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This paper develops a safety-guaranteed trajectory tracking controller for hovercraft by using a safety-guaranteed auxiliary dynamic
system, an integral sliding mode control, and an adaptive neural network method.The safety-guaranteed auxiliary dynamic system
is designed to implement system state and input constraints. By considering the relationship of velocity and resistance hump, the
velocity of hovercraft is constrained to eliminate the effect of resistance hump and obtain better stability. And the safety limit of
drift angle is well performed to guarantee the light safe maneuvers of hovercraft tracking with high velocities. In view of the natural
capabilities of actuators, the control input is constrained. High nonlinearity andmodel uncertainties of hovercraft are approximated
by employing adaptive radical basis function neural networks. The proposed controller guarantees the boundedness of all the
closed-loop signals. Specifically, the tracking errors are uniformly ultimately bounded. Numerical simulations are implemented to
demonstrate the efficacy of the designed controller.

1. Introduction

A hovercraft (Figure 1) is supported totally by its air cushion,
with a flexible skirt system around its periphery to seal the
cushion air [1].The hovercraft is able to run at high speed over
shallow water, rapids, ice, and swamp where no other craft
can go. These “special abilities” have attracted many military
and civil users with particular mission requirements. The
study about the safety-guaranteed trajectory tracking control
of underactuated hovercraft moving with high velocities
is meaningful and challenging to reduce the burden of
pilot.

From a detailed review of the available literatures about
the trajectory tracking control of hovercraft [2–8], only posi-
tion errors were considered and the velocities of hovercraft
were not controlled. However, the velocity is related to the
resistance hump of hovercraft. From [9], the resistance hump
occurs in the vicinity of Froude number 𝐹𝑟 = 1 which can
be calculated by 𝐹𝑟 = 𝑉/√𝑔𝑙𝑐, where 𝑉 is the velocity of
hovercraft and 𝑙𝑐 is the cushion length. From [10], two
resistance humps (mainly caused by wave-making drag) are

encountered for hovercraft during the acceleration process. It
is shown in [1] that the resistance hump will be crossed as 𝐹𝑟
increases and the craft will travel with better course stability
and transverse stability. Hence, the velocity of hovercraft
needs to be large enough, corresponding to large 𝐹𝑟, to avoid
the resistance hump and hold the better stability.

Moreover, drift angle plays a key role in the high-speed
moving process of hovercraft [11, 12]. If the drift angle exceeds
the angle of drift which corresponds to the maximum of
hydrodynamic forces, the behavior of hovercraft will be
nonstable [13]. The dangers caused by the drift angle include
stern kickoff, plough-in, and great heeling [11]. Hence, safety
limit of drift angle must be strictly obeyed in the high-
speed tracking process to ensure safemaneuvers of hovercraft
[12]. For instance, safety limit of a hovercraft shows if speed
exceeds 40 knots, turning is not allowed; if speed is in the
range of 25 knots∼35 knots, drift angle needs to be within the
limits of 7.5∘∼2∘.

Besides, from a practical viewpoint, the control input is
restrained to prevent the actuators from going beyond their
natural capabilities [14, 15]. And radical basis function neural
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Figure 1: A 3Dmodel of hovercraft. Photo is from the international
cooperation project described in Acknowledgments.
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Figure 2: Diagram of underactuated hovercraft.

networks (RBFNNs) are used to stabilize complex nonlinear
dynamic systems and deal with model uncertainties [16–18].

The contributions of this paper are as follows:

(i) The velocity of hovercraft is controlled within a rea-
sonable range to avoid the effect of resistance hump
and keep better stability.

(ii) The safety limit of drift angle is obeyed to get light safe
maneuvers of hovercraft moving with high velocities.

(iii) The control input is constrained to handle input
saturation.

This paper is organized as follows. Section 2 establishes a non-
linear model of underactuated hovercraft and the transfor-
mation of it. Section 3 proposes a safety-guaranteed auxiliary
dynamic system for state and input constraints.Moreover, the
controller is designed and analyzed in this section. Numerical
simulation results are shown in Section 4, and the conclusion
is discussed in Section 5.

2. Problem Formulation

2.1. Hovercraft Model Description. In general, only air pro-
pellers and rudders are available for hovercraft as shown in
Figure 2. It means only the surge and yaw can be regulated
directly, but without any actuators for their sway motion
[19, 20].

The nonlinear model of hovercraft is obtained by neglect-
ing the roll and pitch motions.

[𝑥̇ ̇𝑦 𝑧̇ 𝜓̇]𝑇 = 𝑆 (𝜓) [𝑢 V 𝑤 𝑟]𝑇 ,
[[[[[
[

𝑢̇
V̇

𝑤̇
̇𝑟

]]]]]
]

= [[[[[
[

V𝑟
−𝑢𝑟
0
0

]]]]]
]

+𝑀[[[[[
[

𝑅𝑢 + 𝜏𝑢𝑅V𝑅𝑤 − 𝑝𝑐𝑆𝑐𝑅𝑟 + 𝜏𝑟

]]]]]
]
, (1)

where

𝑆 (𝜓) = [[[[[
[

cos𝜓 − sin𝜓 0 0
sin𝜓 cos𝜓 0 0
0 0 1 0
0 0 0 1

]]]]]
]
,

𝑀 =
[[[[[[[[[[
[

1𝑚 0 0 0
0 1𝑚 0 0
0 0 1𝑚 0
0 0 0 1𝐽𝑧

]]]]]]]]]]
]

;
(2)

the signals 𝑢, V, and 𝑤 represent the surge, sway, and heave
velocities, 𝑟 is the turn rate, 𝑥, 𝑦, and 𝑧 denote the position of
hovercraft’s mass center in the earth fixed frame, 𝜓 describes
yaw angle, 𝑚 and 𝐽𝑧 are hovercraft’s mass and moments of
inertia, 𝜏𝑢 and 𝜏𝑟 are the control inputs which are provided
by the actuators, 𝑝𝑐 is the average cushion pressure, 𝑆𝑐 is
the cushion area, and [𝑅𝑢 𝑅V 𝑅𝑤 𝑅𝑟]𝑇 are the total drags
written as

𝑅𝑚 = 𝜌𝑎𝑉𝑎𝑄,
𝑅wm = 𝐶wm𝑝2𝑐𝐵𝑐𝜌𝑤𝑔 ,
𝑅sk = 0.5𝜌𝑤𝑉2𝑎𝐶sk ( ℎ𝑙sk)

−0.34 𝑙sk𝑆0.5𝑐
+ (2.8167 (𝑝𝑐𝑙𝑐 )

