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We study the life behavior of a system which is subjected to shocks of random magnitudes over
discrete time periods. We obtain the survival function and mean time to failure of the system
assuming that the sizes of the shocks follow a discrete probability distribution under cumulative
and mixed shock models.

1. Introduction

There are various engineering systems which are subjected to shocks of random magnitudes
at random times. The shock models can be classified in different ways. According to the
cumulative shock model, the system breaks down because of a cumulative effect of shocks,
while in an extreme shock model the system fails because of one single shock with large
magnitude. See, for example, [1–9] for various problems on shock models.

Most of the studies on shock models focus on the evaluation of system failure time
in a continuous setup, that is, the shocks arrive according to a renewal process, and the
times between successive shocks have a continuous probability distribution. Some results
on discrete case are in [3, 7, 10].

Consider a system which is subjected to periodic random shocks. A shock occurs with
probability p in each period n = 1, 2, . . .. The period should be understood as hour, day, and
so forth. The magnitude of the shock which occurs in period j is a random variable denoted
by Bj . Assume that such a system fails if and only if the sum of the magnitudes of cumulative
shocks exceed, the level k for k > 0. Let Ij be a binary random variable representing the shock
occurrences that is, Ij = 1 if a shock occurs in period j and Ij = 0, otherwise. For j ≥ 1, define

Yj =

{
Bj, Ij = 1
0, Ij = 0,

(1.1)
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where the random variables Ij and Bj are independent in each time period. The random
variable Bj is strictly positive, and {Bj, j ≥ 1} is a sequence of independent identically
distributed (i.i.d.) random variables with cumulative distribution function (c.d.f.) and
probability mass function (p.m.f.) fB.

Thus, under the cumulative shock model, the failure time of the system can be defined
by the following waiting time random variable:

Wk = min

⎧⎨
⎩n :

n∑
j=1

Yj > k

⎫⎬
⎭, (1.2)

for k > 0.
In the case of a mixed shock model, a system fails if either a single shock with a large

magnitude occurs or the sum of cumulative shocks exceeds the critical level. Thus, in this case
the time to failure of the system is defined by the following compound waiting time random
variable

Zk,m = min(Wk, Tm), (1.3)

where

Tm = min{n : Mn > m}, (1.4)

where Mn = max(Y1, . . . , Yn) for k,m > 0.
Such models can also be applied to insurance, replacing shock with claim and

magnitude of the shock with claim amount. In this case, a period can be seen as a week,
month, and so forth, and the random variable Wk represents the waiting time until the
cumulative sum of claim amounts exceeds the level k. Similarly, the random variable Tm is
the waiting time until the first extreme claim size falls above the level m.

The present paper is organized as follows. In Section 2, we derive recurrence formulae
for the survival function and the mean time to failure (MTTF) of the system under the
cumulative shock model. We also study two related characteristicsN(Wk) and S(Wk)which
represent, respectively, the number of shocks and the total shock that the system is subjected
up to time when the system fails. Section 3 includes the results for mixed shock model.

2. Cumulative Shock Model

In the following, we derive two popular reliability characteristics: survival function andmean
time to failure of the system under the cumulative shock model.

It is clear that

P{Wk > n} = P{S(n) ≤ k} = F∗n
Y (k), (2.1)



Discrete Dynamics in Nature and Society 3

where S(n) = Y1 + · · · + Yn, and F∗n
Y denotes the n-fold convolution of FY with itself, FY (x) =

P{Y ≤ x}. By conditioning on the claim occurrence, one obtains

FY (x) = 1 − p + pFB(x), (2.2)

where FB(x) = P{B ≤ x}.

Theorem 2.1. For n ≥ 1,

P{Wk > n} = p
min(k,bu)∑

b=1

P{Wk−b > n − 1}fB(b) +
(
1 − p

)
P{Wk > n − 1}, (2.3)

and P{Wk > 0} = 1, where bu is the endpoint of the support of fB.

Proof. From (2.1), it follows that

P{Wk > n} = FY ∗ F∗n−1
Y (k). (2.4)

Thus, the proof is immediate from (2.2).

Proposition 2.2. For k > 0, the MTTF of the system can be computed from

E(Wk) =
1
p
+

min(k,bu)∑
b=1

E(Wk−b)fB(b), (2.5)

with E(W0) = 1/p.

