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The vibration model of moving membrane with variable density distribution is established, and the density distribution of the
moving membrane varies along the lateral direction. The transverse vibration differential equations of moving membrane are
established based on D’Alembert’s principle and discretized by using the differential quadrature method (DQM).The relationships
of the first three dimensionless complex frequencies between dimensionless speed, density coefficient, and tension ratio of the
membrane are analyzed by numerical calculation.The effects of the density coefficient and the tension ratio on transverse vibration
characteristics of the membrane are investigated. The relationship between density coefficient and critical speed is obtained. The
numerical results show that the density coefficient and the tension ratio have important influence on the stability of moving
membrane. So the study provides a theoretical basis for improving the working stability of themembrane in the high-speed printing
process.

1. Introduction

Themembrane including plastic film, paper web, cloth, metal
foil, and other types of film-like material is widely used
to make printing and packaging products. The processing
schematic of axially moving membrane is shown in Figure 1.
The membrane deformation, the membrane folding, the
surface scratches, and other processing defects can be caused
by the transverse vibrations in printing process, which will
affect the printing accuracy and printing quality seriously
[1]. Therefore, the systematic study of transverse vibration
characteristics of the membrane is important, which has
caught the attention of many scholars.

Kulachenko and his coworkers [2, 3] studied nonlinear
dynamics problem; the stability of transverse vibration of
the web was studied by finite element method. The element-
free Galerkin method was used to analyze free vibration of
thin plates resting on Pasternak elastic foundations with all
possible types of classical boundary conditions by Bahmyari
et al. [4]. Nguyen et al. [5, 6] analyzed the stability and

the control of transverse vibration of web by changing axial
velocity and axial tension, respectively. Banichuk and his
coinvestigators [7] considered the dynamic characteristics
of the moving web with nonhomogeneous tension, and the
analytical approaches method was used. Vedrines et al. [8]
measured the vibrations of the printing web with a laser
sensor and determined the vibration in plane. Wang et al. [9]
applied finite difference method to acquire natural vibration
frequency of the annular membrane with wrinkle.The results
showed that the frequency increased with the increase of
wrinkling level. Wu et al. [10, 11] established the vibration
equations and analyzed the stability of the membrane with
an intermediate elastic support and variable speed.

In these literatures above, the membrane chosen as
sample was all supposed with constant density. But the
membrane density is changing inmany situations. In printing
process, the plate is wetted and inked based on the image
distribution, and then the ink is transferred to the substrate
through rolling of the plate cylinder and impression cylinder.
The ink and fountain solution which are absorbed into
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Figure 1: The axially moving web.

the paper web or membrane cause the change of density.
Besides, the nonuniform thickness of membrane also can
change the surface density [12]. Nonuniform density will
affect the vibration characteristics and stability of membrane.
Therefore, the study of the transverse vibration characteristics
of the moving membrane with variable density has a great
significance on controlling the membrane vibration during
the printing process and improving overprint precision of
printed products.

Transverse natural vibration of the annular membrane
with variable surface density and without axial velocity was
studied by using modified perturbation method in [13]. A
numerical analysis of axisymmetric transverse-free vibration
of the circular membrane with nonhomogeneous changing
density was analyzed by Li [14, 15], and the first-order
natural frequencies were given. Buchanan [16] examined
the circular membrane dynamic properties, and the density
distribution of the circular membrane was a linear variation
along the diameter direction. Gupta and Khanna [17] and
Zhou and Wang [18] studied the vibration characteristics
of the viscoelastic plate with parabolic variable thickness.
The suboptimal control method was applied to control the
variable density of the moving web by Ma and her coworkers
[19]. Sheet flutter and the interaction between sheet and
air were analyzed by Pramila [20]; the results showed that
surrounding air had an impact on the critical velocities
and the eigenfrequencies. He [21] also studied the natural
frequencies of an axially moving band vibrating in an ideal
fluid. And the influence of the surrounding fluid was taken
into account by using hydrodynamic added mass. Niemi and
Pramila [22] researched transverse vibrations of an axially
moving membrane submerged in ideal fluid by using the
FEM. The effect of the density of the element mesh, the
truncation distance, and the various lumping techniques on
the accuracy of the results was also analyzed. Gutierrez et al.
[23] employed a series of numerical experiments to deal with
the transverse vibration of annular membranes where the
density varies with the radial variable linearly, quadratically,
and cubically. A general quasi-analytical model based on
the Frobenius power series expansion method was described
so as to handle vibrations of solid circular and annular
membranes with continuously varying density by Willatzen
[24]. Bala Subrahmanyam and Sujith [25] also studied the
traverse vibration of annular membranes with continuously
varying densities.
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Figure 2: The model of printing moving membrane under the four
edges fixed.
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Figure 3: Density function of printingmovingmembrane along the
lateral direction.