−0.259 − 1)𝑅wm,
𝑅𝑢 = 𝑅𝑢𝑎 + 𝑅𝑢𝑚 + 𝑅𝑢wm + 𝑅𝑢sk

= −0.5𝜌𝑎𝑉2𝑎𝐶𝑢𝑎𝑆PP − 𝑅𝑚 cos𝛽 − 𝑅wm cos𝛽
− 𝑅sk cos𝛽,

𝑅V = 𝑅V𝑎 + 𝑅V𝑚 + 𝑅Vwm + 𝑅Vsk

= −0.5𝜌𝑎𝑉2𝑎𝐶V𝑎𝑆LP − 𝑅𝑚 sin𝛽 − 𝑅wm sin𝛽
− 𝑅sk sin𝛽,

𝑅𝑤 = 𝑅𝑤𝑎 + 𝑅𝑤wm + 𝐺
= −0.5𝜌𝑎𝑉2𝑎𝐶𝑤𝑎𝑆HP − 𝜌𝑎𝑤𝑄 + 𝐺,
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𝑅𝑟 = 𝑅𝑟𝑎 + 𝑅𝑟𝑚 + 𝑅𝑟wm + 𝑅𝑟sk
= −0.5𝜌𝑎𝑉2𝑎𝐶𝑟𝑎𝑆HP𝐻hov − 𝑅V𝑎 × 𝑥𝑎 + 𝑅𝑢𝑎 × 𝑦𝑎

− 𝑅V𝑚𝑥𝑚 + 𝑅𝑢𝑚𝑦𝑚 − 𝑅Vwm𝑥wm + 𝑅𝑢wm𝑦wm
− 𝑅Vsk𝑥sk + 𝑅𝑢sk𝑦sk,

(3)

where the drag’s suffix 𝑎 is the aerodynamic profile drag, wm
is the wave-making drag, 𝑚 is the air momentum drag, sk is
the skirt drag, 𝐶𝑢𝑎, 𝐶V𝑎, 𝐶𝑝𝑎, 𝐶𝑟𝑎, 𝐶wm, and 𝐶sk are the drag
coefficients, 𝐵𝑐 is the cushion beam, 𝑙𝑐 is the cushion length,𝐺 is the weight, 𝑆PP, 𝑆LP, and 𝑆HP are the positive, lateral, and
horizontal projection areas, 𝛽 is the drift angle, 𝑄 is the fan
flow rate of cushion fan, ℎ is the distance between baffle and
the bottom of skirt’s finger, 𝑙sk is the total peripheral length
of the skirts, 𝐻hov is the height of hovercraft, 𝜌𝑎 and 𝜌𝑤 are
air and water density, and (𝑥𝑎, 𝑦𝑎), (𝑥𝑚, 𝑦𝑚), (𝑥wm, 𝑦wm), and(𝑥sk, 𝑦sk) are the coordinates of force’s acting points.𝑉𝑎 and 𝑉𝑎 in (3) can be obtained by

𝑉𝑎
= √[𝑢 + 𝑉𝑤 cos (𝛽𝑤 − 𝜓)]2 + [V + 𝑉𝑤 sin (𝛽𝑤 − 𝜓)]2,

𝑉𝑎 = √𝑉2𝑎 + 𝑤2,
(4)

in which 𝑉𝑤 and 𝛽𝑤 are absolute wind speed and direction.
More details can be found in [1, 9, 21].

Remark 1. When a hovercraft is moving on a calm water
surface, cushion pressure 𝑝𝑐 varies within a narrow range and
the heavemotion is stable.This paper is the research about the
horizontal motion of the hovercraft. Hence, the heavemotion
is not discussed and the cushion pressure 𝑝𝑐 is assumed to be
a constant.

From Figure 2, we have

V = 𝑢 tan (𝛽) . (5)

In order to make 𝛽 be the system state and more convenient
for the constraint and control of 𝛽, an improved model is
derived from (1) and (5); that is,

[𝑥̇ ̇𝑦 𝑧̇ 𝜓̇]𝑇 = 𝑆 (𝜓) [𝑢 𝑢 tan𝛽 𝑤 𝑟]𝑇 ,
[[[[[
[

𝑢̇
̇𝛽

𝑤̇
̇𝑟

]]]]]
]

=
[[[[[[
[

𝑢𝑟 tan𝛽
−𝑢̇ sin (2𝛽)2𝑢 − 𝑟cos2𝛽

0
0

]]]]]]
]

+𝑀
[[[[[[[
[

𝑅𝑢 + 𝜏𝑢
𝑅V

cos2𝛽𝑢𝑅𝑤 − 𝑝𝑐𝑆𝑐𝑅𝑟 + 𝜏𝑟

]]]]]]]
]
.

(6)

2.2. State and Input Constraints. Saturation nonlinearities of
actuators can be described by

𝜏𝜛 = sat (𝜏𝜛𝑐, 𝜏𝜛𝑐max, 𝜏𝜛𝑐min) , 𝜛 = 𝑢, 𝑟, (7)

where 𝜏𝜛𝑐max and 𝜏𝜛𝑐min are the maximum and minimum
limitations of actuators, 𝜏𝜛𝑐 are the designed control laws, and
sat(⋅) is a generalized saturation function with the following
form:

sat (𝛼, 𝛼𝑀, 𝛼𝑚) =
{{{{{{{{{

𝛼𝑀, if 𝛼 > 𝛼𝑀,
𝛼, if 𝛼𝑚 ≤ 𝛼 ≤ 𝛼𝑀,
𝛼𝑚, if 𝛼 < 𝛼𝑚.

(8)

Assumption 2. All position, orientation, velocity, and acceler-
ation values of hovercraft are available for feedback.

Safety limit of 𝛽 and hump speed of hovercraft need to
be obtained from model and real ship tests [11, 12]. In this
paper, they are assumed to be known and available for the
state constraint. Then the safe constraints of system state are
defined as

𝑢min ≤ 𝑢 ≤ 𝑢max,
𝛽min ≤ 𝛽 ≤ 𝛽max. (9)

3. Controller Design

3.1. Safety-Guaranteed Auxiliary Dynamic System

Proposition 3. A constraint error function is designed as fol-
lows:

Δ𝜅 = 𝑘𝑤1 (sat (𝑥, 𝑥𝑚𝑎𝑥, 𝑥𝑚𝑖𝑛) − 𝑥)
+ 𝑘𝑤2 (sat (𝑢𝑐, 𝑢𝑐𝑚𝑎𝑥, 𝑢𝑐𝑚𝑖𝑛) − 𝑢𝑐) , (10)

where 𝑘𝑤1 > 0, 𝑘𝑤2 > 0, 𝑥 is the system state, and 𝑢𝑐 is the
designed control input.

