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We establish some stability results over p-adic fields for the generalized quadratic functional equa-
tion

∑n
k=2
∑k

i1=2
∑k+1

i2=i1+1 · · ·
∑n

in−k+1=in−k+1f(
∑n

i=1,i /= i1 ,...,in−k+1xi −
∑n−k+1

r=1 xir ) + f(
∑n

i=1xi) = 2n−1
∑n

i=1f(xi),
where n ∈ N and n ≥ 2.

1. Introduction and Preliminaries

In 1899, Hensel [1] discovered the p-adic numbers as a number of theoretical analogue of
power series in complex analysis. Fix a prime number p. For any nonzero rational number
x, there exists a unique integer nx such that x = (a/b)pnx , where a and b are integers not
divisible by p. Then, p-adic absolute value |x|p := p−nx defines a non-Archimedean norm on
Q. The completion of Q with respect to the metric d(x, y) = |x−y|p is denoted by Qp, and it is
called the p-adic number field. In fact, Qp is the set of all formal series x =

∑∞
k≥nx

akp
k, where

|ak| ≤ p − 1 are integers (see, e.g., [2, 3]). Note that if p > 2, then |2n|p = 1 for each integer n.
During the last three decades, p-adic numbers have gained the interest of physicists

for their research, in particular, in problems coming from quantum physics, p-adic strings,
and superstrings [4, 5]. A key property of p-adic numbers is that they do not satisfy the
Archimedean axiom: For x, y > 0, there exists n ∈ N such that x < ny.

Let K denote a field and function (valuation absolute) | · | from K into [0,∞). A non-
Archimedean valuation is a function | · | that satisfies the strong triangle inequality; namely,
|x + y| ≤ max{|x|, |y|} ≤ |x| + |y| for all x, y ∈ K. The associated field K is referred to as a
non-Archimedean field. Clearly, |1| = | − 1| = 1 and |n| ≤ 1 for all n ≥ 1. A trivial example of a
non-Archimedean valuation is the function | · | taking everything except 0 into 1 and |0| = 0.
We always assume in addition that | · | is nontrivial, that is, there is a z ∈ K such that |z|/= 0, 1.
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LetX be a linear space over a field K with a non-Archimedean nontrivial valuation | · |.
A function ‖·‖ : X → [0,∞) is said to be a non-Archimedean norm if it is a norm over K with
the strong triangle inequality (ultrametric); namely, ‖x + y‖ ≤ max{‖x‖, ‖y‖} for all x, y ∈ X.
Then, (X, ‖ · ‖) is called a non-Archimedean space. In any such a space, a sequence {xn}n∈N

is Cauchy if and only if {xn+1 − xn}n∈N
converges to zero. By a complete non-Archimedean

space, we mean one in which every Cauchy sequence is convergent.
The study of stability problems for functional equations is related to a question

of Ulam [6] concerning the stability of group homomorphisms, which was affirmatively
answered for Banach spaces by Hyers [7]. Subsequently, the result of Hyers was generalized
by Aoki [8] for additive mappings and by Rassias [9] for linear mappings by considering
an unbounded Cauchy difference. The paper by Rassias has provided a lot of influences
in the development of what we now call the generalized Hyers-Ulam stability or Hyers-
Ulam-Rassias stability of functional equations. Rassias [10] considered the Cauchy difference
controlled by a product of different powers of norm. The above results have been generalized
by Forti [11] and Găvruţa [12] who permitted the Cauchy difference to become arbitrary
unbounded (see also [13–22]). Arriola and Beyer [23] investigated stability of approximate
additive functions f : Qp → R. They showed that if f : Qp → R is a continuous function for
which there exists a fixed ε such that |f(x + y) − f(x) − f(y)| ≤ ε for all x, y ∈ Qp, then there
exists a unique additive function T : Qp → R such that |f(x) − T(x)| ≤ ε for all x ∈ Qp. For
more details about the results concerning such problems, the reader is referred to [24–45].

Recently, Khodaei and Rassias [46] introduced the generalized additive functional
equation

n∑

k=2

(
k∑

i1=2

k+1∑

i2=i1+1

· · ·
n∑

in−k+1=in−k+1

)

f

⎛

⎝
n∑

i=1, i /= i1,...,in−k+1

aixi −
n−k+1∑

r=1

air xir

⎞

⎠ + f

(
n∑

i=1

aixi

)

= 2n−1a1f(x1)

(1.1)

and proved the generalized Hyers-Ulam stability of the above functional equation. The
functional equation

f(x1 + x2) + f(x1 − x2) = 2f(x1) + 2f(x2) (1.2)

is related to symmetric biadditive function and is called a quadratic functional equation [47,
48]. Every solution of the quadratic equation (1.2) is said to be a quadratic function.