In this study, the stability of the moving membrane with
variable density in the lateral direction is studied. The trans-
verse vibration differential equation of themovingmembrane
with variable density is established and discretized by using
DQM. The relationships between the dimensionless vibra-
tion frequency and the dimensionless velocity, the density
coefficient, and the tension ratio of the printing membrane
are studied. The influence of the density coefficient and the
tension ratio on vibration characteristics of the membrane is
discussed.

2. The Transverse Vibration Model of
Moving Membrane

The membrane between two guide rollers can be simplified
to a moving membrane model shown in Figure 2. The rollers
and the brush mechanisms (in Figure 1) which support the
membrane can be regarded as the boundary condition with
the four edges fixed. Here, the membrane is soft, homoge-
neous, and inextensible. The thickness of the membrane is
neglected. The translating direction of membrane is 𝑥 direc-
tion. The membrane lateral or width direction is 𝑦 direction.
The displacement direction of transverse vibration is the 𝑧
direction. The membrane length is 𝑎, the width is 𝑏, and V
is axially translating velocity. The function 𝑤(𝑥, 𝑦, 𝑡) denotes
the transverse displacement of the printingmembrane, where𝑡 is time.𝑇𝑥 and 𝑇𝑦 are uniform tension per unit length in the𝑥, 𝑦 direction.

The density function of membrane is 𝜌(𝑦), as is shown
in Figure 3. The membrane surface density is varied along 𝑦
direction that can be expressed as follows:
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Figure 4: The force on an elemental area of the membrane.

𝜌 (𝑦) = {{{{{{{
𝜌0 (1 + 2𝛼𝑦𝑏 ) (0 ≤ 𝑦 ≤ 𝑏2)
𝜌0 (1 + 2𝛼 − 2𝛼𝑦𝑏 ) (𝑏2 ≤ 𝑦 ≤ 𝑏) , (1)

where 𝛼 denotes the density coefficient.
The speed V(𝑡) in the transverse displacement direction

can be given as follows:

V (𝑡) = 𝑑𝑤 (𝑥, 𝑦, 𝑡)
𝑑𝑡 = 𝜕𝑤𝜕𝑡 + V

𝜕𝑤𝜕𝑥 . (2)

Then the transverse acceleration 𝑎 can be expressed as
follows:

𝑎 = 𝑑V (𝑡)𝑑𝑡 = 𝑑 (𝜕𝑤/𝜕𝑡 + V (𝜕𝑤/𝜕𝑥))𝑑𝑡
= 𝜕2𝑤𝜕𝑡2 + 2V 𝜕2𝑤𝜕𝑥𝜕𝑡 + V2

𝜕2𝑤𝜕𝑥2 .
(3)

As shown in Figure 4, consider an elemental area of
the membrane 𝑑𝑥𝑑𝑦 and analyze the force on them. The
composition force in 𝑧 direction caused by the membrane
tension on 𝑑𝑦 and 𝑑𝑥 can be derived as follows:

