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We suggest a regular fractional generalization of the well-known Sturm-Liouville eigenvalue problems. The suggested model
consists of a fractional generalization of the Sturm-Liouville operator using conformable derivative and with natural boundary
conditions on bounded domains. We establish fundamental results of the suggested model. We prove that the eigenvalues are
real and simple and the eigenfunctions corresponding to distinct eigenvalues are orthogonal and we establish a fractional Rayleigh
Quotient result that can be used to estimate the first eigenvalue. Despite the fact that the properties of the fractional Sturm-Liouville
problem with conformable derivative are very similar to the ones with the classical derivative, we find that the fractional problem
does not display an infinite number of eigenfunctions for arbitrary boundary conditions.This interesting result will lead to studying
the problem of completeness of eigenfunctions for fractional systems.

1. Introduction and Preliminaries

Fractional calculus is old as the Newtonian calculus [1–3].
The name fractional was given to express the integration
and differentiation up to arbitrary order. Traditionally, there
are two approaches to define the fractional derivative. The
first approach, Riemann-Liouville approach, is to iterate the
integral with respect to certain weight function and replace
the iterated integral by single integral through Leibniz-
Cauchy formula and then replace the factorial function by
the Gamma function. In this approach, the arbitrary order
Riemann-Liouville results from the integrating measure
𝑑𝑡 and the Hadamard fractional integral results from the
integrating measure 𝑑𝑡/𝑡. The second approach, Grünwald-
Letinkov approach, is to iterate the limit definition of the
derivative to get a quantity with certain binomial coefficient
and then fractionalize by using the Gamma function instead
of the factorial in the binomial coefficient. In case of the
Riemann-Liouville and Caputo fractional derivatives, a sin-
gular kernel of the form (𝑡 − 𝑠)−𝛼 is generated for 0 < 𝛼 < 1 to
reflect the nonlocality and thememory in the fractional oper-
ator. Through history, hundreds of researchers did their best

to develop the theory of fractional calculus and generalize it,
either by obtaining more general fractional derivatives with
different kernels or by defining the fractional operator on
different time scales such as the discrete fractional difference
operators (see [4–7] and the references therein) and 𝑞-
fractional operators (see [8] and the references therein).

In 2014 [9], Khalil et al. introduced the so-called con-
formable fractional derivative by modifying the limit defi-
nition of the derivative by inserting the multiple 𝑡1−𝛼, 0 <
𝛼 < 1 inside the definition. The word fractional there was
used to express the derivative of arbitrary order although
no memory effect exists inside the corresponding integral
inverse operator. This conformable (fractional) derivative
seems to be kind of local derivative without memory. An
interesting application of the conformable fractional deriva-
tive in Physics was discussed in [10], where it has been used
to formulate an Action Principle for particles under frictional
forces. Despite the many nice properties the conformable
derivative has, it has the drawbacks that when 𝛼 tends
to zero we do not obtain the original function and the
conformable integrals inverse operators are free of memory
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and do not have a semigroup property. It is most likely to call
them conformable derivatives or local derivatives of arbitrary
order. In connection with this, at the end of reference [11],
the author asked whether it is possible to fractionalize the
conformable (fractional) derivative by using conformable
(fractional) integrals of order 0 < 𝛼 ≤ 1 or by iterating
the conformable derivative.The first part, Riemann-Liouville
approach, was answered in [12, 13], where the author iterated
the (conformable) integral with weight 𝑡𝜌−1, 𝜌 ̸= 0 to
define generalized fractional integrals and derivatives that
unify Riemann-Liouville fractional integrals (𝜌 = 1) and
derivatives together with Hadamard fractional integrals and
derivatives. Actually, the limiting case of that generalization
is when 𝜌 → 0+ leads to Hadamard type. However, the
Grünwald-Letinkov approach for conformable derivatives is
still open. The conformable time-scale fractional calculus
of order 0 < 𝛼 < 1 is introduced in [14] and has been
used to develop the fractional differentiation and fractional
integration. After then, many authors got interested in this
type of derivatives for their many nice behaviors [10, 15–18].
Motivated by the need of somenew fractional derivativeswith
nice properties and that can be applied to more real world
modeling, some authors introduced very recently new kinds
of fractional derivatives whose kernel is nonsingular. For the
fractional derivatives with exponential kernels we refer to
[19]. For fractional derivatives of nonsingular Mittag-Leffler
functions we refer to [20–22].

Motivated, as mentioned above, with the need of new
fractional derivatives with nice properties we study in this
article the eigenvalue problems of Sturm-Liouville into
conformable (fractional) calculus. Recently, there are sev-
eral analytical studies devoted to fractional Sturm-Liouville
eigenvalue problems; see [23–27]. In these studies some of
the well-known results of the Sturm-Liouville problems are
extended to the fractional ones with left- and right-sided
fractional derivatives of Riemann-Liouville and Caputo and
Riesz derivatives. These results include orthogonality and
completeness of eigenfunctions and countability of the real
eigenvalues. Another class of fractional eigenvalue problem
with Caputo fractional derivative has been studied in [28]
using maximum principles and method of upper and lower
solutions.