Now, we introduce the generalized quadratic functional equation in n-variables as
follows:

n∑

k=2

(
k∑

i1=2

k+1∑

i2=i1+1

· · ·
n∑

in−k+1=in−k+1

)

f

⎛

⎝
n∑

i=1, i /= i1,...,in−k+1

xi −
n−k+1∑

r=1

xir

⎞

⎠ + f

(
n∑

i=1

xi

)

= 2n−1
n∑

i=1

f(xi),

(1.3)

where n ≥ 2. Moreover, we investigate the generalized Hyers-Ulam stability of functional
equation (1.3) over the p-adic field Qp.



Abstract and Applied Analysis 3

As a special case, if n = 2 in (1.3), then we have the functional equation (1.2). Also, if
n = 3 in (1.3), we obtain

2∑

i1=2

3∑

i2=i1+1

f

⎛

⎝
3∑

i=1, i /= i1,i2

xi −
2∑

r=1

xir

⎞

⎠ +
3∑

i1=2

f

⎛

⎝
3∑

i=1, i /= i1

xi − xi1

⎞

⎠ + f

(
3∑

i=1

xi

)

= 22
3∑

i=1

f(xi), (1.4)

that is,

f(x1 − x2 − x3)+f(x1 − x2 + x3) + f(x1 + x2 − x3)+f(x1 + x2 + x3) = 4f(x1) + 4f(x2) + 4f(x3).
(1.5)

2. Stability of Quadratic Functional Equation (1.3) over p-Adic Fields

We will use the following lemma.

Lemma 2.1. Let X and Y be real vector spaces. A function f : X → Y satisfies the functional
equation (1.3) if and only if the function f is quadratic.

Proof. Let f satisfy the functional equation (1.3). Setting xi = 0 (i = 1, . . . , n) in (1.3), we have

n∑

k=2

(
k∑

i1=2

k+1∑

i2=i1+1

· · ·
n∑

in−k+1=in−k+1

)

f(0) + f(0) = 2n−1
n∑

i=1

f(0), (2.1)

that is,

2∑

i1=2

3∑

i2=i1+1

· · ·
n∑

in−1=in−2+1

f(0) +
3∑

i1=2

4∑

i2=i1+1

· · ·
n∑

in−2=in−3+1

f(0) + · · · +
n∑

i1=2

f(0) + f(0) = 2n−1
n∑

i=1

f(0),

(2.2)

or

((
n − 1

n − 1

)

+

(
n − 1

n − 2

)

+ · · · +
(
n − 1

1

)

+ 1

)

f(0) = 2n−1
n∑

i=1

f(0), (2.3)

but 1 +
∑n−j

j=1

(
n−j
j

)
=
∑n−j

j=0

(
n−j
j

)
= 2n−j , and also n > j ≥ 1 so 2n−1(n − 1)f(0) = 0.

Putting xi = 0 (i = 2, . . . , n − 1) in (1.3) and then using f(0) = 0, we get

f(x1 − xn) +

((
n − 2

1

)

f(x1 − xn) +

(
n − 2

n − 2

)

f(x1 + xn)

)

+ · · ·

+

((
n − 2

n − 3

)

f(x1 − xn) +

(
n − 2

2

)

f(x1 + xn)

)
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+

((
n − 2

n − 2

)

f(x1 − xn) +

(
n − 2

1

)

f(x1 + xn)

)

+ f(x1 + xn)

= 2n−1f(x1) + 2n−1f(xn),

(2.4)

that is,

⎛

⎝1 +
n−2∑

j=1

(
n − 2

j

)⎞

⎠
(
f(x1 + xn) + f(x1 − xn)

)
= 2n−1f(x1) + 2n−1f(xn), (2.5)

for all x1, xn ∈ X, this shows that f satisfies the functional equation (1.2). So the function f is
quadratic.

Conversely, suppose that f is quadratic, thus f satisfies the functional equation (1.2).
Hence, we have f(0) = 0 and f is even.