Then an auxiliary dynamic system is designed by

̇𝜉 = {{{{{
−𝑘𝜉1𝜉 − 𝜗 (⋅) + 𝑘𝜉2Δ𝜅2󵄩󵄩󵄩󵄩𝜉󵄩󵄩󵄩󵄩2 𝜉 + Δ𝜅, 󵄩󵄩󵄩󵄩𝜉󵄩󵄩󵄩󵄩 ≥ 𝜎,
deadzone (Δ𝜅, 𝜎) , 󵄩󵄩󵄩󵄩𝜉󵄩󵄩󵄩󵄩 < 𝜎,

(11)

where 𝜉 is the state of the auxiliary dynamic system, 𝑘𝜉1, 𝑘𝜉2 are
positive constants, 𝜎, 𝜎 are positive small design constants, 𝜗(⋅)
can be derived from the stability analysis, and deadzone(Δ𝜅, 𝜎)
is a dead zone function given by

𝑑𝑒𝑎𝑑𝑧𝑜𝑛𝑒 (Δ𝜅, 𝜎) =
{{{{{{{{{

Δ𝜅, 𝑖𝑓 Δ𝜅 > 𝜎,
0, 𝑖𝑓 − 𝜎 < Δ𝜅 ≤ 𝜎,
Δ𝜅, 𝑖𝑓 Δ𝜅 ≤ 𝜎.

(12)

3.2. Design of the Desired States. Desired reference trajectory
is generated by a virtual ship described in the following form:

[[
[
𝑥̇𝑑̇𝑦𝑑𝜓̇𝑑

]]
]

= [[
[
cos𝜓𝑑 − sin𝜓𝑑 0
sin𝜓𝑑 cos𝜓𝑑 0

0 0 1
]]
]
[[
[
𝑢𝑑set
V𝑑set𝑟𝑑set

]]
]
. (13)
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Then the trajectory tracking errors are defined as

(𝑥𝑒, 𝑦𝑒) = (𝑥 − 𝑥𝑑, 𝑦 − 𝑦𝑑) . (14)

For the position tracking, the desired states are designed by

𝑢𝑑 = (𝑥̇𝑑 − 𝑘𝑥 󵄨󵄨󵄨󵄨𝑥𝑒󵄨󵄨󵄨󵄨 sign (𝑥𝑒)) cos𝜓 + ( ̇𝑦𝑑 − 𝑘𝑦 󵄨󵄨󵄨󵄨𝑦𝑒󵄨󵄨󵄨󵄨
⋅ sign (𝑦𝑒)) sin𝜓,

𝛽𝑑 = arctan(−𝑥̇𝑑 − 𝑘𝑥 󵄨󵄨󵄨󵄨𝑥𝑒󵄨󵄨󵄨󵄨 sign (𝑥𝑒)𝑢𝑑 sin𝜓
+ ̇𝑦𝑑 − 𝑘𝑦 󵄨󵄨󵄨󵄨𝑦𝑒󵄨󵄨󵄨󵄨 sign (𝑦𝑒)𝑢𝑑 cos𝜓) ,

(15)

where 𝑘𝑥 > 0 and 𝑘𝑦 > 0 are control gains.
Remark 4. To guarantee the traceability of the reference
trajectory under state constraints, the desired reference tra-
jectory needs to satisfy the following conditions:

(𝐶1) 𝜂𝑑, ̇𝜂𝑑, and ̈𝜂𝑑 are all bounded, in which 𝜂𝑑 = {𝑥𝑑,𝑦𝑑, 𝜓𝑑}.
(𝐶2) There exists 𝑇𝑟 > 0 such that, for all 𝑡 > 𝑇𝑟,

𝑢min < 𝑢𝑑 < 𝑢max,
𝛽min < 𝛽𝑑 < 𝛽max. (16)

3.3. Controller Design. State tracking errors are defined as

𝑒𝑢 = 𝑢 − 𝑢𝑑,
𝑒𝛽 = 𝛽 − 𝛽𝑑. (17)

Then two integral sliding mode manifolds are given by

𝑠𝑢 = 𝑒𝑢 + 𝜆1 ∫𝑡
0
𝑒𝑢 𝑑𝜏,

𝑠𝑟 = ̇𝑒𝛽 + 𝜆2𝑒𝛽 + 𝜆3 ∫𝑡
0
𝑒𝛽 𝑑𝜏,

(18)

where 𝜆1, 𝜆2, and 𝜆3 are positive constants.
Using (6), (17), and (18), the time derivatives of 𝑠𝑢 and 𝑠𝑟

are expressed as

̇𝑠𝑢 = ̇𝑒𝑢 + 𝜆1𝑒𝑢
= 𝑓𝑢 (x𝑢) + 𝑀𝑢𝜏𝑢 +𝑀𝑢𝑅𝑢 − 𝑢̇𝑑 + 𝜆1𝑒𝑢, (19)

̇𝑠𝑟 = ̈𝑒𝛽 + 𝜆2 ̇𝑒𝛽 + 𝜆3𝑒𝛽
= 𝑓𝑟 (x𝑟) + 𝑀𝑟𝜏𝑟 + 𝐷𝑟𝑤 − ̈𝛽𝑑 + 𝜆2 ̇𝑒𝛽 + 𝜆3𝑒𝛽, (20)

where

𝑓𝑢 (x𝑢) = 𝑢𝑟 tan𝛽, x𝑢 = [𝑢, 𝛽, 𝑟]𝑇 ,
𝑓𝑟 (x𝑟) = −𝑢̈𝑢 − 𝑢̇22𝑢2 sin (2𝛽) − 𝑢̇ ̇𝛽𝑢 cos (2𝛽)

+ ̇𝛽𝑟 sin (2𝛽) , x𝑟 = [𝑢, 𝑢̇, 𝑢̈, 𝑟, 𝛽, ̇𝛽]𝑇 ,
𝑀𝑢 = 1𝑚,
𝑀𝑟 = −cos2𝛽𝐽𝑧 ,
𝐷𝑟𝑤 = − ̇𝛽𝑅V sin (2𝛽)𝑢𝑚 + 𝑢𝑅̇V − 𝑢̇𝑅V𝑢2𝑚 cos2𝛽

− 𝑅𝑟cos2𝛽𝐽𝑧 .

(21)

To deal with high nonlinearity and model uncertainties,𝑓𝑢(x𝑢) and 𝑓𝑟(x𝑟) are approximated by RBFNNs.

𝑓𝜛 (x𝜛) = W∗𝑇𝜛 H𝜛 (x𝜛) + 𝜀𝜛, 𝜛 = 𝑢, 𝑟, (22)

where x𝜛 ∈ 𝑅𝐼 is the input vector and W∗𝜛 ∈ 𝑅𝑛 is the ideal
weight vector.H𝜛(x𝜛) : 𝑅𝐼 → 𝑅𝑛 is the basis function vector
with element ℎ𝑖𝜛(x𝜛) shown as follows:

ℎ𝑖𝜛 (x𝜛) = exp(−󵄩󵄩󵄩󵄩x𝜛 − 𝜇𝑖𝜛󵄩󵄩󵄩󵄩2𝜎2𝑖 ) , (23)

where𝜇𝑖𝜛 is the center of the receptive field and𝜎𝑖 is thewidth
of theGaussian function.The approximation error 𝜀𝜛 satisfies|𝜀𝜛| ≤ 𝜀𝑁.