𝑇𝑥𝑑𝑦(𝜃1 + 𝜕𝜃1𝜕𝑥 𝑑𝑥) − 𝑇𝑥𝑑𝑦𝜃1 = 𝑇𝑥 𝜕𝜃1𝜕𝑥 𝑑𝑥𝑑𝑦

= 𝑇𝑥 𝜕 (𝜕𝑤/𝜕𝑥)𝜕𝑥 𝑑𝑥𝑑𝑦 = 𝑇𝑥 𝜕2𝑤𝜕𝑥2 𝑑𝑥𝑑𝑦,
𝑇𝑦𝑑𝑦(𝜃2 + 𝜕𝜃2𝜕𝑥 𝑑𝑦) − 𝑇𝑦𝑑𝑥𝜃2 = 𝑇𝑦 𝜕𝜃2𝜕𝑦 𝑑𝑥𝑑𝑦

= 𝑇𝑦 𝜕 (𝜕𝑤/𝜕𝑦)𝜕𝑦 𝑑𝑥𝑑𝑦 = 𝑇𝑦 𝜕2𝑤𝜕𝑦2 𝑑𝑥𝑑𝑦.

(4)

It is assumed that the membrane is subjected to a
transverse load 𝐹(𝑥, 𝑦, 𝑡) in 𝑧 direction; here, 𝑡 represents
time. The motion equation of vibration system can be given
based on D’Alembert’s principle [26]:

𝑇𝑥 𝜕2𝑤𝜕𝑥2 + 𝑇𝑦 𝜕2𝑤𝜕𝑦2 + 𝐹 (𝑥, 𝑦, 𝑡)

− [𝜌 (𝑦)(𝜕2𝑤𝜕𝑡2 + 2V 𝜕2𝑤𝜕𝑥𝜕𝑡 + V2
𝜕2𝑤𝜕𝑥2 )] = 0.

(5)

Irrespective of the transverse load, that is, 𝐹(𝑥, 𝑦, 𝑡) = 0,
then the transverse vibration differential equation of mem-
brane can be expressed as follows:

𝜌 (𝑦)(𝜕2𝑤𝜕𝑡2 + 2V 𝜕2𝑤𝜕𝑥𝜕𝑡 + V2
𝜕2𝑤𝜕𝑥2 ) − 𝑇𝑥 𝜕2𝑤𝜕𝑥2 − 𝑇𝑦 𝜕2𝑤𝜕𝑦2

= 0.
(6)

The piecewise functions 𝜌(𝑦) can be expressed as follows:
𝜌 (𝑦) = 𝜌0 (1 + 𝛼) − 2𝛼𝜌0 𝑦𝑏 − 12

 . (7)

Substituting (4) into (3) yields

[(1 + 𝛼) 𝜌0 − 2𝛼𝜌0 𝑦𝑏 − 12
]

⋅ (𝜕2𝑤𝜕𝑡2 + 2V 𝜕2𝑤𝜕𝑥𝜕𝑦 + V2
𝜕2𝑤𝜕𝑥2 ) − 𝑇𝑥 𝜕2𝑤𝜕𝑥2 − 𝑇𝑦 𝜕2𝑤𝜕𝑦2

= 0.
(8)

Introduce the dimensionless quantities as follows:

𝜁 = 𝑥𝑎 ,
𝜂 = 𝑦𝑏 ,
𝑤 = 𝑤𝑎 ,
𝑐 = V√ 𝜌0𝑇𝑥 ,

𝜏 = 𝑡√ 𝑇𝑥𝑎2𝜌0 ,
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Figure 5: The boundary conditions of the printing moving membrane.

𝜆 = 𝑇𝑦𝑇𝑥 ,
𝜇 = 𝑎𝑏 .

(9)

Substituting (9) into (8) yields

[(1 + 𝛼) 𝜌0 − 2𝛼𝜌0 𝜂 − 12
]

⋅ (𝜕2𝑤𝜕𝜏2 + 2𝑐 𝜕2𝑤𝜕𝜁𝜕𝜏 + 𝑐2 𝜕2𝑤𝜕𝜁2 ) − 𝜕2𝑤𝜕𝜁2 − 𝜆𝜇2 𝜕2𝑤𝜕𝜂2
= 0.