We are going to prove our assumption by induction on n ≥ 2. It holds on n = 2. Assume
that it holds on the case where n = t; that is, we have

t∑

k=2

(
k∑

i1=2

k+1∑

i2=i1+1

· · ·
t∑

it−k+1=it−k+1

)

f

⎛

⎝
t∑

i=1, i /= i1,...,it−k+1

xi −
t−k+1∑

r=1

xir

⎞

⎠ + f

(
t∑

i=1

xi

)

= 2t−1
t∑

i=1

f(xi) (2.6)

for all x1, . . . , xt ∈ X. It follows from (1.2) that

f

(
t∑

i=1

xi + xt+1

)

+ f

(
t∑

i=1

xi − xt+1

)

= 2f

(
t∑

i=1

xi

)

+ 2f(xt+1) (2.7)

for all x1, . . . , xt+1 ∈ X. Replacing xt by −xt in (2.7), we obtain

f

(
t−1∑

i=1

xi − xt + xt+1

)

+ f

(
t−1∑

i=1

xi − xt − xt+1

)

= 2f

(
t−1∑

i=1

xi − xt

)

+ 2f(xt+1) (2.8)

for all x1, . . . , xt+1 ∈ X. Adding (2.7) to (2.8), we have

f

(
t−1∑

i=1

xi − xt − xt+1

)

+ f

(
t−1∑

i=1

xi − xt + xt+1

)

+ f

(
t−1∑

i=1

xi + xt − xt+1

)

+ f

(
t−1∑

i=1

xi + xt + xt+1

)

= 2

[

f

(
t−1∑

i=1

xi − xt

)

+ f

(
t−1∑

i=1

xi + xt

)]

+ 4f(xt+1)

(2.9)
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for all x1, . . . , xt+1 ∈ X. Replacing xt−1 by −xt−1 in (2.9), we get

f

(
t−2∑

i=1

xi − xt−1 − xt − xt+1

)

+ f

(
t−2∑

i=1

xi − xt−1 − xt + xt+1

)

+ f

(
t−2∑

i=1

xi − xt−1 + xt − xt+1

)

+ f

(
t−2∑

i=1

xi − xt−1 + xt + xt+1

)

= 2

[

f

(
t−2∑

i=1

xi − xt−1 − xt

)

+ f

(
t−2∑

i=1

xi − xt−1 + xt

)]

+ 4f(xt+1)

(2.10)

for all x1, . . . , xt+1 ∈ X. Adding (2.9) to (2.10), one gets

f

(
t−2∑

i=1

xi − xt−1 − xt − xt+1

)

+ f

(
t−2∑

i=1

xi − xt−1 − xt + xt+1

)

+ f

(
t−2∑

i=1

xi − xt−1 + xt − xt+1

)

+ f

(
t−2∑

i=1

xi + xt−1 − xt − xt+1

)

+ f

(
t−2∑

i=1

xi − xt−1 + xt + xt+1

)

+ f

(
t−2∑

i=1

xi + xt−1 − xt + xt+1

)

+ f

(
t−2∑

i=1

xi + xt−1 + xt − xt+1

)

+ f

(
t+1∑

i=1

xi

)

= 2

[

f

(
t−2∑

i=1

xi − xt−1 − xt

)

+ f

(
t−2∑

i=1

xi − xt−1 + xt

)

+ f

(
t−2∑

i=1

xi + xt−1 − xt

)

+f

(
t−2∑

i=1

xi + xt−1 + xt

)]

+ 8f(xt+1)

(2.11)

for all x1, . . . , xt+1 ∈ X. By using the above method, for xt−2 until x2, we infer that

t+1∑

k=2

(
k∑

i1=2

k+1∑

i2=i1+1

· · ·
t+1∑

it−k+2=it−k+1+1

)

f

⎛

⎝
t+1∑

i=1, i /= i1,...,it−k+2

xi −
t−k+2∑

r=1

xir

⎞

⎠ + f

(
t+1∑

i=1

xi

)

= 2

⎡

⎣
t∑

k=2

(
k∑

i1=2

k+1∑

i2=i1+1

· · ·
t∑

it−k+1=it−k+1

)

f

⎛

⎝
t∑

i=1, i /= i1,...,it−k+1

xi −
t−k+1∑

r=1

xir

⎞

⎠ + f

(
t∑

i=1

xi

)⎤

⎦+ 2tf(xt+1)