Proof. Using (2.1),

E(Wk) =
∞∑
n=0

P{Wk > n} =
∞∑
n=0

P{S(n) ≤ k} =
∞∑
n=0

F∗n
Y (k) = 1 + FY ∗ E(Wk). (2.6)

Thus, the proof follows from (2.2) since

E(Wk) = 1 +
(
1 − p

)
E(Wk) + pFB ∗ E(Wk). (2.7)

Example 2.3. Let B have a geometric distribution with pmf fB(b) = (1 − α)αb−1, b = 1, 2, . . ..
Then under the conditions of Proposition 2.2,

E(Wk) =
1
p
+ (1 − α)

k∑
b=1

αb−1E(Wk−b), (2.8)

with E(W0) = 1/p.
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2.1. Related Characteristics

For k > 0, we define new random variables as follows:

N(Wk) =
Wk∑
j=1

Ij ,

S(Wk) =
Wk∑
j=1

Yj =
N(Wk)∑
j=1

Bj.

(2.9)

It is clear that the random variables N(Wk) and S(Wk) represent, respectively, the
number of shocks and the total shock that the system is subjected up to time when the
system fails. These two characteristics might be useful for improvement purposes and can
be effectively used in optimal system design.

Theorem 2.4. For m ≥ 1,

P{N(Wk) = m} =
∞∑

n=m
Q(n,m, k), (2.10)

where Q(n,m, k) = P(n,m, k) − R(n,m, k), and P(n,m, k) and R(n,m, k) can be computed
recursively from

P(n,m, k) = pP(n − 1, m − 1, k) +
(
1 − p

)
P(n − 1, m, k), (2.11)

for n ≥ m and P(n,m, k) = 0 for n < m, and

R(n,m, k) = p
min(k,bu)∑

b=1

R(n − 1, m − 1, k − b)fB(b) +
(
1 − p

)
R(n − 1, m, k), (2.12)

for n ≥ m and R(n,m, k) = 0 for n < m.

Proof. By conditioning on Wk,

P{N(Wk) = m} =
∞∑

n=m
P{N(n) = m,Wk = n}. (2.13)

The probability Q(n,m, k) = P{N(n) = m,Wk = n} can be written as follows:

Q(n,m, k) = P{N(n) = m,Wk > n − 1} − P{N(n) = m,Wk > n}. (2.14)
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Thus, we need to get recurrences for P(n,m, k) = P{N(n) = m,Wk > n − 1} and R(n,m, k) =
P{N(n) = m,Wk > n}. By conditioning on the values of In,

P(n,m, k) = P{N(n) = m,Wk > n − 1}

= P

⎧⎨
⎩

n∑
j=1

Ij = m,
n−1∑
j=1

Yj ≤ k

⎫⎬
⎭ = pP

⎧⎨
⎩

n−1∑
j=1

Ij = m − 1,
n−1∑
j=1

Yj ≤ k

⎫⎬
⎭

+
(
1 − p

)
P

⎧⎨
⎩

n−1∑
j=1

Ij = m,
n−1∑
j=1

Yj ≤ k

⎫⎬
⎭

= pP(n − 1, m − 1, k) +
(
1 − p

)
P(n − 1, m, k).

(2.15)

On the other hand,

R(n,m, k) = P{N(n) = m,Wk > n} = P

⎧⎨
⎩

n∑
j=1

Ij = m,
n∑
j=1

Yj ≤ k

⎫⎬
⎭

= P

⎧⎨
⎩

n∑
j=1

Ij = m,
n∑
j=1

IjBj ≤ k, In = 1

⎫⎬
⎭

+ P

⎧⎨
⎩

n∑
j=1

Ij = m,
n∑
j=1

IjBj ≤ k, In = 0

⎫⎬
⎭

= P

⎧⎨
⎩

n−1∑
j=1

Ij = m − 1,
n−1∑
j=1

IjBj ≤ k − Bn

⎫⎬
⎭P{In = 1}

+ P

⎧⎨
⎩

n−1∑
j=1

Ij = m,
n−1∑
j=1

IjBj ≤ k

⎫⎬
⎭P{In = 0}

= p
min(k,bu)∑

b=1

P{N(n − 1) = m − 1,Wk−b > n − 1}fB(b)

+
(
1 − p

)
P{N(n − 1) = m,Wk > n − 1},

(2.16)

for n ≥ m. Thus, the proof is completed.
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Before proceeding with the distribution of S(Wk), it should be noted that the random
variable S(n) =

∑N(n)
j=1 Bj =

∑n
j=1 Yj denotes the total shock up to time n and

P{S(n) = s} = p
min(s,bu)∑

b=1

P{S(n − 1) = s − b}fB(b) +
(
1 − p

)
P{S(n − 1) = s}, (2.17)

for 0 < s ≤ n and P{S(n) = 0} = (1 − p)n.