For a function 𝑓 : (0,∞) → R the (conformable)
fractional derivative of order 0 < 𝛼 ≤ 1 of 𝑓 at 𝑡 > 0 was
defined by

𝐷𝛼𝑎𝑓 (𝑡) = lim
𝜖→0

𝑓 (𝑡 + 𝜖 (𝑡 − 𝑎)1−𝛼) − 𝑓 (𝑡)
𝜖 , (1)

and the fractional derivative at 𝑎 is defined as (𝐷𝛼𝑎𝑓)(𝑎) =
lim𝑡→𝑎+(𝐷𝛼𝑎𝑓)(𝑡). The corresponding conformable (frac-
tional) integral of order 0 < 𝛼 < 1 and starting from 𝑎 is
defined by

(𝐼𝛼𝑎𝑓) (𝑥) = ∫𝑥
𝑎
𝑓 (𝑡) 𝑑𝛼 (𝑡) = ∫𝑥

𝑎
𝑓 (𝑡) (𝑡 − 𝑎)𝛼−1 𝑑𝑡. (2)

It is to be noted that the author used this modified con-
formable integral in order to extend it to left-right concept

and confirm it by the 𝑄-operator and obtain a left-right
integration by parts version. Otherwise the integral can be
given by (𝐼𝛼𝑎𝑓)(𝑥) = ∫𝑥

𝑎
𝑓(𝑡)𝑡𝛼−1𝑑𝑡. It was shown in [9, 11]

that (𝐼𝛼𝑎𝐷𝛼𝑎𝑓)(𝑥) = 𝑓(𝑥) − 𝑓(𝑎) and (𝐷𝛼𝑎𝐼𝛼𝑎𝑓)(𝑥) = 𝑓(𝑥). For
the higher order case and other details such as the product
rule, chain rule, and integration by parts, we refer the reader
to [9, 11].

2. Main Results

In this paper we consider the fractional extension of the
Sturm-Liouville eigenvalue problem

𝐷𝛼𝑎 (𝑝 (𝑥)𝐷𝛼𝑎𝑦) + 𝑞 (𝑥) 𝑦 = −𝜆𝑤 (𝑥) 𝑦,
1
2 < 𝛼 ≤ 1, 𝑎 < 𝑥 < 𝑏, (3)

where 𝑝,𝐷𝛼𝑎𝑝, 𝑞 and the weight functions 𝑤 are continuous
on (𝑎, 𝑏), 𝑝(𝑥) > 0, and𝑤(𝑥) > 0, on [a, 𝑏], and the fractional
derivative 𝐷𝛼𝑎 is the conformable fractional derivative. We
discuss (3) with boundary conditions

𝑐1𝑦 (𝑎) + 𝑐2𝑦󸀠 (𝑎) = 0, 𝑐21 + 𝑐22 > 0,
𝑟1𝑦 (𝑏) + 𝑟2𝑦󸀠 (𝑏) = 0, 𝑟21 + 𝑟22 > 0.

(4)

We say that 𝑦 is 2𝛼-continuously differentiable on [𝑎, 𝑏],
if 𝐷𝛼𝑎𝐷𝛼𝑎𝑦 is continuous on [𝑎, 𝑏], and 𝑦 ∈ 𝐶2𝛼[𝑎, 𝑏], if 𝑦 ∈
𝐶1[𝑎, 𝑏] and is 2𝛼-continuously differentiable on [𝑎, 𝑏].

Let

𝐿 (𝑦, 𝛼) = 𝐷𝛼𝑎 (𝑝 (𝑥)𝐷𝛼𝑎𝑦) + 𝑞 (𝑥) 𝑦; (5)

then the fractional Sturm-Liouville eigenvalue problem (3)
can be written as

𝐿 (𝑦, 𝛼) = −𝜆𝑤 (𝑥) 𝑦. (6)

The following is a generalized result of the well-known
Lagrange identity.

Theorem 1 (fractional Lagrange identity). Letting 𝑦1, 𝑦2 be2𝛼-continuously differentiable on [𝑎, 𝑏], then the following
holds true:

∫𝑏
𝑎
(𝑦2𝐿 (𝑦1, 𝛼) − 𝑦1𝐿 (𝑦2, 𝛼)) 𝑑𝛼 (𝑥)
= [𝑝 (𝑥) (𝑦2𝐷𝛼𝑎𝑦1 − 𝑦1𝐷𝛼𝑎𝑦2)]󵄨󵄨󵄨󵄨𝑏𝑎 .