(2.12)

for all x1, . . . , xt+1 ∈ X. Now, by the case n = t, we lead to

t+1∑

k=2

(
k∑

i1=2

k+1∑

i2=i1+1

· · ·
t+1∑

it−k+2=it−k+1+1

)

f

⎛

⎝
t+1∑

i=1, i /= i1,...,it−k+2

xi −
t−k+2∑

r=1

xir

⎞

⎠ + f

(
t+1∑

i=1

xi

)

= 2

[

2t−1
t∑

i=1

f(xi)

]

+ 2tf(xt+1)

(2.13)

for all x1, . . . , xt+1 ∈ X, so (1.3) holds for n = t + 1. This completes the proof of the lemma.
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Corollary 2.2. A function f : X → Y satisfies the functional equation (1.3) if and only if there
exists a symmetric biadditive function B1 : X ×X → Y such that f(x) = B1(x, x) for all x ∈ X.

Now, we investigate the stability of the functional equation (1.3) from a Banach space
B into p-adic field Qp. For convenience, we define the difference operator Df for a given
function f :

Df(x1, . . . , xn) : =
n∑

k=2

(
k∑

i1=2

k+1∑

i2=i1+1

· · ·
n∑

in−k+1=in−k+1

)

f

⎛

⎝
n∑

i=1, i /= i1,...,in−k+1

xi −
n−k+1∑

r=1

xir

⎞

⎠

+ f

(
n∑

i=1

xi

)

− 2n−1
n∑

i=1

f(xi).

(2.14)

Theorem 2.3. Let B be a Banach space and let ε > 0, λ be real numbers. Suppose that a function
f : Qp → B with f(0) = 0 satisfies the inequality

∥
∥Df(x1, . . . , xn)

∥
∥ ≤ ε

n∑

i=1

|xi|λp (2.15)

for all x1, . . . , xn ∈ Qp. Then there exists a unique quadratic function Q : Qp → B such that

∥
∥f(x) −Q(x)

∥
∥ ≤

⎧
⎪⎪⎨

⎪⎪⎩

ε

2n−1 − 2n−λ−3
|x|λp, p = 2, λ > −2;

ε

3.2n−3
|x|λp, p > 2;

(2.16)

for all nonzero x ∈ Qp.

Proof. Letting x1 = x2 = x /= 0 and xi = 0 (i = 3, . . . , n) in (2.15), we obtain

∥
∥
∥
∥f(x) −

1
4
f(2x)

∥
∥
∥
∥ ≤ ε

2n−1
|x|λp (2.17)

for all x ∈ Qp. Hence,

∥
∥
∥
∥

1
22l

f
(
2lx
)
− 1
22m

f(2mx)
∥
∥
∥
∥ ≤ ε

2n−1

m−1∑

j=l

|2|λjp
22j

|x|λp (2.18)

for all nonnegative integers m and l with m > l and for all x ∈ Qp. It follows from (2.18) that
the sequence {(1/22m)f(2mx)} is a Cauchy sequence for all x ∈ Qp. Since B is complete, the
sequence {(1/22m)f(2mx)} converges. Therefore, one can define the function Q : Qp → B by

Q(x) := lim
m→∞

1
22m

f(2mx) (2.19)
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for all x ∈ Qp. It follows from (2.15) and (2.19) that

∥
∥DQ(x1, . . . , xn)

∥
∥ = lim

m→∞
1

22m
∥
∥Df(2mx1, . . . , 2mxn)

∥
∥ ≤ lim

m→∞

|2|λmp
22m

n∑

i=1

ε|xi|λp = 0 (2.20)

for all x1, . . . , xn ∈ Qp. So DQ(x1, . . . , xn) = 0. By Lemma 2.1, the function Q : Qp → B is
quadratic.

Taking the limit m → ∞ in (2.18) with l = 0, we find that the function Q is quadratic
function satisfying the inequality (2.16) near the approximate function f : Qp → B of (1.3).