Theorem 2.5. For s > k,

P{S(Wk) = s} =
∞∑
n=1

Q∗(n, s, k), (2.18)

where

Q∗(n, s, k) = p
min(s,bu)∑
b=s−k

P{S(n − 1) = s − b}fB(b). (2.19)

Proof. By the definition of S(Wk),

P{S(Wk) = s} =
∞∑
n=1

P{S(n) = s,Wk = n}. (2.20)

For s > k,

Q∗(n, s, k) = P{S(n) = s,Wk = n}
= P{S(n) = s, S(n − 1) ≤ k, S(n) > k}
= P{S(n) = s, S(n − 1) ≤ k}
= P{S(n − 1) + Yn = s, S(n − 1) ≤ k}
= pP{S(n − 1) = s − Bn, S(n − 1) ≤ k}

+
(
1 − p

)
P{S(n − 1) = s, S(n − 1) ≤ k}.

(2.21)

The proof follows by conditioning on Bn and noting that P{S(n − 1) = s, S(n − 1) ≤ k} = 0 for
s > k.

The following result readily follows from the definitions of N(Wk) and S(Wk) and
Wald’s equation.

Proposition 2.6. For k > 0,

E(N(Wk)) = pE(Wk),

E(S(Wk)) = pE(Wk)E(B).
(2.22)
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Table 1: E(Wk), E(N(Wk)), and E(S(Wk)) for geometric shock size distribution.

p = 0.1 E(B) = 8 p = 0.05 E(B) = 8
k E(Wk) E(N(Wk)) E(S(Wk)) E(Wk) E(N(Wk)) E(S(Wk))
5 16.25 1.625 13 32.5 1.625 13
10 22.50 2.250 18 45 2.250 18
15 28.75 2.875 23 57.5 2.875 23
20 35.00 3.500 28 70 3.500 28

p = 0.1 E(B) = 5 p = 0.05 E(B) = 5
k E(Wk) E(N(Wk)) E(S(Wk)) E(Wk) E(N(Wk)) E(S(Wk))
5 20 2 10 40 2 10
10 30 3 15 60 3 15
15 40 4 20 80 4 20
20 50 5 25 100 5 25

In Table 1 we compute MTTF = E(Wk), E(N(Wk)), and E(S(Wk)) whenever the
shock size random variable B has a geometric distribution with mean E(B) = 1/(1 − α).
From Table 1 we observe that an increase in k leads to an increase in MTTF of the system. If
the probability of observing a shock in a period increases, then the MTTF decreases. We also
observe that MTTF is proportional to p. Therefore, for the same shock size distribution the
expected number of shocks E(N(Wk)) and expected total shock E(S(Wk)) remain the same
for different values of p.

3. Mixed Shock Model

For k ≤ m, the mixed shock model is same as the cumulative shock model. Thus we assume
that k > m. The following is a recursive equation for the survival probability of the system
under mixed shock model.

Theorem 3.1. For k > m ≥ 1 and n ≥ 1,

P{Zk,m > n} = p
min(m,bu)∑

b=1

P{Zk−b,m > n − 1}fB(b) +
(
1 − p

)
P{Zk,m > n − 1}, (3.1)

and P{Zk,m > 0} = 1, where
∑y

b=x = 0 if x > y.

Proof. For n ≥ 1,

P{Zk,m > n} = P{Wk > n, Tm > n} = P

⎧⎨
⎩

n∑
j=1

Yj ≤ k, Y1 ≤ m, . . . , Yn ≤ m

⎫⎬
⎭. (3.2)
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By conditioning on the values of In,

P{Zk,m > n} = P

⎧⎨
⎩

n∑
j=1

IjBj ≤ k, Y1 ≤ m, . . . , Yn ≤ m, In = 1

⎫⎬
⎭

+ P

⎧⎨
⎩

n∑
j=1

IjBj ≤ k, Y1 ≤ m, . . . , Yn ≤ m, In = 0

⎫⎬
⎭

= P

⎧⎨
⎩

n−1∑
j=1

IjBj ≤ k − Bn, Y1 ≤ m, . . . , Yn−1 ≤ m,Bn ≤ m

⎫⎬
⎭P{In = 1}

+ P

⎧⎨
⎩

n−1∑
j=1

IjBj ≤ k, Y1 ≤ m, . . . , Yn−1 ≤ m

⎫⎬
⎭P{In = 0}.