(7)

Proof. We have

𝑦2𝐿 (𝑦1, 𝛼) − 𝑦1𝐿 (𝑦2, 𝛼)
= 𝑦2𝐷𝛼𝑎 (𝑝 (𝑥)𝐷𝛼𝑎𝑦1) + 𝑞 (𝑥) 𝑦1𝑦2

− 𝑦1𝐷𝛼𝑎 (𝑝 (𝑥)𝐷𝛼𝑎𝑦2) − 𝑞 (𝑥) 𝑦1𝑦2
= 𝑦2𝐷𝛼𝑎 (𝑝 (𝑥)𝐷𝛼𝑎𝑦1) − 𝑦1𝐷𝛼𝑎 (𝑝 (𝑥)𝐷𝛼𝑎𝑦2) .

(8)
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Using the integration by parts formula of the conformable
fractional derivative [11], we have

∫𝑏
𝑎
(𝑦2𝐷𝛼𝑎 (𝑝 (𝑥)𝐷𝛼𝑎𝑦1) − 𝑦1𝐷𝛼𝑎 (𝑝 (𝑥)𝐷𝛼𝑎𝑦2)) 𝑑𝛼 (𝑥)

= 𝑝 (𝑥) 𝑦2𝐷𝛼𝑎𝑦1󵄨󵄨󵄨󵄨𝑏𝑎 − ∫𝑏
𝑎
𝑝 (𝑥)𝐷𝛼𝑎𝑦1𝐷𝛼𝑎𝑦2𝑑𝛼 (𝑥)

− 𝑝 (𝑥) 𝑦1𝐷𝛼𝑎𝑦2󵄨󵄨󵄨󵄨𝑏𝑎 + ∫𝑏
𝑎
𝑝 (𝑥)𝐷𝛼𝑎𝑦1𝐷𝛼𝑎𝑦2𝑑𝛼 (𝑥)

= [𝑝 (𝑥) (𝑦2𝐷𝛼𝑎𝑦1 − 𝑦1𝐷𝛼𝑎𝑦2)]󵄨󵄨󵄨󵄨𝑏𝑎 ,

(9)

which proves the result.

Proposition 2. If 𝑦 ∈ 𝐶1[0, 1] and 𝑦󸀠(𝑥0) = 0, for some 𝑥0 ∈[𝑎, 𝑏], then (𝐷𝛼𝑎𝑦)(𝑥0) = 0.
Proof. Since 𝑦 ∈ 𝐶1[0, 1], then (𝐷𝛼𝑎𝑦)(𝑥) = (𝑥 − 𝑎)1−𝛼𝑦󸀠(𝑥),
and the result follows for 𝑎 < 𝑥0 ≤ 𝑏. If 𝑥0 = 𝑎, we have
(𝐷𝛼𝑎𝑦)(𝑎) = lim𝑥→𝑎+(𝑥 − 𝑎)1−𝛼𝑦󸀠(𝑥) = 0.
Proposition 3. Let 𝑦1 and 𝑦2 in 𝐶1[𝑎, 𝑏], which satisfy the
boundary conditions (4); then it holds that

[𝑝 (𝑥) (𝑦2𝐷𝛼𝑎𝑦1 − 𝑦1𝐷𝛼𝑎𝑦2)]󵄨󵄨󵄨󵄨𝑏𝑎 = 0. (10)

Proof. Since 𝑦1 ∈ 𝐶1[𝑎, 𝑏], then 𝐷𝛼𝑎𝑦1 = (𝑥 − 𝑎)1−𝛼𝑦󸀠1(𝑥).
Similarly,𝐷𝛼𝑎𝑦2 = (𝑥 − 𝑎)1−𝛼𝑦󸀠2(𝑥). We have

[𝑝 (𝑥) (𝑦2𝐷𝛼𝑎𝑦1 − 𝑦1𝐷𝛼𝑎𝑦2)]󵄨󵄨󵄨󵄨𝑏𝑎
= 𝑝 (𝑏) (𝑦2 (𝑏) (𝐷𝛼𝑎𝑦1) (𝑏) − 𝑦1 (𝑏) (𝐷𝛼𝑎𝑦2) (𝑏))

− 𝑝 (𝑎) (𝑦2 (𝑎) (𝐷𝛼𝑎𝑦1) (𝑎) − 𝑦1 (𝑎) (𝐷𝛼𝑎𝑦2) (𝑎)) .
(11)

Since 𝑐21 +𝑐22 > 0, and 𝑟21 +𝑟22 > 0, we first assume that, without
loss of generality, 𝑐1 ̸= 0 and 𝑟1 ̸= 0, and the proof of other
cases will be obtained analogously. We have

𝑦 (𝑎) = −𝑐2𝑐1𝑦
󸀠 (𝑎) ,

𝑦 (𝑏) = −𝑟2𝑟1𝑦
󸀠 (𝑏) .

