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ABSTRACT. We prove a result which concludes the self-adjointness of a Schrodinger
operator from the self-adjointness of the associated "localized" Schrodinger oper-

1
ators having L. -Potentials.
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1. INTRODUCTION.

In 1978, Simader [1] proved a result which concludes the self-adjointness of a
Schrodinger operator from the self-adjointness of the associated "localized" Schro-
dinger operators. A similar result was given by Brezis [2] in 1979 which seems to
be slightly more general than [1]. Both papers deal with Schrodinger operators

having L2

-potentials.
loc P

In this paper, we give an analogous result to [2] for Schrodinger operators
with Lioc—potentials and show the common structure of [1] and [2]. 1In the proof,
we use arguments due to Kato [3] and Simader [2], which are based on quadratic
form methods.

We first give some notations (compare [4]). If t is a semi-bounded quadratic
form with lower bound &, we denote the inner product associated with t by (u,v)t:

= t{u,v] + 01 - o) (u,v), for u,v in the form domain Q(t) of t. The associated norm

will be denoted by ||'||t- t is closed if Q(t) together with (‘,*)t is a Hilbert
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space. Recall the one-to-one correspondence between semibounded quadratic forms
and semibounded self-adjoint operators. If T is a self-adjoint semibounded opera-
tor, the domain of the closed form associated with T will be denoted by Q(T) and
the form by <u,v>#tF— (Tu/v) for u,v € Q(T). The associated norm will be called
the form norm of T. We will always write Q(T) for the Hilbert space of the associ-
ated form if the inner product is clear. A set which is dense in the Hilbert space
Q(T) will be called a form core of T.

. n
Let q be a real-valued function on IR and assume

1 n
q € I"loc(]R ) (Cl)
and
Lu := - Au + qu
(1.1)
with D) := {u e L2(R™)/qu ¢ L}oc (x™}

where the sum in (1.1) is taken in the distributional sense. Then we define a
"maximal" operator in L2(1Rn) associated with L such that
T u := Lu
max
with (1.2)
DT ) := {u e DL)/Lu ¢ LE(R™}.
max
Consider the quadratic form associated with L
- Sl n
t{w,v] := | W Lv , W,V € CO(H{ ). (1.3)
If we assume
t is bounded from below and closable (without loss of generality t=0), (CZ)
then there exists a semibounded self-adjoint operator TF associated with the closure
2

of t. Note that for q € L
loc

(IRn), TF coincides with the Friedrichs extension of
T c (™ 3]. Q(T.) is then the cl £ C(R™) in th

min Tmaxl 0(IR ); see [3]. Q¢ F) s then the closure o CO(IR ) in the sense
of the norm H°]|t associated with the inner product (w,v)t = tlw,v] + (w,v);

n
W,V € CO(IR ).

From (C2), we know T, > 0. (1.4)

[ce]
Now consider ¢ ¢ Co(l{n) with 0 < ¢ < 1 such that ¢(x) = 1 for |x| < %—and $(x)=0
for Ix] > 1.
For k € N, let

9, (0 1= 9( (1.5)

talbs
N
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We now assume, for any k, there exists a "localized" operator associated with L;

1

i.e., for k ¢ INthere exist a qk € Lloc

(IRn) and a Lk such that

(1) Lku = ~ Au + q;u (c

with D(L) := {u e Lz(mn)/qku c L]ioc(IRn)}

3)

and
(ii) qk¢ku = q¢ku for u e D(L).
We define also a "maximal" operator in LZ(IRn) associated with L i.e., for k € N,
Tku = Lku
with (1.6)
D(T,) := {u e D(L)/L,u e L2(]Rn)}
K o: W :
Note, that (C3) is not really a restriction; see Corollary 1 and Corollary 2.
Denote q; := max {qk,O}, q; 1= max {—qk,O}, q+ := max {q,0}, q~ := max {-q,0}.
2. MAIN RESULTS.
THEOREM. Let k ¢ IN. Assume (Cl), (CZ)’ and (C3) and define Tmax and T, as

k
in (1.2) and (1.6). If we assume additionally,

Tk is self-adjoint; (CA)
and
C:(mfb is a form core of Tk and there exists a S >0 (C5)
such that
+ 2 o n
(bw,w) + (qkw/w) < ck[(Tkw/w) +|le 1, we CO(IR ) (2.1)

then T is self-adjoint.
max

PROOF, First we note that, by (CS)’ T, is bounded from below by -1. Thus

k
Q(Tk) is well defined.

Now we proceed in 5 steps.