To prove the aforementioned uniqueness, we assume now that there is another addi-
tive function Q′ : Qp → B which satisfies (1.3) and the inequality (2.16). So

∥
∥Q(x) −Q′(x)

∥
∥ =

1
22m
∥
∥Q(2mx) −Q′(2mx)

∥
∥

≤ 1
22m
(∥
∥Q(2mx) − f(2mx)

∥
∥ +
∥
∥f(2mx) −Q′(2mx)

∥
∥
)

≤

⎧
⎪⎨

⎪⎩

ε

22m+λm
(
2n−2 − 2n−λ−4

) |x|λp, p = 2, λ > −2;
ε

3.22m+n−4 |x|
λ
p, p > 2;

(2.21)

which tends to zero as m → ∞ for all nonzero x ∈ Qp. This proves the uniqueness of Q,
completing the proof of uniqueness.

The following example shows that the above result is not valid over p-adic fields.

Example 2.4. Let p > 2 be a prime number and define f : Qp → Qp by f(x) = x2 − 2x. Since
|2n|p = 1,

∣
∣Df(x1, . . . , xn)

∣
∣
p
=

∣
∣
∣
∣
∣
2n

n∑

i=2

xi

∣
∣
∣
∣
∣
p

=

∣
∣
∣
∣
∣

n∑

i=2

xi

∣
∣
∣
∣
∣
p

≤
n∑

i=1

|xi|p (2.22)

for all x1, . . . , xn ∈ Qp. Hence, the conditions of Theorem 2.3 for ε = 1 and λ = 1 hold. However
for each n ∈ N, we have

∣
∣
∣
∣

1
22(m+1)

f(2m+1x) − 1
22m

f(2mx)
∣
∣
∣
∣
p

=
|x|p
|2m|p

= |x|p (2.23)

for all x ∈ Qp. Hence {(1/22m)f(2mx)} is not convergent for all nonzero x ∈ Qp.

In the next result, which can be compared with Theorem 2.3, we will show that the
stability of the functional equation (1.3) in non-Archimedean spaces over p-adic fields.
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Theorem 2.5. Let � ∈ {−1, 1} be fixed. Let V be a non-Archimedean space and W be a complete
non-Archimedean space over Qp, where p > 2 is a prime number. Suppose that a function f : V → W
satisfies the inequality

∥
∥Df(x1, . . . , xn)

∥
∥
W ≤

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ε
n∑

i=1

‖xi‖λV, λ� > 2�;

ε
n∑

i=2
‖x1‖λ1V ‖xi‖λiV , (λ1 + λi)� > 2�;

εmax
{
‖xi‖λV; 1 ≤ i ≤ n

}
, λ� > 2�;

(2.24)

for all x1, . . . , xn ∈ V, where ε, λ1, . . . , λn and λ are nonnegative real numbers. Then, the limit

Q(x) := lim
m→∞

1
p2�m

f
(
p�mx

)
(2.25)

exists for all x ∈ V and Q : V → W is a unique quadratic function satisfying

∥
∥f(x) −Q(x)

∥
∥
W ≤

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

2p1+�+(1−�)λ/2ε‖x‖λV,
p1+�+((1−�)(λ1+λ2)/2)ε‖x‖λ1+λ2V ,

p1+�+(1−�)λ/2ε‖x‖λV,
(2.26)

for all x ∈ V.

Proof. By (2.24),

∥
∥Df(x1, . . . , xn)

∥
∥
W ≤ ε

n∑

i=1

‖xi‖λV (2.27)

for all x1, . . . , xn ∈ V, where λ� > 2�. Putting xi = 0 (i = 1, . . . , n) in (2.27) to obtain f(0) = 0,
setting xi = 0 (i = 3, . . . , n) in (2.27), we obtain

∥
∥
∥2n−2f(x1 + x2) + 2n−2f(x1 − x2) − 2n−1f(x1) − 2n−1f(x2)

∥
∥
∥
W
≤ ε
(
‖x1‖λV + ‖x2‖λV

)
(2.28)

for all x1, x2 ∈ V. So

∥
∥f(x1 + x2) + f(x1 − x2) − 2f(x1) − 2f(x2)

∥
∥
W ≤ ε

(
‖x1‖λV + ‖x2‖λV

)
(2.29)

for all x1, x2 ∈ V. Letting x1 = x2 = x in (2.29), we have

∥
∥f(2x) − 4f(x)

∥
∥
W ≤ 2ε‖x‖λV (2.30)
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for all x ∈ V. By induction on j, we will show that for each j ≥ 2,

∥
∥
∥f(jx) − j2f(x)