(10)

Supposes the solution to (10) is

𝑤 (𝜁, 𝜂, 𝜏) = 𝑊(𝜁, 𝜂) 𝑒𝑗𝜔𝜏. (11)

Substituting (11) into (10) obtains the transverse vibration
differential equations of moving membrane with variable
density:

(𝑐2 − 1) 𝜕2𝑊𝜕𝜁2 − 𝜆𝜇2 𝜕2𝑊𝜕𝜂2 + 2𝑐𝑗1𝜔𝜕𝑊𝜕𝜁 − 𝜔2𝑊

+ 2𝑐2𝛼𝜂𝜕2𝑊𝜕𝜁2 + 4𝑐𝛼𝜂𝑗1𝜔𝜕𝑊𝜕𝜁 − 2𝛼𝜂𝜔2𝑊 = 0
(0 ≤ 𝜂 ≤ 12) ,

(𝑐2 − 1) 𝜕2𝑊𝜕𝜁2 − 𝜆𝜇2 𝜕2𝑊𝜕𝜂2 + 2𝑐𝑗1𝜔𝜕𝑊𝜕𝜁 − 𝜔2𝑊

+ 2𝑐2𝛼𝜕2𝑊𝜕𝜁2 + 4𝑐𝛼𝑗1𝜔𝜕𝑊𝜕𝜁 − 2𝛼𝜔2𝑊− 2𝑐2𝛼𝜂𝜕2𝑊𝜕𝜁2
− 4𝑐𝛼𝜂𝑗1𝜔𝜕𝑊𝜕𝜁 + 2𝛼𝜂𝜔2𝑊 = 0 (12 ≤ 𝜂 ≤ 1) ,

(12)

where 𝑗1 = √−1, 𝜏 is dimensionless time, 𝜔 is dimensionless
natural frequency, 𝑐 is dimensionless speed, 𝜆 is tension ratio,
and 𝜇 is aspect ratio.

Figure 5 shows the classical boundary conditions for an
axially moving membrane, which are four sides fixed and
three sides fixed and one free and two sides fixed and two
free, and we only consider the boundary condition with four
sides fixed.

The boundary conditions of movingmembrane with four
sides fixed are expressed as follows:

𝑊(0, 𝜂) = 0,
𝑊 (1, 𝜂) = 0,
𝑊 (𝜁, 0) = 0,
𝑊 (𝜁, 1) = 0.

(13)

3. Establishment of Complex
Characteristic Equation

The principle of DQM [27] is using the weighted sum of the
function value of all nodes on the whole domain to replace
the value of the function and its derivative at a given node, so
the differential equations are turned into algebraic equations
which regard the function value at the node as unknown.
Introduce𝑁 ×𝑁 grid points according to DQM.They are

𝜁1 = 0,
𝜁2 = 𝛿,

𝜁𝑁−1 = 1 − 𝛿,
𝜁𝑁 = 1,
𝜁𝑖 = 12 [1 − cos (𝑖 − 1) 𝜋𝑁 − 1 ] (𝑖 = 3, 4, . . . , 𝑁 − 2) ,
𝜂1 = 0,
𝜂2 = 𝛿,

𝜂𝑁−1 = 1 − 𝛿,
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𝜂𝑁 = 1,
𝜂𝑗 = 12 [1 − cos

(2𝑗 − 3) 𝜋
2𝑁 − 4 ]

(𝑗 = 3, 4, . . . , 𝑁 − 2) .
(14)

The value of each of the order partial derivatives of the
unknown function can be described as