(3.3)

By conditioning on Bn,

P{Zk,m > n} = p
min(k,m,bu)∑

b=1

P

⎧⎨
⎩

n−1∑
j=1

IjBj ≤ k − b, Y1 ≤ m, . . . , Yn−1 ≤ m

⎫⎬
⎭fBn(b)

+
(
1 − p

)
P

⎧⎨
⎩

n−1∑
j=1

IjBj ≤ k, Y1 ≤ m, . . . , Yn−1 ≤ m

⎫⎬
⎭.

(3.4)

Thus, the proof is completed.

The following result can be proved similar to Proposition 2.2, and hence its proof is
omitted.

Proposition 3.2. For k > m ≥ 1, the MTTF of the system under mixed shock model can be computed
from

E(Zk,m) =
1
p
+

min(m,bu)∑
b=1

E(Zk−b,m)fB(b), (3.5)

with E(Z0,m) = 1/p, where
∑y

b=x = 0 if x > y.

In Table 2, using Proposition 3.2, we compute the MTTF of the system under mixed
shock model when the shock size random variable B has a geometric distribution with mean
E(B) = 1/(1 − α).

Theorem 3.3. For n ≥ 1,

P{N(Zk,m) = n} =
∞∑
s=n

[
pU(n − 1, s − 1, k,m) +

(
1 − p

)
U(n, s − 1, k,m) −U(n, s, k,m)

]
, (3.6)
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Table 2: E(Zk,m) for geometric shock size distribution.

p = 0.1, E(B) = 8 p = 0.05, E(B) = 8
k m E(Zk,m) E(Zk,m)
5 3 14.4705 28.9410
10 3 14.8958 29.7916
10 5 18.4929 36.9858
20 5 19.4064 38.8128

p = 0.1 , E(B) = 5 p = 0.05, E(B) = 5
k m E(Zk,m) E(Zk,m)
5 3 17.7442 35.4944
10 3 19.2442 38.4885
10 5 25.4125 50.8250
20 5 29.3396 58.6792

where

U(n, s, k,m) = p
min(m,bu)∑

b=1

U(n − 1, s − 1, k − b,m)fB(b) +
(
1 − p

)
U(n, s − 1, k,m). (3.7)

Proof. By conditioning on Zk,m,

P{N(Zk,m) = n} =
∞∑
s=n

P{N(s) = n,Zk,m = s}. (3.8)

It is clear that

P{N(s) = n,Zk,m = s} = P{N(s) = n,Zk,m > s − 1} − P{N(s) = n,Zk,m > s}. (3.9)

By the definition of Zk,m,

U(n, s, k,m)

= P{N(s) = n,Zk,m > s}

= P

⎧⎨
⎩

s∑
j=1

Ij = n,
s∑

j=1

Yj ≤ k, Y1 ≤ m, . . . , Ys ≤ m

⎫⎬
⎭

= pP

⎧⎨
⎩

s−1∑
j=1

Ij = n − 1,
s−1∑
j=1

Yj ≤ k − Bs, Y1 ≤ m, . . . , Ys−1 ≤ m,Bs ≤ m

⎫⎬
⎭

+
(
1 − p

)
P

⎧⎨
⎩

s−1∑
j=1

Ij = n,
s−1∑
j=1

Yj ≤ k, Y1 ≤ m, . . . , Ys−1 ≤ m

⎫⎬
⎭
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= p
min(m,bu)∑

b=1

P

⎧⎨
⎩

s−1∑
j=1

Ij = n − 1,
s−1∑
j=1

Yj ≤ k − b, Y1 ≤ m, . . . , Ys−1 ≤ m

⎫⎬
⎭fB(b)

+
(
1 − p

)
P

⎧⎨
⎩

s−1∑
j=1

Ij = n,
s−1∑
j=1

Yj ≤ k, Y1 ≤ m, . . . , Ys−1 ≤ m

⎫⎬
⎭

= p
min(m,bu)∑

b=1

P{N(s − 1) = n − 1, Zk−b,m > s − 1}fB(b)

+
(
1 − p

)
P{N(s − 1) = n,Zk,m > s − 1}.