(12)

Thus,

𝑦2 (𝑏) (𝐷𝛼𝑎𝑦1) (𝑏) − 𝑦1 (𝑏) (𝐷𝛼𝑎𝑦2) (𝑏) = −𝑟2𝑟1𝑦
󸀠
2 (𝑏)

⋅ (𝐷𝛼𝑎𝑦1) (𝑏) + 𝑟2
𝑟1𝑦
󸀠
1 (𝑏) (𝐷𝛼𝑎𝑦2 (𝑏))

= −𝑟2𝑟1 (𝑦
󸀠
2 (𝑏) (𝑏 − 𝑎)1−𝛼𝑦1 (𝑏)

− 𝑦󸀠1 (𝑏) (𝑏 − 𝑎)1−𝛼 𝑦󸀠2 (𝑏)) = 0.

(13)

Analogously,

𝑦2 (𝑎) (𝐷𝛼𝑎𝑦1) (𝑎) − 𝑦1 (𝑎) (𝐷𝛼𝑎𝑦2) (𝑎) = 0, (14)

which proves the result.

Definition 4. We say that 𝑓 and 𝑔 are 𝛼-orthogonal with
respect to the weight function 𝜇(𝑥) ≥ 0, if

∫𝑏
𝑎
𝜇 (𝑥) 𝑓 (𝑥) 𝑔 (𝑥) 𝑑𝛼 (𝑥) = 0. (15)

Theorem 5. The eigenfunctions of the fractional eigenvalue
problem (3)-(4) corresponding to distinct eigenvalues are 𝛼-
orthogonal with respect to the weight function 𝑤(𝑥).
Proof. Let 𝜆1 and 𝜆2 be two distinct eigenvalues and 𝑦1 and𝑦2 are the corresponding eigenfunctions. We have

𝐿 (𝑦1, 𝛼) = −𝜆1𝑤 (𝑥) 𝑦1, (16)

𝐿 (𝑦2, 𝛼) = −𝜆2𝑤 (𝑥) 𝑦2. (17)

Multiplying (16) by 𝑦2 and (17) by 𝑦1 and subtracting the two
equations yield

𝑦2𝐿 (𝑦1, 𝛼) − 𝑦1𝐿 (𝑦2, 𝛼) = − (𝜆1 − 𝜆2) 𝑤 (𝑥) 𝑦1𝑦2. (18)

Performing the fractional integral 𝐼𝛼𝑎 and using the fractional
Lagrange identity we have

− (𝜆1 − 𝜆2) ∫
𝑏

𝑎
𝑤 (𝑥) 𝑦1𝑦2𝑑𝛼 (𝑥)

= ∫𝑏
𝑎
(𝑦2𝐿 (𝑦1, 𝛼) − 𝑦1𝐿 (𝑦2, 𝛼)) 𝑑𝛼 (𝑥)

= [𝑝 (𝑥) (𝑦2𝐷𝛼𝑎𝑦1 − 𝑦1𝐷𝛼𝑎𝑦2)]󵄨󵄨󵄨󵄨𝑏𝑎 = 0,

(19)

by virtue of Proposition 3. Since 𝜆1 ̸= 𝜆2, we have
∫𝑏
𝑎
𝑤(𝑥)𝑦1𝑦2𝑑𝛼(𝑥) = 0, and the result is obtained.

Theorem 6. The eigenvalues of the fractional eigenvalue prob-
lem (3)-(4) are real.

Proof. Let 𝑦 be a solution to the fractional Sturm-Liouville
eigenvalue problem (3)-(4). Taking the complex conjugate of
(3)-(4) and using the fact that 𝑝(𝑥), 𝑞(𝑥) and 𝑤(𝑥) are real
valued functions, we have

𝐿 (𝑦, 𝛼) = 𝐷𝛼𝑎 (𝑝 (𝑥)𝐷𝛼𝑎𝑦) + 𝑞 (𝑥) 𝑦
= −𝜆𝑤 (𝑥) 𝑦,

𝑐1𝑦 (𝑎) + 𝑐2𝑦󸀠 (𝑎) = 0,
𝑟1𝑦 (𝑏) + 𝑟2𝑦󸀠 (𝑏) = 0.

(20)

Applying analogous steps to the proofs of Theorem 5 and
Proposition 3 with 𝑦1 = 𝑦 and 𝑦2 = 𝑦, we have

− (𝜆 − 𝜆)∫𝑏
𝑎
𝑤 (𝑥) 󵄨󵄨󵄨󵄨𝑦 (𝑥)󵄨󵄨󵄨󵄨2 𝑑𝛼 (𝑥)

= ∫𝑏
𝑎
(𝑦𝐿 (𝑦, 𝛼) − 𝑦𝐿 (𝑦, 𝛼)) 𝑑𝑥 (𝛼)

= [𝑝 (𝑥) (𝑦𝐷𝛼𝑎𝑦 − 𝑦𝐷𝛼𝑎𝑦)]󵄨󵄨󵄨󵄨󵄨
𝑏

𝑎
= 0,

(21)

and thus 𝜆 = 𝜆 which completes the proof.