(𝑐2 − 1) 𝑁∑
𝑘=1

𝐴[2]𝑖𝑘𝑊𝑘𝑗 − 𝜆𝜇2 𝑁∑
𝑘=1

𝐵[2]𝑗𝑘𝑊𝑖𝑘

+ 2𝑐𝑗1𝜔 𝑁∑
𝑘=1

𝐴[1]𝑖𝑘𝑊𝑘𝑗 − 𝜔2𝑊𝑖𝑗 + 2𝑐2𝛼𝜂 𝑁∑
𝑘=1

𝐴[2]𝑖𝑘𝑊𝑘𝑗

+ 4𝑐𝛼𝜂𝑗1𝜔 𝑁∑
𝑘=1

𝐴[1]𝑖𝑘𝑊𝑘𝑗 − 2𝛼𝜂𝜔2𝑊𝑖𝑗 = 0

(0 ≤ 𝜂 ≤ 12) ,
(𝑐2 − 1) 𝑀∑

𝑙=1

𝐴[2]𝑖𝑙 𝑊𝑙𝑗 − 𝜆𝜇2 𝑀∑
𝑙=1

𝐵[2]𝑗𝑙 𝑊𝑖𝑙

+ 2𝑐𝑗1𝜔 𝑀∑
𝑙=1

𝐴[1]𝑖𝑙 𝑊𝑙𝑗 − 𝜔2𝑊𝑖𝑗 + 2𝑐2𝛼 𝑀∑
𝑙=1

𝐴[2]𝑖𝑙 𝑊𝑙𝑗

+ 4𝑐𝛼𝑗1𝜔 𝑀∑
𝑙=1

𝐴[1]𝑖𝑙 𝑊𝑙𝑗 − 2𝛼𝜔2𝑊𝑖𝑗

− 2𝑐2𝛼𝜂 𝑀∑
𝑙=1

𝐴[2]𝑖𝑙 𝑊𝑙𝑗 − 4𝑐𝛼𝜂𝑗1𝜔 𝑀∑
𝑙=1

𝐴[1]𝑖𝑙 𝑊𝑙𝑗
+ 2𝛼𝜂𝜔2𝑊𝑖𝑗 = 0 (12 ≤ 𝜂 ≤ 1) .

(15)

The weight coefficient of each order can be acquired by

𝐴 𝑖𝑗 = 𝑙𝑗 (𝑥𝑖) =
{{{{{{{{{{{{{

∏𝑁𝑘=1,𝑘 ̸=𝑖,𝑗 (𝑥𝑖 − 𝑥𝑘)
∏𝑁𝑘=1,𝑘 ̸=𝑗 (𝑥𝑗 − 𝑥𝑘) (𝑖 ̸= 𝑗)
𝑁∏
𝑘=1
𝑘 ̸=𝑖

1𝑥𝑖 − 𝑥𝑘 (𝑖 = 𝑗) (16)

𝐴[𝑘]𝑖𝑗 = 𝑙[𝑘]𝑗 (𝑥𝑖)

=
{{{{{{{{{{{{{

𝑘[𝑙[𝑘−1]𝑖 (𝑥𝑖) 𝑙𝑗 (𝑥𝑖) − 𝑙[𝑘−1]𝑖 (𝑥𝑖)𝑥𝑖 − 𝑥𝑗 ] (𝑖 ̸= 𝑗)
− 𝑁∑
𝑚=1
𝑚 ̸=𝑖

𝑙[𝑘]𝑚 (𝑥𝑖) (𝑖 = 𝑗)

(2 ≤ 𝑘 ≤ 𝑁 − 1) .

(17)

The complex characteristic equation is established by
using DQM. Then (15) is turned into differential quadrature
form:

