𝑓 (𝜉) , (46)

where 𝜉 = 𝑥 + 𝜇/𝑡. Substituting (46) into (3.3) yields

𝑏
0
𝑓
(5)
+ 𝑓
2
𝑓

− 𝜇𝑓

= 0. (47)

In order to search for other explicit solutions, by using
the Jacobi elliptic function expansion method [19]. By virtue
of the technique of solution we introduce the ansatz

𝑓 = 𝑎
0
+ 𝑎
1
sn (𝜉) + 𝑎

2
sn2 (𝜉) . (48)

Substituting (48) into (47), one can get

𝑏 = −

1

360

𝑎
2

2

𝑚
4
, 𝑚 = 𝑚, 𝜇 =

1

15

𝑎
2

2
(−𝑚
2
+ 1 + 𝑚

4
)

𝑚
4

,

𝑎
0
= −

1

3

𝑎
2
(1 + 𝑚

2
)

𝑚
2

, 𝑎
1
= 0, 𝑎

2
= 𝑎
2
.

(49)

Thus, we obtain Jacobi elliptic function solutions of (3.3)
as follows:

𝑢 (𝑥, 𝑡) = −

1

3

𝑎
2
(1 + 𝑚

2
)

𝑚
2

+ 𝑎
2
sn2 (𝜉) . (50)

In particular, when 𝑚 → 1, we can obtain hyperbolic
function solutions

𝑢 (𝑥, 𝑡) = −

1

3

𝑎
2
(1 + 𝑚

2
)

𝑚
2

+ 𝑎
2
tanh2 (𝜉) . (51)

When 𝑚 → 0, we can obtain trigonometric function
solutions

𝑢 (𝑥, 𝑡) = −

1

3

𝑎
2
(1 + 𝑚

2
)

𝑚
2

+ 𝑎
2
sin2 (𝜉) , (52)

where 𝜉 = 𝑥 + 𝜇/𝑡.
(ii) For 𝜇 = 0, we get

𝑏
0
𝑓
(5)
+ 𝑓
2
𝑓

= 0. (53)

Remark 4. It is not difficult to find out that the reducedODEs
may be classified into four classes:

𝑓
(5)
+ 𝐴𝑓
2
𝑓

= 0,

𝑓
(5)
+ 𝐴𝑓
2
𝑓

+ 𝐵𝑓

= 0,

𝑓
(5)
+ 𝐴𝑓
2
𝑓

+ 𝐵𝑓

+ 𝐶𝑓 = 0,

𝑓
(5)
+ 𝐴𝑓
2
𝑓

+ 𝐵𝑓

+ 𝐶𝜉𝑓


= 0.

(54)

4. The Explicit Power Series Solutions

In this section, we will consider the explicit analytic solutions
of some special forms of reduced equations by using the
power series method.

Now, we seek a solution of (45) in a power series of the
following form:

𝑓 (𝜉) =

∞

∑

𝑛=0

𝑐
𝑛
𝜉
𝑛
. (55)
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Substituting (55) into (45), we get

600𝑏𝑐
5
+ 𝑏

∞

∑

𝑛=1

(𝑛 + 1) (𝑛 + 2) (𝑛 + 3) (𝑛 + 4) (𝑛 + 5) 𝑐
𝑛+5
𝜉
𝑛

+ 5𝑐
2

0
𝑐
1
+ 5

∞

∑

𝑛=1

𝑛

∑

𝑘=0

𝑘

∑

𝑗=0

(𝑛 + 1 − 𝑘) 𝑐
𝑗
𝑐
𝑘−𝑗
𝑐
𝑛+1−𝑘

𝜉
𝑛

+ 2𝑐
0
+ 2

∞

∑

𝑛=1

𝑐
𝑛
𝜉
𝑛

+

∞

∑

𝑛=1

𝑛𝑐
𝑛
𝜉
𝑛
= 0.

(56)

Now from (56), comparing coefficients, for 𝑛 = 0, one
can get

𝑐
5
= −

2𝑐
0
+ 5𝑐
2

0
𝑐
1

600𝑏

. (57)

Generally, for 𝑛 ≥ 1, we obtain

𝑐
𝑛+5

= −

1

𝑏 (𝑛 + 1) (𝑛 + 2) (𝑛 + 3) (𝑛 + 4) (𝑛 + 5)

× ((𝑛 + 2) 𝑐
𝑛
+ 5

𝑛

∑

𝑘=0

𝑘

∑

𝑗=0

(𝑛 + 𝑘 − 1) 𝑐
𝑗
𝑐
𝑘−𝑗
𝑐
𝑛+1−𝑘

) .

(58)

From (57) and (58), we can obtain all the coefficients
𝑐
𝑛
(𝑛 ≥ 5) of the power series (55). For arbitrary chosen

constant numbers 𝑐
0
, 𝑐
1
, 𝑐
2
, 𝑐
3
, and 𝑐

4
, the other terms also can

be determined successively from (57) and (58) in a unique
way. In addition, it is easy to prove the convergence of the
power series (55) with the coefficients given by (57) and (58)
[20, 21]. The details are omitted here. In this connection, this
power series solution is an explicit analytic solution.