Using (10) and (11), constraint error functions are
designed as follows:

Δ𝜅𝑢 = 𝑘𝑤𝑢1 (sat (𝑢, 𝑢max, 𝑢min) − 𝑢)
+ 𝑘𝑤𝑢2 (sat (𝜏𝑢𝑐, 𝜏𝑢𝑐max, 𝜏𝑢𝑐min) − 𝜏𝑢𝑐) ,

Δ𝜅𝑟 = 𝑘𝑤𝑟1 (sat (𝛽, 𝛽max, 𝛽min) − 𝛽)
+ 𝑘𝑤𝑟2 (sat (𝜏𝑟𝑐, 𝜏𝑟𝑐max, 𝜏𝑟𝑐min) − 𝜏𝑟𝑐) ,

(24)

where 𝑘𝑤𝑢1 > 0, 𝑘𝑤𝑢2 > 0, 𝑘𝑤𝑟1 > 0, and 𝑘𝑤𝑟2 > 0.
Then the auxiliary dynamic system is designed as

̇𝜉𝜛
= {{{{{

(−𝑘𝜉𝜛1𝜉𝜛 − 𝜗𝜛 (⋅) + 𝑘𝜉𝜛2Δ𝜅𝜛2󵄩󵄩󵄩󵄩𝜉𝜛󵄩󵄩󵄩󵄩2 𝜉𝜛 + Δ𝜅𝜛) , 󵄩󵄩󵄩󵄩𝜉𝜛󵄩󵄩󵄩󵄩 ≥ 𝜎,
deadzone (Δ𝜅𝜛, 𝜎) , 󵄩󵄩󵄩󵄩𝜉𝜛󵄩󵄩󵄩󵄩 < 𝜎,

(25)

where 𝜗𝜛(⋅) = |𝑀𝜛𝑠𝜛||𝜏𝜛 − 𝜏𝜛𝑐| and 𝜛 = 𝑢, 𝑟.
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Finally, the control laws are given by

𝜏𝑢𝑐 = 1𝑀𝑢 (−𝑘1𝑠𝑢 − 𝜂1 sign (𝑠𝑢) + 𝑢̇𝑑 − 𝜆1𝑒𝑢 −𝑀𝑢𝑅𝑢
− Ŵ𝑇𝑢H𝑢 (x𝑢) − 𝜀𝑁 sign (𝑠𝑢) + 𝑘𝑠𝑢𝜉𝑢) ,

(26)

𝜏𝑟𝑐 = 1𝑀𝑟 ( ̈𝛽𝑑 − 𝑘2𝑠𝑟 − 𝜂2 sign (𝑠𝑟) − 𝜆2 ̇𝑒𝛽 − 𝐷𝑟𝑤
− 𝜆3𝑒𝛽 − Ŵ𝑇𝑟H𝑟 (x𝑟) − 𝜀𝑁 sign (𝑠𝑟) + 𝑘𝑠𝑟𝜉𝑟) ,

(27)

where 𝑘1, 𝑘2, 𝜂1, 𝜂2, 𝑘𝑠𝑢, and 𝑘𝑠𝑟 are positive constants, Ŵ𝑢 =
W̃𝑢 +W∗𝑢 , Ŵ𝑟 = W̃𝑟 +W∗𝑟 , and𝐷𝑟𝑤 is defined in (20).

And the adaptive laws are
̇̂W𝜛 = 𝛾𝜛𝑠𝜛H𝜛 (x𝜛) 𝜛 = 𝑢, 𝑟, (28)

where 𝛾𝜛 is the adaptive coefficient.

3.4. Stability Analysis

Theorem 5. If the state tracking errors (17), the desired states
(15), the auxiliary dynamic system (25), the surge control law𝜏𝑢𝑐 (26), the yaw control law 𝜏𝑟𝑐 (27), and the adaptive laws
(28) are applied to the hovercraft system represented by (6)
and, for any bounded initial condition, the closed-loop control
system signals 𝑠𝑢, 𝑠𝑟, 𝜉𝑢, 𝜉𝑟, 𝑒𝑢, 𝑒𝛽, 𝑥𝑒, 𝑦𝑒 and 𝑤𝑖𝑢 and 𝑤𝑖𝑟,𝑖 = 1, 2, . . . , 𝑛, are uniformly ultimately bounded (UUB).
The position and desired state tracking errors can be made
arbitrarily small by appropriately selecting design parameters.
And the yaw motion will remain bounded.

Proof. The following Lyapunov function is defined:

𝑉 = 12𝑠2𝑢 + 12𝑠2𝑟 + 12𝛾𝑢 W̃𝑇𝑢W̃𝑢 +
12𝛾𝑟 W̃𝑇𝑟 W̃𝑟 +

12𝜉2𝑢
+ 12𝜉2𝑟 .

(29)

From (19), (20), and (29), 𝑉̇ can be expressed as

𝑉̇ = 𝑠𝑢 (𝑓𝑢 (x𝑢) + 𝑀𝑢𝜏𝑢 +𝑀𝑢𝑅𝑢 − 𝑢̇𝑑 + 𝜆1𝑒𝑢)
+ 𝑠𝑟 (𝑓𝑟 (x𝑟) + 𝑀𝑟𝜏𝑟 + 𝐷𝑟𝑤 − ̈𝛽𝑑 + 𝜆2 ̇𝑒𝛽 + 𝜆3𝑒𝛽)
+ W̃𝑇𝑢

̇̂W𝑢𝛾𝑢 + W̃𝑇𝑟
̇̂W𝑟𝛾𝑟 + 𝜉𝑢 ̇𝜉𝑢 + 𝜉𝑟 ̇𝜉𝑟.

(30)

By defining 𝜏𝜛 = Δ𝜏𝜛 + 𝜏𝜛𝑐 and 𝜛 = 𝑢, 𝑟 and using (22), (26),
and (27), we have

𝑉̇ = −𝑘1𝑠2𝑢 − 𝜂1 󵄨󵄨󵄨󵄨𝑠𝑢󵄨󵄨󵄨󵄨 + 𝑠𝑢 (−W̃𝑇𝑢H𝑢 (x𝑢)) +𝑀𝑢𝑠𝑢Δ𝜏𝑢
+ 𝑘𝑠𝑢𝑠𝑢𝜉𝑢 + (−𝜀𝑁 󵄨󵄨󵄨󵄨𝑠𝑢󵄨󵄨󵄨󵄨 + 𝜀𝑢𝑠𝑢) − 𝑘2𝑠2𝑟 − 𝜂2 󵄨󵄨󵄨󵄨𝑠𝑟󵄨󵄨󵄨󵄨
+ 𝑠𝑟 (−W̃𝑇𝑟H𝑟 (x𝑟)) +𝑀𝑟𝑠𝑟Δ𝜏𝑟 + 𝑘𝑠𝑟𝑠𝑟𝜉𝑟
+ (−𝜀𝑁 󵄨󵄨󵄨󵄨𝑠𝑟󵄨󵄨󵄨󵄨 + 𝜀𝑟𝑠𝑟) + 1𝛾𝑢 W̃𝑇𝑢 ̇̂W𝑢 + 1𝛾𝑟 W̃𝑇𝑟 ̇̂W𝑟
+ 𝜉𝑢 ̇𝜉𝑢 + 𝜉𝑟 ̇𝜉𝑟.