(𝑐2 − 1) 𝑁∑
𝑘=1

𝐴[2]𝑖𝑘𝑊𝑘𝑗 − 𝜆𝜇2 𝑁∑
𝑘=1

𝐵[2]𝑗𝑘𝑊𝑖𝑘

+ 2𝑐𝑗1𝜔 𝑁∑
𝑘=1

𝐴[1]𝑖𝑘𝑊𝑘𝑗 − 𝜔2𝑊𝑖𝑗 + 2𝑐2𝛼𝜂 𝑁∑
𝑘=1

𝐴[2]𝑖𝑘𝑊𝑘𝑗

+ 4𝑐𝛼𝜂𝑗1𝜔 𝑁∑
𝑘=1

𝐴[1]𝑖𝑘𝑊𝑘𝑗 − 2𝛼𝜂𝜔2𝑊𝑖𝑗 = 0

(0 ≤ 𝜂 ≤ 12) ,
(𝑐2 − 1) 𝑀∑

𝑙=1

𝐴[2]𝑖𝑙 𝑊𝑙𝑗 − 𝜆𝜇2 𝑀∑
𝑙=1

𝐵[2]𝑗𝑙 𝑊𝑖𝑙

+ 2𝑐𝑗1𝜔 𝑀∑
𝑙=1

𝐴[1]𝑖𝑙 𝑊𝑙𝑗 − 𝜔2𝑊𝑖𝑗 + 2𝑐2𝛼 𝑀∑
𝑙=1

𝐴[2]𝑖𝑙 𝑊𝑙𝑗

+ 4𝑐𝛼𝑗1𝜔 𝑀∑
𝑙=1

𝐴[1]𝑖𝑙 𝑊𝑙𝑗 − 2𝛼𝜔2𝑊𝑖𝑗

− 2𝑐2𝛼𝜂 𝑀∑
𝑙=1

𝐴[2]𝑖𝑙 𝑊𝑙𝑗 − 4𝑐𝛼𝜂𝑗1𝜔 𝑀∑
𝑙=1

𝐴[1]𝑖𝑙 𝑊𝑙𝑗
+ 2𝛼𝜂𝜔2𝑊𝑖𝑗 = 0 (12 ≤ 𝜂 ≤ 1) .

(18)

The boundary conditions are

𝑊1𝑗 = 𝑊𝑁𝑗 = 0 (𝑗 = 1, 2, . . . , 𝑁) ,
𝑊𝑖1 = 𝑊𝑖𝑁 = 0 (𝑖 = 1, 2, . . . , 𝑁) . (19)

Converting (18) and (19) to matrix form obtains
𝜔2R + 𝜔G + K = 0. (20)

Matrix R, G, K contains tension ratio 𝜆, dimensionless
velocity 𝑐, density coefficient 𝛼, aspect ratio 𝜇, and other
parameters.

4. Numerical Results and Analysis

When the density coefficient 𝛼 = 0, the vibration equation
of moving membrane degenerates the transverse vibration
equation in which density distribution is uniform. To illus-
trate the effectiveness of the differential quadrature method,
assuming density coefficient 𝛼 = 0, dimensionless speed𝑐 = 0, tension ratio 𝜆 = 1, and aspect ratio 𝜇 = 1, 𝜇 = 2,
respectively, the results comparison between this study and
[28] is shown in Table 1. Then assuming density coefficient𝛼 = 0, dimensionless velocity 𝑐 = 0, aspect ratio 𝜇 = 2,
and tension ratio 𝜆 = 0.5, 𝜆 = 0.8, respectively, the results
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Table 1: Comparisons of the transverse vibration frequency with those in [28] (𝜆 = 1).
Aspect ratio 𝜇 1.0 2.0
Frequency order This study Ref. [28] This study Ref. [28]
1 4.4429 4.4429 7.0248 7.0248
2 7.0251 7.0248 8.8896 8.8858
3 8.8862 8.8858 12.9636 12.9271

Table 2: Comparisons of the transverse vibration frequency with those in [28] (𝜇 = 2).
Tension ratio 𝜆 0.5 0.8
Frequency order This study Ref. [28] This study Ref. [28]
1 5.4414 5.4414 6.4383 6.4383
2 7.6997 7.6953 8.4338 8.4298
3 9.4319 9.4247 10.9043 10.9731
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Figure 6: Dimensionless complex frequency varied with dimensionless velocity (𝜆 = 1, 𝜇 = 2, 𝛼 = 0).

comparison between this study and [28] is shown in Table 2.
It can be seen from Tables 1 and 2 that the degenerated results
in this study are in good consistency with the results in [28].
Therefore, it proves that the method used in this paper is
feasible and believable.