Step 1. We show that for k € IN, u € D(Tmax) implies ¢ku € Q(Tk), and thus,
by (CS)’ ¢ku € Hl(ERn) n Q(q;) and qu € Lioc(an) (making use of the
semiboundedness of Tk)°

By Hl(IRn), we denote the closure of C:(IRn) in the usual Sobolev norm

1/
||u|]H 1= (Iqu||2 + ]lullz) . We have the continuous inclusions (compare Kato
1

(31, p(Ty < oy < K (RY < AR « IR < am.
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By H-l(]Rn) and Q(Tk)*, we denote the antidual spaces of Hl(ﬂRn) and Q(Tk)'
Tk + 2 maps D(Tk) onto Lz(ﬂRn) and it is well known (see [4]) that this can be ex-
tended to a bicontinuous map Té + 2 from Q(Tk) onto Q(Tk)*. Actually, TL + 2 is a
restriction of Lk + 2 to Q(Tk) since, by (2.1) and the semiboundedness of Tk’
. . 1 n
v € Q(Tk) implies Qv € Lloc (R7). Now let u € D(Tmax)' Using (C3), we get in
the distributional sense
Lk¢ku = ¢kTmaxu -2V ¢k Vu- (A¢k)u. (2.2)
Since V¢k u € H—l(DRn) and all other terms on the right hand side of (2.2) are in
LZ(IRn), we have
-1,..n
*
Lk(bku e H (R") < Q(Tk) .

Since TL + 2 is bijective, we conclude in the same way as Kato [3, Lemma 2] that

bu € Q(Tk)-
Step 2. We show that, for k ¢ IN, u ¢ D(Tmax) implies ¢ku € Q(TF).
Let u € D(Tmax). From Step 1, we know ¢ku € Hl(lin) n Q(q;). Then, because of
(C3), we also have
+
bu € Qlg).
From a theorem due to Simon [5, Theorem 2.1] (see also [6] for generalizations), we
© _n l1,.n +
know that Co(]R ) is dense in H (IR') n Q(q ) in the sense of the norm
2 + 2,1/2 1 +
lll, = %l 12+ @y + el 277, w e B'®™ 0 a@®.
+
©. _n
Therefore, we can find a sequence {vn}ne]Nin C (R") such that
vy - ¢ku!lt+ — 0 (@—> ). (2.3)
Then, because of (l1.4), we have
$u € Q@) and
(@ (v, = /(v = Buw) — 0 (@ —> ). (2.4)
(2.3) and (2.4) imply ¢ku € Q(TF).
Step 3. We show that, for k ¢ IN, v € Q(Tk) implies ¢kv € Q(Tk) n Q(TF) and

u € Q(TF) implies ¢ku e Q(T (2.5)

k)'

© _n
Let v € Q(Tk). Then, because of (CS)’ there exists a sequence {vn}neliin Co(IR )
such that

v, -vll, —0 @—>=), (2.6)
k

where ||+]] . denotes the form of T.

k
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For o = 1 + sup |V¢k], we have
98, (v = 0] < o (Vv =]+ [lv, - vi]] (2.7)
and
[at 16,00, - w1 < f o | -wl% (2.8)

because of the semiboundedness of Tk’ we have

- 2 + 2 2
(44, V=) /8, (v ~v)) = ||V (v -v) |7 + quwk(vn-v)l + o vy = w5 (2.9
(2.9), together with (2.6), (2.7) and (2.8), yields
¢kv € Q(Tk) (2.10)
and
Hopv, = ovl Itk —0 (—> ).
Since, by (C3), we have
2 _ 2 2
ol 17 = Hagrg 112, = o, 112 e mo.
(||'||t denotes the form norm of TF).
We can conclude
e vy = vl — 0 (m—>
and thus
bV € UTY. . (2.11)
(2.10) and (2.11) prove the first part of Step 3.
Now, let u € D(TF) and v € Q(TK). Then ¢kv € Q(Tk) n Q(TF) as proved above
©, _n
and there exist sequences {uj}jeIN and {Vm}mell in CO(IR ) such that
Iuy = ull, — 0 and ||v - thk — 0 (G,m—> =),
Thus,
(Tu,¢v) = 1lim (T_u,,$,v ) = 1lim (Lu,,d, v ). (2.12)
F’'k Fj°"k > Tk
j,mre J n J,mreo J o
Using (C3), we have
(Luj,¢kvm) = (Lk¢kuj,vm) - 2(uj,V¢vam) - (uj,va¢k)- (2.13)
(2.12) and (2.13) yields, for a suitable constant y ¢ R,

. = lim (T . = (T u, + 2(u,V¢, Vv) + y(u,v).
%ig (¢kuJ V)tk jig ( k¢>kuJ/V) (Tpu ¢kV) (u 6 Vv u,v

Thus the limit of {¢kuj}jE exists weakly in the Hilbert space Q(Tk) and since

N
o, = dull —0 G —> =),
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we conclude
bu € UT),
which proves the second part of Step 3.