(31)

By using |𝜀𝜛| ≤ 𝜀𝑁 and 𝜛 = 𝑢, 𝑟, (31) can be rewritten as

𝑉̇ ≤ −𝑘1𝑠2𝑢 − 𝜂1 󵄨󵄨󵄨󵄨𝑠𝑢󵄨󵄨󵄨󵄨 + 𝑠𝑢 (−W̃𝑇𝑢H𝑢 (x𝑢)) − 𝑘2𝑠2𝑟
− 𝜂2 󵄨󵄨󵄨󵄨𝑠𝑟󵄨󵄨󵄨󵄨 + 𝑠𝑟 (−W̃𝑇𝑟H𝑟 (x𝑟)) + 𝑀𝑢𝑠𝑢Δ𝜏𝑢
+ 𝑘𝑠𝑢𝑠𝑢𝜉𝑢 +𝑀𝑟𝑠𝑟Δ𝜏𝑟 + 𝑘𝑠𝑟𝑠𝑟𝜉𝑟 + 1𝛾𝑢 W̃𝑇𝑢 ̇̂W𝑢
+ 1𝛾𝑟 W̃𝑇𝑟 ̇̂W𝑟 + 𝜉𝑢 ̇𝜉𝑢 + 𝜉𝑟 ̇𝜉𝑟.

(32)

Substituting adaptive laws (28) into it yields

𝑉̇ ≤ −𝑘1𝑠2𝑢 +𝑀𝑢𝑠𝑢Δ𝜏𝑢 + 𝑘𝑠𝑢𝑠𝑢𝜉𝑢 + 𝜉𝑢 ̇𝜉𝑢 − 𝑘2𝑠2𝑟
+𝑀𝑟𝑠𝑟Δ𝜏𝑟 + 𝑘𝑠𝑟𝑠𝑟𝜉𝑟 + 𝜉𝑟 ̇𝜉𝑟. (33)

The process of stability analysis is, respectively, discussed in
the following two cases.

Case 1.When ‖𝜉𝜛‖ ≥ 𝜎, in light of (25) andYoung’s inequality,
we have

𝜉𝜛 ̇𝜉𝜛 = 𝜉𝜛Δ𝜅𝜛 − 𝑘𝜉𝜛1𝜉2𝜛 − 𝑘𝜉𝜛2Δ𝜅2𝜛
− 󵄨󵄨󵄨󵄨𝑀𝜛𝑠𝜛󵄨󵄨󵄨󵄨 󵄨󵄨󵄨󵄨𝜏𝜛 − 𝜏𝜛𝑐󵄨󵄨󵄨󵄨

≤ 𝑘𝜉𝜛2Δ𝜅2𝜛 + 14𝑘𝜉𝜛2 𝜉2𝜛 − 𝑘𝜉𝜛1𝜉2𝜛 − 𝑘𝜉𝜛2Δ𝜅2𝜛
− 󵄨󵄨󵄨󵄨𝑀𝜛𝑠𝜛󵄨󵄨󵄨󵄨 󵄨󵄨󵄨󵄨𝜏𝜛 − 𝜏𝜛𝑐󵄨󵄨󵄨󵄨

= −(𝑘𝜉𝜛1 − 14𝑘𝜉𝜛2)𝜉2𝜛 − 󵄨󵄨󵄨󵄨𝑀𝜛𝑠𝜛󵄨󵄨󵄨󵄨 󵄨󵄨󵄨󵄨𝜏𝜛 − 𝜏𝜛𝑐󵄨󵄨󵄨󵄨 .

(34)

Substituting 𝜏𝜛 = Δ𝜏𝜛 + 𝜏𝜛𝑐 and (34) into (33) and using
Young’s inequality yield

𝑉̇ ≤ −𝑘1𝑠2𝑢 + 𝑘𝑠𝑢𝑠𝑢𝜉𝑢 − (𝑘𝜉𝑢1 − 14𝑘𝜉𝑢2)𝜉2𝑢 − 𝑘2𝑠2𝑟
+ 𝑘𝑠𝑟𝑠𝑟𝜉𝑟 − (𝑘𝜉𝑟1 − 14𝑘𝜉𝑟2)𝜉2𝑟

≤ − (𝑘1 − 0.5) 𝑠2𝑢 − (𝑘𝜉𝑢1 − 14𝑘𝜉𝑢2 − 0.5𝑘2𝑠𝑢)𝜉2𝑢
− (𝑘2 − 0.5) 𝑠2𝑟 − (𝑘𝜉𝑟1 − 14𝑘𝜉𝑟2 − 0.5𝑘2𝑠𝑟)𝜉2𝑟
− 𝑘1W̃𝑇𝑢W̃𝑢𝛾𝑢 − 𝑘2W̃𝑇𝑟 W̃𝑟𝛾𝑟 + 𝑘1W̃𝑇𝑢W̃𝑢𝛾𝑢
+ 𝑘2W̃𝑇𝑟 W̃𝑟𝛾𝑟 ≤ −2𝜇1𝑉 + 𝜌1,

(35)
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where

𝜇1 = min{(𝑘1 − 0.5) , (𝑘𝜉𝑢1 − 14𝑘𝜉𝑢2 − 0.5𝑘2𝑠𝑢) ,
(𝑘2 − 0.5) , (𝑘𝜉𝑟1 − 14𝑘𝜉𝑟2 − 0.5𝑘2𝑠𝑟)} ,

𝜌1 = 𝑘1𝛾𝑢 W̃𝑇𝑢W̃𝑢 +
𝑘2𝛾𝑟 W̃𝑇𝑟 W̃𝑟.