Figures 6 and 7 show the relationship between first three
dimensionless natural frequencies and the dimensionless
speed, when the density coefficient 𝛼 = 0, the aspect ratio𝜇 = 2, and the tension ratio𝜆 = 1 and𝜆 = 0.5, respectively. As
illustrated in Figure 6, the dimensionless speed increases, the

real part Re(𝜔) of the first three order dimensionless complex
frequencies tends to decrease gradually. When 0 < 𝑐 < 1,
the first three dimensionless complex frequencies diminish
with the increase of dimensionless speed, and the imaginary
part of the complex frequencies is zero consistently, so the
membrane works in steady state. When the dimensionless
speed 𝑐 = 1, the real part of the complex frequencies becomes
zero simultaneously; here, the dimensionless speed 𝑐 = 1 is
called the critical speed 𝑐𝑟. When 𝑐 > 1, the imaginary part
of the complex frequencies is not zero anymore, and the
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Figure 8: Relationship between density coefficient and critical speed.

membrane begins to be in a divergent instability state.
Compared with Figure 7, for any same dimensionless speed
in stable work region, the dimensionless complex frequency
decreases gradually with the decrease of tension ratio.

Figure 8 shows the relationship between density coeffi-
cient 𝛼 and critical speed 𝑐𝑟, when 𝜆 = 1, 𝜇 = 2 and𝜆 = 0.5, and 𝜇 = 2, respectively. It is found from the figure
that the critical speed diminishes with the increase of density

coefficient.The critical speed is 𝑐𝑟 = 1 for the different tension
ratio when 𝛼 = 0. When 𝛼 > 0, the density coefficient is
fixed, and the smaller the tension ratio, the smaller the critical
speed.

Figure 9 shows the relationship between the first three
dimensionless natural frequencies and the density coefficient
when 𝜆 = 1, 𝜇 = 2 and 𝑐 = 0, 𝑐 = 0.5, respectively.
The results show that the real part of the dimensionless
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complex frequency is decreasing with the increasing density
coefficient and the real part of the dimensionless complex fre-
quency is decreasing overall when the dimensionless velocity
increases.

Figures 10(a)–10(d) show the relationship between the
first three dimensionless natural frequencies and the tension
ratio when (𝜇 = 2, 𝑐 = 0, 𝛼 = 0), (𝜇 = 2, 𝑐 = 0.5, 𝛼 = 0),
(𝜇 = 2, 𝑐 = 0, 𝛼 = 0.8), and (𝜇 = 2, 𝑐 = 0.5, 𝛼 = 0.8),
respectively. Comparative analysis shows that, for any order
dimensionless complex frequency when dimensionless speed𝑐 = 0, the vibration frequency of the moving printing mem-
brane increases with the increase of the tension ratio; the
vibration frequency is downward with increasing dimen-
sionless velocity; the real part of dimensionless complex
frequency decreases with the increasing of density coefficient
when the dimensionless velocity is the same. In this process,
the imaginary part of complex frequency Im(𝜔) = 0, so the
motion system is in a stable state.

5. Conclusions

The DQM is used to analyze the transverse vibration charac-
teristics of moving membrane with variable density distribu-
tion along the lateral direction.The results show that the ten-
sion ratio and the density coefficient have important impacts
on the stability of moving membrane. The conclusions are as
follows:(1) When 𝛼 = 0, for the same aspect ratio, with the
increase of tension ratio, the motion system is in a stable state
in region 0 < 𝑐 < 1.When the actual speed reaches the critical

speed (𝑐𝑟 = 1), the motion system comes into a divergent
instability state. The tension ratio of the membrane has no
influence on the critical speed.

(2) When density coefficient 𝛼 > 0, for the same aspect
ratio, with the decrease of tension ratio, the critical speed is
becoming smaller, the stable work region of motion system is
smaller too. For any same dimensionless speed of stable work
region, with the decrease of tension ratio, the dimensionless
complex frequencies tend to be smaller and smaller. The
tension ratio has important influence on the stability of
moving membrane.

(3) The density coefficient 𝛼 has an influence on the
critical speed and the dimensionless natural frequencies. The
critical speed and the natural frequencies diminish with the
increasing density coefficient. Tension ratio does not affect
the change trends of critical speed with density coefficient,
but it affects the critical speed value.

The study provides a theoretical basis for improving the
working stability of themembrane in the high-speed printing
process.
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