(3.10)

On the other hand,

P{N(s) = n,Zk,m > s − 1}

= P

⎧⎨
⎩

s∑
j=1

Ij = n,
s−1∑
j=1

Yj ≤ k, Y1 ≤ m, . . . , Ys−1 ≤ m

⎫⎬
⎭

= pP{N(s − 1) = n − 1, Zk,m > s − 1}
+
(
1 − p

)
P{N(s − 1) = n,Zk,m > s − 1}

= pU(n − 1, s − 1, k,m) +
(
1 − p

)
U(n, s − 1, k,m).

(3.11)

Thus the proof is completed.

Before the derivation of the distribution of S(Zk,m), we note the following recursion
which will be useful in the sequel:

V (n, s,m) = P{S(n) = s, Y1 ≤ m, . . . , Yn ≤ m}

= p
min(m,s,bu)∑

b=1

V (n − 1, s − b,m)fB(b) +
(
1 − p

)
V (n − 1, s,m).

(3.12)

Theorem 3.4. For s > k,

P{S(Zk,m) = s} = p
∞∑
n=1

bu∑
b=s−k

V (n − 1, s − b,m)fB(b), (3.13)

form < s ≤ k,

P{S(Zk,m) = s} = p
∞∑
n=1

min(s,bu)∑
b=m+1

V (n − 1, s − b,m)fB(b). (3.14)
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Proof. By the definition of S(Zk,m),

P{S(Zk,m) = s} = P{S(Wk) = s,Wk ≤ Tm} + P{S(Tm) = s, Tm < Wk}

=

{
P{S(Wk) = s,Wk ≤ Tm}, if s > k

P{S(Tm) = s, Tm < Wk}, if m < s ≤ k.

(3.15)

For s > k,

P{S(Wk) = s,Wk ≤ Tm} =
∞∑
n=1

P{S(n) = s, Tm ≥ n,Wk = n}

=
∞∑
n=1

P{S(n) = s, Y1 ≤ m, . . . , Yn−1 ≤ m,Wk = n}

=
∞∑
n=1

P{S(n) = s, Y1 ≤ m, . . . , Yn−1 ≤ m,S(n − 1) ≤ k}

=
∞∑
n=1

P{S(n − 1) + Yn = s, S(n − 1) ≤ k, Y1 ≤ m, . . . , Yn−1 ≤ m}

= p
∞∑
n=1

bu∑
b=s−k

P{S(n − 1) = s − b, Y1 ≤ m, . . . , Yn−1 ≤ m}fB(b)

= p
∞∑
n=1

bu∑
b=s−k

V (n − 1, s − b,m)fB(b).

(3.16)

Similarly, for m < s ≤ k,

P{S(Tm) = s, Tm < Wk}

=
∞∑
n=1

P{S(n) = s,Wk > n, Tm = n}

=
∞∑
n=1

P{S(n) = s, S(n) ≤ k, Y1 ≤ m, . . . , Yn−1 ≤ m,Yn > m}

=
∞∑
n=1

P{S(n − 1) + Yn = s, Y1 ≤ m, . . . , Yn−1 ≤ m,Yn > m}

= p
∞∑
n=1

min(s,bu)∑
b=m+1

P{S(n − 1) = s − b, Y1 ≤ m, . . . , Yn−1 ≤ m}fB(b)

= p
∞∑
n=1

min(s,bu)∑
b=m+1

V (n − 1, s − b,m)fB(b).

(3.17)

Thus, the proof is completed.
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4. Summary and Conclusions

In this paper, we studied the life behavior of a system under discrete time cumulative and
mixed shock models. The probability of getting a shock in any period is p, and the shock
occurrences are assumed to be independent over the periods. The size of the shock occuring
in a period follows a discrete probability distribution and the system’s lifetime coincides with
the waiting time random variable which represents the time until the cumulative sum of
shocks exceeds a specified level (cumulative shock model). We derived recurrence formulae
for the survival function and the MTTF of the system. We also obtained recurrences for
the distributions and expected values of the two related quantities which represent the
number of shocks and the total shock that the system is subjected until failure. The results
were illustrated for the case when the shock size distribution is geometric. We have also
obtained a recurrence for the survival function of the system under a mixed shock model.
The assumption of discrete shock size distribution enables us to obtain recursive formulae.
However, the consideration of continuous shock size distribution might be of special interest
in some applications. Therefore, a possible future work can be on discrete time shock models
with a continuous shock size distribution.

In the model that was studied in the paper shock occurrence indicators are assumed
to be independent and identical with a constant probability p. As a future work, the case in
which the shock occurrence indicators form a Markov chain can also be considered.
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