(36)

Case 2. When ‖𝜉𝜛‖ < 𝜎, in light of (25) and Young’s ine-
quality, we have

𝜉𝜛 ̇𝜉𝜛 = 𝜉𝜛deadzone (Δ𝜅𝜛, 𝜎) ≤ 0.5𝜉2𝜛 + 0.5Δ𝜅2𝜛,
0.5𝑘2𝑠𝜛𝜉2𝜛 = 𝑘2𝑠𝜛𝜉2𝜛 − 0.5𝑘2𝑠𝜛𝜉2𝜛 ≤ −0.5𝑘2𝑠𝜛𝜉2𝜛 + 𝑘2𝑠𝜛𝜎2. (37)

Substituting (37) into (33) and using Young’s inequality yield

𝑉̇ ≤ −𝑘1𝑠2𝑢 +𝑀𝑢𝑠𝑢Δ𝜏𝑢 + 𝑘𝑠𝑢𝑠𝑢𝜉𝑢 + 0.5𝜉2𝑢 + 0.5Δ𝜅2𝑢
− 𝑘2𝑠2𝑟 +𝑀𝑟𝑠𝑟Δ𝜏𝑟 + 𝑘𝑠𝑟𝑠𝑟𝜉𝑟 + 0.5𝜉2𝑟 + 0.5Δ𝜅2𝑟

≤ − (𝑘1 − 1) 𝑠2𝑢 − (𝑘2 − 1) 𝑠2𝑟 + 0.5𝑀2𝑢Δ𝜏2𝑢
+ 0.5𝑀2𝑟Δ𝜏2𝑟 + 0.5𝑘2𝑠𝑢𝜉2𝑢 + 0.5𝑘2𝑠𝑟𝜉2𝑟 + 0.5𝜉2𝑢
+ 0.5Δ𝜅2𝑢 + 0.5𝜉2𝑟 + 0.5Δ𝜅2𝑟

≤ − (𝑘1 − 1) 𝑠2𝑢 − (𝑘2 − 1) 𝑠2𝑟 − 0.5𝜉2𝑢 (𝑘2𝑠𝑢 − 1)
− 0.5𝜉2𝑟 (𝑘2𝑠𝑟 − 1) + 0.5𝑀2𝑢Δ𝜏2𝑢 + 0.5𝑀2𝑟Δ𝜏2𝑟
+ 𝑘2𝑠𝑢𝜎2 + 𝑘2𝑠𝑟𝜎2 + 0.5Δ𝜅2𝑢 + 0.5Δ𝜅2𝑟

≤ −2𝜇2𝑉 + 𝜌2,

(38)

where

𝜇2 = min {(𝑘1 − 1) , (0.5𝑘2𝑠𝑢 − 0.5) , (𝑘2 − 1) ,
(0.5𝑘2𝑠𝑟 − 0.5)} ,

𝜌2 = 𝑘1𝛾𝑢 W̃𝑇𝑢W̃𝑢 +
𝑘2𝛾𝑟 W̃𝑇𝑟 W̃𝑟 + 0.5𝑀2𝑢Δ𝜏2𝑢

+ 0.5𝑀2𝑟Δ𝜏2𝑟 + (𝑘2𝑠𝑢 + 𝑘2𝑠𝑟) 𝜎2 + (Δ𝜅2𝑢 + Δ𝜅2𝑟)2 .

(39)

Synthesizing (35) and (38), we have

𝑉̇ ≤ −2𝜇𝑉 + 𝜌, (40)

where 𝜇 = min{𝜇1, 𝜇2} and 𝜌 = max{𝜌1, 𝜌2} with the design
parameters 𝑘1, 𝑘2, 𝑘𝑠𝑢, 𝑘𝑠𝑟, 𝑘𝜉𝑢1, 𝑘𝜉𝑢2, 𝑘𝜉𝑟1, and 𝑘𝜉𝑟2 satisfying

𝑘1 > 1,
𝑘2 > 1,
𝑘𝑠𝑢 > 1,
𝑘𝑠𝑟 > 1,

𝑘𝜉𝑢1 − 14𝑘𝜉𝑢2 − 0.5𝑘2𝑠𝑢 > 0,
𝑘𝜉𝑟1 − 14𝑘𝜉𝑟2 − 0.5𝑘2𝑠𝑟 > 0.

(41)

Solving (40), we have

0 ≤ 𝑉 (𝑡) ≤ 𝜌2𝜇 + [𝑉 (0) − 𝜌2𝜇] 𝑒−2𝜇𝑡. (42)

It is obviously seen that 𝑉(𝑡) is UUB for all 𝑉(0) ≤ 𝐵0 with𝐵0 being any positive constant. Therefore, in the light of (29),
we know that 𝑠𝑢, 𝑠𝑟, 𝜉𝑢, 𝜉𝑟 and 𝑤𝑖𝑢 and 𝑤𝑖𝑟, 𝑖 = 1, 2, . . . , 𝑛, are
UUB for all 𝑉(0) ≤ 𝐵0. It can be expressed as

󵄩󵄩󵄩󵄩𝜒󵄩󵄩󵄩󵄩 ≤ √ 𝜌𝜇 + 2 [𝑉 (0) − 𝜌2𝜇] 𝑒−2𝜇𝑡, (43)

where 𝜒 = {𝑠𝑢, 𝑠𝑟, 𝜉𝑢, 𝜉𝑟, 𝑤𝑖𝑢, 𝑤𝑖𝑟}.
It implies that there exists 𝑇 > 0 such that, for all 𝑡 > 𝑇,

󵄩󵄩󵄩󵄩𝜒󵄩󵄩󵄩󵄩 ≤ √ 𝜌𝜇 , (44)

where √𝜌/𝜇 can be made arbitrarily small by appropriately
selecting the design parameters.

Further, the following dynamics are obtained from (18)
and (44):

𝑒𝑢 + 𝜆1 ∫𝑡
0
𝑒𝑢 𝑑𝜏 = 𝜀𝑢,

̇𝑒𝛽 + 𝜆2𝑒𝛽 + 𝜆3 ∫𝑡
0
𝑒𝛽 𝑑𝜏 = 𝜀𝛽,

(45)

where 𝜀𝑢 and 𝜀𝛽 are arbitrarily small errors.
To prove that 𝑒𝑢 and 𝑒𝛽 are UUB, the Lyapunov function

is given by

𝑉𝑠 = 12 (∫𝑡
0
𝑒𝑢 𝑑𝜏)2 + 12𝑒2𝛽. (46)

The time derivative of this Lyapunov function along the
dynamics in (45) is such that

𝑉̇𝑠 = 𝑒𝑢 ∫𝑡
0
𝑒𝑢 𝑑𝜏 + 𝑒𝛽 ̇𝑒𝛽

= −𝜆1 (∫𝑡
0
𝑒𝑢 𝑑𝜏)2 − 𝜆2𝑒2𝛽 + 𝜀𝑢 ∫𝑡

0
𝑒𝑢 𝑑𝜏

− 𝜆3𝑒𝛽 ∫𝑡
0
𝑒𝛽 𝑑𝜏 + 𝜀𝛽𝑒𝛽.