4 Complexity

Definition 7. Let 𝑓 and 𝑔 be 𝛼-differentiable; the fractional
Wronskian function is defined by

𝑊𝛼 (𝑓, 𝑔) = 𝑓𝐷𝛼𝑎𝑔 − 𝑔𝐷𝛼𝑎𝑓. (22)

Theorem8. Let𝑦1 and𝑦2 be 2𝛼-continuously differentiable on[𝑎, 𝑏], and they are linearly independent solutions of (3); then

𝑊𝛼 (𝑦1, 𝑦2) = 𝑊𝛼 (𝑦1, 𝑦2) (𝑎) 𝑝 (𝑎)
𝑝 (𝑥) . (23)

Proof. Applying the product rule one can easily verify that

𝐷𝛼𝑎𝑊𝛼 (𝑦1, 𝑦2) = 𝑦1𝐷𝛼𝑎𝐷𝛼𝑎𝑦2 − 𝑦2𝐷𝛼𝑎𝐷𝛼𝑎𝑦1. (24)

Analogously, applying the product rule to (3) yields

𝐷𝛼𝑎𝐷𝛼𝑎𝑦 = − 1𝑝 (𝐷𝛼𝑎𝑝𝐷𝛼𝑎𝑦 + (𝑞 + 𝜆𝑤) 𝑦) . (25)

Substituting the last equation in (24) yields

𝐷𝛼𝑎𝑊𝛼 (𝑦1, 𝑦2) = −𝑦1𝑝 (𝐷𝛼𝑎𝑝𝐷𝛼𝑎𝑦2 + (𝑞 + 𝜆𝑤) 𝑦2)

+ 𝑦2
𝑝 (𝐷𝛼𝑎𝑝𝐷𝛼𝑎𝑦1 + (𝑞 + 𝜆𝑤) 𝑦1)

= 𝐷𝛼𝑎𝑝
𝑝 (𝑦2𝐷𝛼𝑎𝑦1 − 𝑦1𝐷𝛼𝑎𝑦2)

= −𝐷
𝛼
𝑎𝑝
𝑝 𝑊𝛼 (𝑦1, 𝑦2) .

(26)

One can easily verify that the solution of the above fractional
differential equation is

𝑊𝛼 (𝑦1, 𝑦2) = 𝑐
𝑝 , (27)

where 𝑐 is constant. Now, 𝑊𝛼(𝑦1, 𝑦2)(𝑎) = 𝑐/𝑝(𝑎), and thus
𝑐 = 𝑊𝛼(𝑦1, 𝑦2)(𝑎)𝑝(𝑎), and hence the result.

Theorem 9. The eigenvalues of the fractional eigenvalue prob-
lem (3)-(4) are simple.

Proof. Let 𝑦1 and 𝑦2 be two eigenfunctions for the same
eigenvalue 𝜆. From (18) we have

0 = 𝑦2𝐿 (𝑦1, 𝛼) − 𝑦1𝐿 (𝑦2, 𝛼)
= 𝑦2𝐷𝛼𝑎 (𝑝 (𝑥)𝐷𝛼𝑎𝑦1) − 𝑦1𝐷𝛼𝑎 (𝑝 (𝑥)𝐷𝛼𝑎𝑦2)
= 𝑦2 (𝐷𝛼𝑎𝑝𝐷𝛼𝑎𝑦1 + 𝑝𝐷𝛼𝑎𝐷𝛼𝑎𝑦1)

− 𝑦1 (𝐷𝛼𝑎𝑝𝐷𝛼𝑎𝑦2 + 𝑝𝐷𝛼𝑎𝐷𝛼𝑎𝑦2)
= 𝑝 (𝑦2𝐷𝛼𝑎𝐷𝛼𝑎𝑦1 − 𝑦1𝐷𝛼𝑎𝐷𝛼𝑎𝑦2)

+ 𝐷𝛼𝑎𝑝 (𝑦2𝐷𝛼𝑎𝑦1 − 𝑦1𝐷𝛼𝑎𝑦2)
= 𝐷𝛼𝑎 (𝑝 [𝑦2𝐷𝛼𝑎𝑦1 − 𝑦1𝐷𝛼𝑎𝑦2]) .

(28)

Thus

𝑝 [𝑦2𝐷𝛼𝑎𝑦1 − 𝑦1𝐷𝛼𝑎𝑦2] = 𝑐, (29)

and since 𝑦1 and 𝑦2 satisfy the same boundary conditions, we
have 𝑐 = 0 and

𝑦2𝐷𝛼𝑎𝑦1 − 𝑦1𝐷𝛼𝑎𝑦2 = 0. (30)

Since𝑊𝛼(𝑦1, 𝑦2) = 0, and 𝑦1 and 𝑦2 are both solutions to the
fractional eigenvalue problem (3)-(4), then they are linearly
dependent.