So, the power series solution of (45) can be written as
follows:

𝑓 (𝜉) = 𝑐
0
+ 𝑐
1
𝜉 + 𝑐
2
𝜉
2
+ 𝑐
3
𝜉
3

+ 𝑐
4
𝜉
4
+ 𝑐
5
𝜉
5
+

∞

∑

𝑛=1

𝑐
𝑛+5
𝜉
𝑛+5

= 𝑐
0
+ 𝑐
1
𝜉 + 𝑐
2
𝜉
2
+ 𝑐
3
𝜉
3
+ 𝑐
4
𝜉
4

−

2𝑐
0
+ 5𝑐
2

0
𝑐
1

600𝑏

𝜉
5

−

∞

∑

𝑛=0

1

𝑏 (𝑛 + 1) (𝑛 + 2) (𝑛 + 3) (𝑛 + 4) (𝑛 + 5)

× ((𝑛 + 2) 𝑐
𝑛

+ 5

𝑛

∑

𝑘=0

𝑘

∑

𝑗=0

(𝑛 + 𝑘 − 1) 𝑐
𝑗
𝑐
𝑘−𝑗
𝑐
𝑛+1−𝑘

)𝜉
𝑛+5
.

(59)

Thus, the exact power series solution of (3.3) is

𝑢 (𝑥, 𝑡) = [𝑐
0
+ 𝑐
1
(𝑥𝑡
1/5
) + 𝑐
2
(𝑥𝑡
1/5
)

2

+ 𝑐
3
(𝑥𝑡
1/5
)

3

+ 𝑐
4
(𝑥𝑡
1/5
)

4

−

2𝑐
0
+ 5𝑐
2

0
𝑐
1

600𝑏

(𝑥𝑡
1/5
)

5

+

∞

∑

𝑛=0

𝑐
𝑛+5
(𝑥𝑡
1/5
)

𝑛+5

] (𝑡
−(3/5)

)

=
[

[

𝑐
0
+ 𝑐
1
(𝑥𝑡
1/5
) + 𝑐
2
(𝑥𝑡
1/5
)

2

+ 𝑐
3
(𝑥𝑡
1/5
)

3

+ 𝑐
4
(𝑥𝑡
1/5
)

4

−

2𝑐
0
+ 5𝑐
2

0
𝑐
1

600𝑏

(𝑥𝑡
1/5
)

5

−

∞

∑

𝑛=0

1

𝑏 (𝑛 + 1) (𝑛 + 2) (𝑛 + 3) (𝑛 + 4) (𝑛 + 5)

× ((𝑛 + 2) 𝑐
𝑛

+5

𝑛

∑

𝑘=0

𝑘

∑

𝑗=0

(𝑛 + 𝑘 − 1) 𝑐
𝑗
𝑐
𝑘−𝑗
𝑐
𝑛+1−𝑘

)

× 𝜉
𝑛+5
]

]

(𝑡
−(3/5)

) ,

(60)

where 𝑐
𝑖
(𝑖 = 0, 1, 2, 3, 4) are arbitrary constants, and the

other coefficients 𝑐
𝑛
(𝑛 ≥ 5) can be determined successively

from (57) and (58).
Of course, in physical applications, it will be convenient

to write the solution of (45) in the approximate form

𝑢 (𝑥, 𝑡) = [𝑐
0
+ 𝑐
1
(𝑥𝑡
1/5
) + 𝑐
2
(𝑥𝑡
1/5
)

2

+ 𝑐
3
(𝑥𝑡
1/5
)

3

+𝑐
4
(𝑥𝑡
1/5
)

4

−

2𝑐
0
+ 5𝑐
2

0
𝑐
1

600𝑏

(𝑥𝑡
1/5
)

5

+ ⋅ ⋅ ⋅ ]

× (𝑡
−(3/5)

) .

(61)
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Remark 5. The exact solution of the rest of equations can be
derived in a similar manner. We have details omitted here.

Remark 6. It is easy to see that the reduced equations (54)
are all higher-order nonlinear ODEs or with nonconstant
coefficients. If we obtain a one-parameter symmetry group
of an ODE, then we could reduce the order of the equation
by one. However, we find out that such reduced ODEs are
more complicated than the original equation. In general,
we cannot obtain the exact explicit solutions for higher-
order nonlinear ODEs or with nonconstant coefficients by
using the elementary functions and integrals. However, the
power series can be used to solve them. In view of this,
we can find that the power series method [14, 15, 20–23]
is an effective tool of solving such ODEs. Moreover, from
our model, we could find that these power series solutions
are important for computations in numerical analysis and
physical applications. And above all, these power series play
an important role in the investigation of physical phenomena
and other natural phenomena.

Remark 7. Indeed, for all the rest of the cases presented in
Section 2, it is possible to get optimal systems and symmetry
reductions, but for brevity we have omitted them here.

5. Conclusions

We have performed Lie symmetry analysis for the simplified
modified Kawahara equation with variable coefficients. Then
the similarity reductions and exact solutions are obtained
based on the optimal system of the one-dimensional Lie
algebras, for some special forms of the equations. Moreover,
the power series solution of the reduced equation are given
simultaneously. These are new solutions for the simplified
modified Kawahara equation with variable coefficients. The
symmetry analysis based on the Lie group method is a very
powerful method and is worthy of being studyied further.
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