∥
∥
∥
W
≤ 2ε‖x‖λV (2.31)

for all x ∈ V. It holds on j = 2; see (2.30). Let (2.31) hold for j = 2, . . . , k. Replacing x1 and x2

by kx and x in (2.29), respectively, we get

∥
∥f((k + 1)x) + f((k − 1)x) − 2f(kx) − 2f(x)

∥
∥
W ≤ ε

(
1 + |k|λp

)
‖x‖λV (2.32)

for all x ∈ V. It follows from (2.32) and our induction hypothesis that

∥
∥
∥f((k + 1)x) − (k + 1)2f(x)

∥
∥
∥
W
=
∥
∥f((k + 1)x) + f((k − 1)x) − 2f(kx) − 2f(x)

−f((k − 1)x) + (k − 1)2f(x) − 2
(
f(kx) − k2f(x)

)∥
∥
∥
W

≤ max
{
2ε‖x‖λV, ε

(
1 + |k|λp

)
‖x‖λV

}
= 2ε‖x‖λV

(2.33)

for all x ∈ V. This proves (2.31) for each j ≥ 2. In particular,

∥
∥
∥f(px) − p2f(x)

∥
∥
∥
W
≤ 2ε‖x‖λV (2.34)

for all x ∈ V. So

∥
∥
∥
∥f(x) −

1
p2

f(px)
∥
∥
∥
∥
W
≤ 2p2ε‖x‖λV,

∥
∥
∥
∥f(x) − p2f

(
x

p

)∥
∥
∥
∥
W
≤ 2pλε‖x‖λV

(2.35)

for all x ∈ V. Hence,

∥
∥
∥
∥
∥

1
p2�j

f
(
p�jx

)
− 1
p2�(j+1)

f
(
p�(j+1)x

)
∥
∥
∥
∥
∥
W
≤ 2p2�j+(1−�)λ/2+1+�

pλ�j
ε‖x‖λV (2.36)

for all x ∈ V. Since the right side of the above inequality tends to zero as j → ∞,
{(1/p2�m)f(p�mx)} is a Cauchy sequence in complete non-Archimedean space W, thus it
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converges to some function Q(x) = limm→∞(1/p2�m)f(p�mx) for all x ∈ V. Using (2.35) and
induction, one can show that for anym ∈ N, we have

∥
∥
∥
∥
∥
f(x) − 1

p2�m
f(p�mx)

∥
∥
∥
∥
∥
W
=

∥
∥
∥
∥
∥
∥

m−1∑

j=0

1
p2�j

f(p�jx) − 1
p2�(j+1)

f(p�(j+1)x)

∥
∥
∥
∥
∥
∥
W

≤ max

{∥
∥
∥
∥
∥

1
p2�j

f(p�jx) − 1
p2�(j+1)

f
(
p�(j+1)x

)
∥
∥
∥
∥
∥
W
; 0 ≤ j < m

}

≤ max
{
2p1+�+(1−�)λ/2+�j(2−λ)ε‖x‖λV; 0 ≤ j < m

}

(2.37)

for all x ∈ V. Letting m → ∞ in this inequality, we see that

∥
∥f(x) −Q(x)

∥
∥
W ≤ 2p1+�+(1−�)λ/2ε‖x‖λV (2.38)

for all x ∈ V. Moreover,

∥
∥DQ(x1, . . . , xn)

∥
∥
W = lim

m→∞

∥
∥
∥
∥
∥

1
p2�m

Df(p�mx1, . . . , p
�mxn)

∥
∥
∥
∥
∥
W
≤ lim

m→∞
p2�m

pλ�m

n∑

i=1

ε‖xi‖λV = 0

(2.39)

for all x1, . . . , xn ∈ V. So DQ(x1, . . . , xn) = 0. By Lemma 2.1, the function Q : V → W is
quadratic.

Now, let Q′ : V → W be another quadratic function satisfying (1.3) and (2.38). So

∥
∥Q(x) −Q′(x)

∥
∥
W ≤ p2�m max

{∥
∥
∥Q
(
p�mx

)
− f
(
p�mx

)∥
∥
∥
W
,
∥
∥
∥f
(
p�mx

)
−Q′

(
p�mx

)∥
∥
∥
W

}

≤ 2p2�m+(1−�)λ/2+1+�

pλ�m
ε‖x‖λV,

(2.40)

which tends to zero asm → ∞ for all x ∈ V. This proves the uniqueness of Q.
The rest of the proof is similar to the above proof, hence it is omitted.
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