Step 4. We show TF < Tmax'

Let u ¢ D(TF). Then, for k ¢ N from Step 3, we know ¢ku € Q(Tk) and therefore, by

g,

1 n +
du € BI(R) n Q).
As in Step 1, we conclude that

n

qu e L} (mD).

loc
Thus u € D(L) and, from
Tou = Lu e Lz(mn),

we have
u € D(T ) and TFu = Tmaxu'

Step 5. We show TF = Tmax'
In view of Step 4, we have to show
D(Tmax) < D(TF).
Let v ¢ D(Tmax) and
-1
| I,
v' (TF + 1) (Tmax + 1)v.
Thus, v' ¢ D(Tmax) by Step 4 and
= v '
(Tmax + 1)v (TF + 1)v (Tmax + 1)v'.
With

u

= - '
v v'! € D(Tmax) R
we conclude (T + 1)u = 0 and therefore
max
© _n
((Tmax + 1l)u,w) = 0 for w ¢ Co(]R ). (2.14)

We will show that (2.14) implies u = 0; then, Step 5 will be proven.

We argue in the following as Simander does in [1]. Since Tmax is a real op-
erator, we may assume u to be real-valued. From Step 1, we know that ¢ku € Q(Tk)
and thus, by (C3) and the semiboundedness of Tk’

$u € BL(IRY n Q@ 0 Q@)

If we replace w in (2.14) by ¢iw, we get, after some partial integrations,
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(To,0,70,9) + (@' 0,0/¢w) = (@ 6 u/0W) + (B u,0,9) =

(0%, = ((ulw = wlu,6,96).  (2.15)
Since
u € Hl (]Rn) and qil¢ u] € Ll(IRn)
loc k >
(m)

we can, by using an approximation, replace w in (2.15) by u € Hioc(E{n) n Lw(IRn),

defined by

u(x) for lu(x)] <m

o™

.
]

m sign(u(x)) for [u(x)| > m
for m € N,
Then, the limits of both sides of (2.15) exist and we get
+ -—
(Vo 1,V u) + (@ ¢pu/u) - (q du/dpu) + (du,du) =
2
(990w, 0, w) + ((Wo -4, VW), ¢, V). (2.16)
Since, from Step 2, we know ¢ku € Q(TF)’ we conclude from (2.16) and from TF+121 that
2

Hcpkuli < ((Tp + 1§ u/¢u) = RES of (2.16) —> 0 (k —> =).

Thus u = 0, which proves Step 5.

Since TF is self-adjoint by Step 5, the theorem is proven.

+ +
COROLLARY 1. Let k € IN. Assume (Cl) and (CZ)’ Set 9 = 4q;
B q (%) if x| <k
qy (x) :=
0 if x| >k

o= +__ - .
qk C qk qk’

and define T, and Tmax as in (1.6) and (1.2). Assume additionally

k
Tk is self-adjoint (C4)
and
there exist 0 < a < 1 and bk 2 0 such that (CS)
- 2 ©. _n
[aqu/w) | < a (=bw,w) + b [[w][%, weC (RY) . (2.17)

Then T is self-adjoint.
max

PROOF. (C3) holds trivially. From (2.17), we deduce

(-Aw,w) + (q;w/w) < {(Tkw/w) + (bk + 1) ||Wl|2}

1
L=

+, .
which implies (2.1). Since C:(BRn) is dense in Hl(IRn) n Q(q ) in the sense of the
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norm [ (as we know from [5], see Step 2 above), (2.17) implies that C:(IRn)

le
+
is a form core of Tk' Therefore, (CS) holds and, by the theorem, self-adjointness

of T follows.
max

Note that, for q € Lioc(ﬂRn), Corollary 1 implies the result of Simader [1]
*
since then T_, =T where
min max

© _n
T. =T C (R ).
min max[ o
COROLLARY 2. Let k € IN., Assume (Cl) and (C2). Set
q(x) if x| <k
q (x) :=
0 if x| >k
and define Tk and Tmax as in (1.6) and (1.2). Assume additionally (C4) and (CS)‘
Then Tmax is self-adjoint. The proof follows immediately from the theorem.
In the case q € Lioc(ﬂin), Corollary 2 implies the result of Brézis [2] by the
+ - -
same arguments as above. We also should note that, if q: = q and qk =q (k € M)
- +
and if q is form-bounded relative to the form of (-A + q ) with bound < 1, our
theorem is Kato's [3] result for the semibounded case. In fact, our proof is a

variant of Kato's proof of his main theorem in [3].

Note: On leave from: Technische Universtitat Berlin, Fachbereich Mathematik
StraBe des 17 Juni 135, 1 Berlin 12, Germany
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