Theorem 10 (fractional Rayleigh Quotient). The eigenvalues
𝜆 of problem (3) satisfy

𝜆 = ∫𝑏
𝑎
𝑝 (𝐷𝛼𝑎𝑦)2 𝑑𝛼 (𝑥) − ∫𝑏

𝑎
𝑞𝑦2𝑑𝛼 (𝑥) − 𝑝𝑦𝐷𝛼𝑎𝑦󵄨󵄨󵄨󵄨𝑏𝑎

∫𝑏
𝑎
𝑤𝑦2𝑑𝛼 (𝑥) (31)

Proof. Multiplying (3) by 𝑦 and integrating yields

∫𝑏
𝑎
𝑦𝐷𝛼𝑎 (𝑝 (𝑥)𝐷𝛼𝑎𝑦) 𝑑𝛼 (𝑥) + ∫1

0
𝑞 (𝑥) 𝑦2𝑑𝛼 (𝑥)

= −𝜆∫𝑏
𝑎
𝑤 (𝑥) 𝑦2𝑑𝛼 (𝑥) .

(32)

Integrating the first integral by parts we have

𝑝𝑦𝐷𝛼𝑎𝑦󵄨󵄨󵄨󵄨𝑏𝑎 − ∫𝑏
𝑎
𝑝 (𝐷𝛼𝑎𝑦)2 𝑑𝛼 (𝑥) + ∫𝑏

𝑎
𝑞 (𝑥) 𝑦2𝑑𝛼 (𝑥)

= −𝜆∫𝑏
𝑎
𝑤 (𝑥) 𝑦2𝑑𝛼 (𝑥)

(33)

which proves the result.

Corollary 11. Letting 𝑦 ∈ 𝐶1[𝑎, 𝑏] and 𝑞(𝑥) ≤ 0, then the
eigenvalues of (3) associated with homogeneous boundary
conditions of Dirichlet or Neumann type are nonnegative.

Proof. Since the boundary conditions are of Dirichlet or
Neumann type then it holds that

𝑦𝐷𝛼𝑎𝑦󵄨󵄨󵄨󵄨𝑏𝑎 = 0. (34)

Then the result is directly obtained from the fractional
Rayleigh Quotient as 𝑞(𝑥) ≤ 0.

Now if 𝑦 is a stationary function for

𝐽𝛼𝑎 (𝑦) = ∫𝑏
𝑎
𝐹 (𝑦,𝐷𝛼𝑎𝑦, 𝑥) 𝑑𝑥 (𝛼)

= ∫𝑏
𝑎
𝐹 (𝑦,𝐷𝛼𝑎𝑦, 𝑥) (𝑥 − 𝑎)𝛼−1 𝑑𝑥,

(35)

then it holds that, see [10],

𝜕𝐹
𝜕𝑦 (𝑦,𝐷𝛼𝑎𝑦, 𝑥) − 𝐷𝛼𝑎 ( 𝜕𝐹

𝜕𝑦𝛼 (𝑦,𝐷
𝛼
𝑎𝑦, 𝑥)) = 0, (36)
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the fractional Euler equation. We remark here that the above
equation is a necessary condition for a stationary point and
not sufficient. In the following we show that the fractional
Sturm-Liouville eigenvalue problem (3)-(4) is equivalent to
the following:

(i) Finding the stationary function 𝑦(𝑥) of

𝐹 [𝑦] = ∫𝑏
𝑎
(𝑝 (𝐷𝛼𝑎𝑦)2 − 𝑞𝑦2) (𝑥 − 𝑎)𝛼−1 𝑑𝑥, (37)

subject to 𝐺[𝑦] = 1, where

𝐺 [𝑦] = ∫𝑏
𝑎
𝑤𝑦2 (𝑥 − 𝑎)𝛼−1 𝑑𝑥. (38)

To find the stationary of 𝐹[𝑦] subject to𝐺[𝑦] = 1, we first
find the stationary value 𝑦 of 𝐾[𝑦] = 𝐹[𝑦] − 𝜆𝐺[𝑦] and then
eliminate 𝜆 using 𝐺[𝑦] = 1. Applying the fractional Euler
Equation (36) to 𝐾[𝑦] yields

−2𝑞𝑦 − 2𝜆𝑤𝑦 − 𝐷𝛼𝑎 (2𝑝𝐷𝛼𝑎𝑦) = 0, (39)

or

𝐷𝛼𝑎 (𝑝𝐷𝛼𝑎𝑦) + 𝑞𝑦 = 𝜆𝑤𝑦, (40)

which is the fractional Sturm-Liouville problem. Moreover,
multiplying (3) by 𝑦 and integrating yields

∫𝑏
𝑎
𝑦𝐷𝛼𝑎 (𝑝𝐷𝛼𝑎𝑦) (𝑥 − 𝑎)𝛼−1 𝑑𝑥 + ∫𝑏

𝑎
𝑞𝑦2 (𝑥 − 𝑎)𝛼−1 𝑑𝑥

= −𝜆∫𝑏
𝑎
𝑤𝑦2 (𝑥 − 𝑎)𝛼−1 𝑑𝑥.