(47)



Mathematical Problems in Engineering 7

From Young’s inequality, the following fact is obtained:

𝜀𝑢 ∫𝑡
0
𝑒𝑢 𝑑𝜏 ≤ 0.5𝜆1 (∫𝑡

0
𝑒𝑢 𝑑𝜏)2 + 0.5 𝜀2𝑢𝜆1 ,

−𝜆3𝑒𝛽 ∫𝑡
0
𝑒𝛽 𝑑𝜏 ≤ 𝜆2𝑒2𝛽2 + 𝜆32𝜆2 (∫

𝑡

0
𝑒𝛽 𝑑𝜏)2 ,

𝜀𝛽𝑒𝛽 ≤ 0.25𝜆2𝑒2𝛽 + 𝜀2𝛽𝜆2 .

(48)

Then

𝑉̇𝑠 ≤ −0.5𝜆1 (∫𝑡
0
𝑒𝑢 𝑑𝜏)2 − 0.25𝜆2𝑒2𝛽 + 0.5 𝜀2𝑢𝜆1

+ 0.5𝜆3𝜆2 (∫
𝑡

0
𝑒𝛽 𝑑𝜏)2 + 𝜀2𝛽𝜆2 = −2𝜇𝑠𝑉𝑠 + 𝜌𝑠,

(49)

where

𝜇𝑠 = min {0.5𝜆1, 0.25𝜆2} ,
𝜌𝑠 = 0.5 𝜀2𝑢𝜆1 + 0.5𝜆3𝜆2 (∫

𝑡

0
𝑒𝛽 𝑑𝜏)2 + 𝜀2𝛽𝜆2 .

(50)

Similar to the analysis in (42)∼(44), there exists 𝑇𝑠 > 0 such
that, for all 𝑡 > 𝑇𝑠,

󵄩󵄩󵄩󵄩𝜒𝑠󵄩󵄩󵄩󵄩 ≤ √ 𝜌𝑠𝜇𝑠 , (51)

where 𝜒𝑠 = {∫𝑡
0
𝑒𝑢 𝑑𝜏, 𝑒𝛽}.

It is obvious that ∫𝑡
0
𝑒𝑢 𝑑𝜏 and 𝑒𝛽 are UUB and will be

arbitrarily small by choosing suitable parameters.
From 𝑠𝑢 = 𝑒𝑢 + 𝜆1 ∫𝑡0 𝑒𝑢 𝑑𝜏, we know 𝑒𝑢 will be arbitrarily

small. From (6) and (15), we have

[ 𝑢 − 𝑢𝑑𝑢 tan𝛽 − 𝑢𝑑 tan𝛽𝑑] = 𝑅[𝑥̇𝑒 + 𝑘𝑥 󵄨󵄨󵄨󵄨𝑥𝑒󵄨󵄨󵄨󵄨 sign (𝑥𝑒)̇𝑦𝑒 + 𝑘𝑦 󵄨󵄨󵄨󵄨𝑦𝑒󵄨󵄨󵄨󵄨 sign (𝑦𝑒)] , (52)

where

𝑅 = [ cos𝜓 sin𝜓
− sin𝜓 cos𝜓] . (53)

It is clear that |𝑅| = 1 which indicates that it is nonsingular.
Then we have

𝑥̇𝑒 = −𝑘𝑥 󵄨󵄨󵄨󵄨𝑥𝑒󵄨󵄨󵄨󵄨 sign (𝑥𝑒) + 𝜀𝑥𝑏,
̇𝑦𝑒 = −𝑘𝑦 󵄨󵄨󵄨󵄨𝑦𝑒󵄨󵄨󵄨󵄨 sign (𝑦𝑒) + 𝜀𝑦𝑏, (54)

where 𝜀𝑥𝑏, 𝜀𝑦𝑏 are arbitrarily small errors.
Furthermore, consider the following Lyapunov function

candidate:

𝑉𝑝 = 12𝑥2𝑒 + 12𝑦2𝑒 . (55)

The time derivative of 𝑉𝑝 along the dynamics in (54) is such
that

𝑉̇𝑝 = 𝑥𝑒𝑥̇𝑒 + 𝑦𝑒 ̇𝑦𝑒
= 𝑥𝑒 (−𝑘𝑥 󵄨󵄨󵄨󵄨𝑥𝑒󵄨󵄨󵄨󵄨 sign (𝑥𝑒) + 𝜀𝑥𝑏)

+ 𝑦𝑒 (−𝑘𝑦 󵄨󵄨󵄨󵄨𝑦𝑒󵄨󵄨󵄨󵄨 sign (𝑦𝑒) + 𝜀𝑦𝑏)
= −𝑘𝑥 󵄨󵄨󵄨󵄨𝑥𝑒󵄨󵄨󵄨󵄨2 − 𝑘𝑦 󵄨󵄨󵄨󵄨𝑦𝑒󵄨󵄨󵄨󵄨2 + 𝑥𝑒𝜀𝑥𝑏 + 𝑦𝑒𝜀𝑦𝑏
≤ −0.5𝑘𝑥 󵄨󵄨󵄨󵄨𝑥𝑒󵄨󵄨󵄨󵄨2 − 0.5𝑘𝑦 󵄨󵄨󵄨󵄨𝑦𝑒󵄨󵄨󵄨󵄨2 + 𝜀2𝑥𝑏2𝑘𝑥 +

𝜀2𝑦𝑏2𝑘𝑦
= −2𝜇𝑝𝑉𝑝 + 𝜌𝑝,

(56)

where

𝜇𝑝 = min {0.5𝑘𝑥, 0.5𝑘𝑦} ,
𝜌𝑝 = 𝜀2𝑥𝑏2𝑘𝑥 +

𝜀2𝑦𝑏2𝑘𝑦 .
(57)

Also similar to the analysis in (42)∼(44), there exists 𝑇𝑝 > 0
such that, for all 𝑡 > 𝑇𝑝,

󵄩󵄩󵄩󵄩󵄩𝜒𝑝󵄩󵄩󵄩󵄩󵄩 ≤ √ 𝜌𝑝𝜇𝑝 , (58)

where 𝜒𝑝 = {𝑥𝑒, 𝑦𝑒}.
From the reason that 𝜀𝑥𝑏 and 𝜀𝑦𝑏 are arbitrarily small

errors, we know that 𝑥𝑒 and 𝑦𝑒 are UUB andwill be arbitrarily
small.

Also, 𝑢 is continuously differentiable in the moving
process of hovercraft. Hence, 𝑢̇ is bounded. From (6), we have

𝑢̇ = 𝑢𝑟 tan (𝛽) + 𝑅𝑢 + 𝜏𝑢𝑚 . (59)

From (15), Remark 4, and the boundedness of 𝑥𝑒 and 𝑦𝑒,
we have that 𝑢𝑑 and 𝛽𝑑 are bounded. Then 𝑢, V, and 𝛽 are
bounded from (5) and (17). Furthermore,𝑅𝑢 is bounded from
(3).Therefore, it can be concluded that 𝑟will remain bounded
from (7) and (59). This concludes the proof.

Remark 6. In order to avoid the well-known chattering
problem, the sign function used in the control laws (26) and
(27) can be replaced by hyperbolic tangent function which
is continuous such that sign(𝑠) = tanh(𝑘𝐻𝑠), where 𝑘𝐻 is
a positive scalar which can be chosen to get a very good
approximation.

4. Simulations

Two different cases are implemented to verify the effective-
ness and superiority of the proposed controller. In simula-
tions, the main particulars and constraints of hovercraft are
shown in Tables 1 and 2. The water surface is calm without
waves.
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Table 1: Main particulars of hovercraft.

𝑚 (kg) 40000𝐽𝑧 (kgm2) 1.8 × 106𝑆PP (m2) 45𝑆LP (m2) 93𝑆HP (m
2) 260𝑄 (m3/s) 140.8𝑉𝑤 (knots) 10𝑙sk (m) 65𝐵𝑐 (m) 8.9𝑙𝑐 (m) 23.6ℎ (m) 1𝐻hov (m) 5.9𝑆𝑐 (m2) 212𝛽𝑤 (deg) 45

Table 2: State and input constraints.

Variable Maximum Minimum𝑢 (knots) 40 25𝛽 (deg) 8 −8𝜏𝑢 (N) 80000 −80000𝜏𝑟 (Nm) 1 × 105 −1 × 105

The comparisons of three different methods are carried
out in each case. The legend “Method A” means the method
in [14]; the legend “Method B” means the method without
state and input saturation constraints.

Saturation coefficients are

𝑘𝑠𝑢 = 1.2,
𝑘𝑤𝑢1 = 1,
𝑘𝑤𝑢2 = 903000,
𝑘𝜉𝑢1 = 31,
𝑘𝑠𝑟 = 1.2,

𝑘𝑤𝑟1 = 1,
𝑘𝑤𝑟2 = 650300,
𝑘𝜉𝑟1 = 38,
𝑘𝜉𝑢2 = 0.08,
𝑘𝜉𝑟2 = 0.08,

𝜎 = 3,
𝜎 = 1.

(60)

Case 1. The reference trajectory parameters are

𝑥𝑑 (0) = 300m,
𝑦𝑑 (0) = 100m,

𝜓𝑑 (0) = 45∘,
𝑢𝑑set (𝑡) = 35 knots,
V𝑑set (𝑡) = 0,
𝑟𝑑set (𝑡) = 0.

(61)

The initial values of hovercraft model are
𝑥 (0) = 0,
𝑦 (0) = 0,
𝜓 (0) = 70∘,
𝑢 (0) = 35 knots,
𝛽 (0) = 0,
𝑟 (0) = 0.

(62)

The controller parameters are

𝑘𝑥 = 0.6,
𝑘𝑦 = 0.6,
𝑘1 = 1.1,
𝜂1 = 0.25,
𝜆1 = 2,
𝑘2 = 1.2,
𝜂2 = 0.5,
𝜆2 = 30,
𝜆3 = 6,
𝜀𝑁 = 0.5.

(63)

It is observed from Figures 3–8 that the proposed trajectory
tracking controller is effective. Tracking errors of all three
methods converge to arbitrarily small values and heading
angle is bounded. From the comparisons with Methods A
and B in Figures 9 and 10, the proposed controller can
limit the surge speed and the drift angle into the safe range
effectively. Figures 11 and 12 show that the input saturation is
also handled by the proposed controller.

Case 2. The reference trajectory parameters are

𝑥𝑑 (0) = −200m,
𝑦𝑑 (0) = 50m,
𝜓𝑑 (0) = 45∘,

𝑢𝑑set (𝑡) = 35 knots,
V𝑑set (𝑡) = 0,
𝑟𝑑set (𝑡) = 0.1∘/s.

(64)
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Figure 3: The actual and desired trajectory of hovercraft.
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Figure 4: The heading angle of hovercraft.
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Figure 5: The surge position tracking error.

The initial values of hovercraft model are
𝑥 (0) = 0,
𝑦 (0) = 0,
𝜓 (0) = 30∘,
𝑢 (0) = 35 knots,
𝛽 (0) = 0,
𝑟 (0) = 0.

(65)

The controller parameters are

𝑘𝑥 = 0.6,
𝑘𝑦 = 0.6,
𝑘1 = 1.53,
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Figure 6: The sway position tracking error.

0 200 400 600 800 1000 1200 1400

0

10

Time (s)

Proposed controller
Method A
Method B

e u
(k

no
ts)

−10

−20

Figure 7: The surge velocity tracking error.
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Figure 8: The drift angle tracking error.

𝜂1 = 0.1,
𝜆1 = 4,
𝑘2 = 1.2,
𝜂2 = 0.5,
𝜆2 = 30,
𝜆3 = 2,
𝜀𝑁 = 0.5.

(66)

It is obvious from Figures 14–19 that only the proposed
controller can track the trajectory successfully. Figures 20 and
21 show that the surge speed changes to negative values and
the drift angle exceeds the safety limit in the tracking control
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Figure 10: The drift angle of hovercraft.
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Figure 11: The surge control law of hovercraft.

process ofMethods A and B.These are absolutely not allowed
for hovercraft. In contrast, you can see from Figure 20 that
surge speed can still be positive, even large enough to avoid
the influence of the resistance humps under the control of the
proposed controller. And drift angle is also within the safety
limit from Figure 21. From Figures 22 and 23, we know that
the input constraint ability of the proposed controller is effec-
tive. Figures 13 and 24 show the heave position of hovercraft.

5. Conclusion

A safety-guaranteed trajectory tracking controller has been
proposed for underactuated hovercraft in this paper. The
safety-guaranteed auxiliary dynamic system is designed to
deal with state and input constraints. The velocity of hov-
ercraft is constrained to eliminate the effect of resistance
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Figure 12: The yaw control law of hovercraft.
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Figure 14: The actual and desired trajectory of hovercraft.
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Figure 15: The heading angle of hovercraft.

hump and obtain better stability. The safety limit of drift
angle is carried out effectively for safety in the high-speed
trajectory tracking process of hovercraft.The input saturation
is handled. High nonlinearity and model uncertainties are
approximated by RBFNNs. Simulation results have been
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Figure 16: The surge position tracking error.
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Figure 17: The sway position tracking error.
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Figure 18: The surge velocity tracking error of hovercraft.
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Figure 19: The drift angle tracking error of hovercraft.
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Figure 20: The surge velocity of hovercraft.
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Figure 21: The drift angle of hovercraft.
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Figure 22: The surge control law of hovercraft.
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Figure 23: The yaw control law of hovercraft.
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Figure 24: The heave position of hovercraft.

presented to illustrate the effectiveness of the proposed con-
troller.
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