(41)

Performing integration by parts of the first integral yields

𝑝𝑦𝐷𝛼𝑎𝑦󵄨󵄨󵄨󵄨𝑏𝑎 − ∫𝑏
𝑎
𝑝 (𝐷𝛼𝑎𝑦)2 (𝑥 − 𝑎)𝛼−1 𝑑𝑥

+ ∫𝑏
𝑎
𝑞𝑦2 (𝑥 − 𝑎)𝛼−1 𝑑𝑥

= −𝜆∫𝑏
𝑎
𝑤𝑦2 (𝑥 − 𝑎)𝛼−1 𝑑𝑥.

(42)

Since

𝑦𝐷𝛼𝑎𝑦󵄨󵄨󵄨󵄨𝑏𝑎 = 0, (43)

we have

𝜆∫𝑏
𝑎
𝑤𝑦2 (𝑥 − 𝑎)𝛼−1 𝑑𝑥

= ∫𝑏
𝑎
(𝑝 (𝐷𝛼𝑎𝑦)2 − 𝑞𝑦2) (𝑥 − 𝑎)𝛼−1 𝑑𝑥.

(44)

Since ∫𝑏
𝑎
𝑤𝑦2(𝑥 − 𝑎)𝛼−1𝑑𝑥 = 1, we have

𝜆 = ∫𝑏
𝑎
(𝑝 (𝐷𝛼𝑎𝑦)2 − 𝑞𝑦2) (𝑥 − 𝑎)𝛼−1 𝑑𝑥. (45)

That is, 𝜆 is determined by 𝐹[𝑦] in (37).
The problem in (i) is equivalent to the problem of finding

the stationary function of (ii) 𝐴[𝑦] = 𝐹[𝑦]/𝐺[𝑦]. Thus
the eigenvalues of the fractional Sturm-Liouville eigenvalue
problem are the values given by 𝐴[𝑦]. The proof of (i) being
equivalent to (ii) is well-known in the literature and we
present it here for the sake of completeness.

We have

𝛿𝐴 = 𝐺𝛿𝐹 − 𝐹𝛿𝐺
𝐺2 , (46)

and 𝛿𝐴 = 0 if and only if 𝐺𝛿𝐹 − 𝐹𝛿𝐺 = 0, or
𝛿𝐹 − 𝐹

𝐺𝛿𝐺 = 𝛿𝐹 − 𝐴𝐺 = 0, (47)

which is the same as 𝛿𝐾.
Using the above results and the fractional Rayleigh

Quotient result we have the following.

Lemma 12. For the fractional eigenvalue problem (3)-(4) it
holds that

𝜆 = ∫𝑏
𝑎
𝑝 (𝐷𝛼𝑎𝑦)2 𝑑𝛼 (𝑥) − ∫𝑏

𝑎
𝑞𝑦2𝑑𝛼 (𝑥)

∫𝑏
𝑎
𝑤𝑦2𝑑𝛼 (𝑥) (48)

and the eigenfunction 𝑦 is a stationary (minimum) value of the
above ratio.

Remark 13. Assuming that the eigenvalues of (3)-(4) are
ordered, 𝜆1 < 𝜆2 ⋅ ⋅ ⋅ < 𝜆𝑛 ⋅ ⋅ ⋅ , then the above result can be
used to give an upper estimate value of the first eigenvalue
𝜆1, by choosing arbitrary function 𝜓 that satisfies the same
boundary conditions, and computing the ratio in (48) for 𝜓.
3. Illustrative Examples

Example 1. Consider the fractional eigenvalue problem (3)-
(4) with 𝑝 = 1, 𝑞 = 0, 𝑤 = 1, 0 < 𝑥 < 1 and with Dirichlet
boundary condition 𝑦(0) = 𝑦(1) = 0. The eigenfunctions
are 𝜙𝑛 = sin(𝑛𝜋𝑥𝛼) and the corresponding eigenvalues are
𝜆𝑛 = 𝑛2𝛼2𝜋2.

In the followingwe apply the fractional RayleighQuotient
to obtain lower estimates of the first eigenvalue. We start
with the atrial function 𝜓(𝑥) = 𝑥𝛼 − 𝑥2𝛼, which satisfies the
homogenous boundary conditions 𝜓(0) = 𝜓(1) = 0. We have
𝐷𝛼0𝜓 = 𝛼(1 − 2𝑥𝛼), and thus

𝜆1 ≤ ∫1
0
(𝐷𝛼0𝜓)2 𝑥𝛼−1𝑑𝑥
∫1
0
𝜓2𝑥𝛼−1𝑑𝑥 = ∫1

0
𝛼2 (1 − 2𝑥𝛼)2 𝑥𝛼−1𝑑𝑥

∫1
0
(𝑥𝛼 − 𝑥2𝛼)2 𝑥𝛼−1𝑑𝑥

= 10𝛼2.
(49)
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So, we obtain an upper estimate 𝜆1 = 10𝛼2, which is com-
parable with the exact eigenvalue 𝜆1 = 𝜋2𝛼2. However, this
upper bound can be improved by choosing a trial function

𝜓 (𝑥) = 𝑥𝛼 (1 − 𝑥𝛼) + 𝑎 (𝑥𝛼 (1 − 𝑥𝛼))2 , (50)

with parameter 𝑎 and then choosing 𝑎 to minimize the
fractional Rayleigh Quotient. Direct calculations show that

∫1
0
(𝐷𝛼0𝜓)2 𝑥𝛼−1𝑑𝑥 = 𝛼

105 (35 + 2𝑎 (𝑎 + 7)) ,

∫1
0
𝜓2𝑥𝛼−1𝑑𝑥 = 21 + 𝑎 (𝑎 + 9)

630𝑎 .
(51)

Thus, the fractional Rayleigh Quotient will produce

FR (𝑎, 𝛼) = 𝛼2 630105
35 + 𝑎 (𝑎 + 7)
21 + 𝑎 (𝑎 + 9) . (52)

The minimum value of

𝑅 (𝑎) = 630
105

35 + 𝑎 (𝑎 + 7)
21 + 𝑎 (𝑎 + 9) (53)

is 9.86975 and occurs at 𝑎 = 1.13314 ⋅ ⋅ ⋅ . Hence, an upper
estimate 𝜆1 = 9.86975𝛼2 is obtained which is very close to
the exact one.

Example 2. Consider the fractional eigenvalue problem (3)-
(4) with 𝑝 = 1, 𝑞 = 0, 𝑤 = 1, 0 < 𝑥 < 1 and with boundary
condition 𝑦(0) − 𝑦󸀠(0) = 0, 𝑦󸀠(1) = 0. The eigenfunctions are

𝜙𝑛 = 𝑎𝑛 sin (𝜆𝑛𝑥𝛼) + 𝑏𝑛 cos (𝜆𝑛𝑥𝛼) . (54)

We choose 𝑎𝑛 = 0, so that 𝜙󸀠𝑛 = 𝜆𝑛𝛼𝑥𝛼−1𝑎𝑛 cos(𝜆𝑛𝑥𝛼) −𝜆𝑛𝛼𝑥𝛼−1𝑏𝑛 sin(𝜆𝑛𝑥𝛼) is defined at 𝑥 = 0. Thus, 𝜙𝑛 =
𝑏𝑛 cos(𝜆𝑛𝑥𝛼), and applying the boundary conditions we have
𝜙𝑛 = 0. That is, the problem possesses no eigenfunctions for
1/2 < 𝛼 < 1.
Remark 3. It is well-known that the regular Sturm-Liouville
eigenvalue problem with integer derivative possesses an infi-
nite number of eigenvalues. This result is not valid for the
fractional one as shown in the previous example. However,
the fractional Sturm-Liouville equation in (3) can be dis-
cussed with fractional boundary conditions of the type

𝑐1𝑦 (𝑎) + 𝑐2 (𝐷𝛼𝑎𝑦) (𝑎) = 0, 𝑐21 + 𝑐22 > 0,
𝑟1𝑦 (𝑏) + 𝑟2 (𝐷𝛼𝑎𝑦) (𝑏) = 0, 𝑟21 + 𝑟22 > 0.

(55)

We believe that the above fractional eigenvalue problem
possesses an infinite number of eigenvalues and we left it for
a future work.

4. Conclusion

We have considered a regular conformable fractional Sturm-
Liouville eigenvalue problem.We proved that the eigenvalues
are real and simple and the eigenfunctions are orthogonal.We

also established the fractional Wronskian result for any two
linearly independent solutions of the problem. We obtained
a fractional Rayleigh Quotient and applied a fractional
variational principle to show that the minimum value of the
Quotient is obtained at an eigenfunction.This result is used to
estimate the first eigenvalue and the presented example illus-
trates the efficiency of the result.We illustrated by an example
that the existence of eigenfunctions is not guaranteed unlike
the result for the regular Sturm-Liouville eigenvalue problem.
Most of the obtained results are analogous for the ones of
regular Sturm-Liouville eigenvalue problems and they open
the door for establishing other results such as the countability
of eigenfunctions and completeness of eigenfunctions which
are essential in solving fractional differential equations by
fractional eigenfunction expansion.
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