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Fractional calculus techniques and methods started to be applied successfully during the last
decades in several fields of science and engineering. In this paper we studied the stability of
fractional-order nonlinear time-delay systems for Riemann-Liouville and Caputo derivatives and
we extended Razumikhin theorem for the fractional nonlinear time-delay systems.

1. Introduction

Fractional calculus is an emerging field with various valuable applications in science and
engineering [1–6].

Fractional calculus is a good candidate to solve the dynamics of complex systems.
During the last years fractional calculus was subjected to an intense debate. The fractional
differential equations started to play an important role in modeling anomalous diffusion,
processes having long-range dependence, and so on. Several open problems remain unsolved
or there were partially solved with this type of calculus. Among those kinds of problems we
mention the question of stability which is interest in nonlinear science and control theory.
Also, the problem of time-delay system has been discussed over many years. For a survey the
reader can check the study in [7]. Time delay is very often encountered in different technical
systems, for example, electric, pneumatic, and hydraulic networks, chemical processes, and
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long transmission lines. The existence of pure time delay, regardless of its presence in a
control and/or state, may cause undesirable system transient response, or, generally, even an
instability. Numerous reports have been published on this matter, with particular emphasis
on the application of Lyapunov’s second method [8, 9].

In recent years, considerable attention has been paid to control systems whose
processes and/or controllers are of fractional order. This is mainly due to the fact that
many real-world physical systems are well characterized by fractional-order differential
equations, that is, equations involving noninteger-order derivatives. In particular, it has
been shown that viscoelastic materials having memory and hereditary effects [10] and
dynamical processes such as semi-infinite lossy RC transmission [11], mass diffusion,
and heat conduction [12], can be more adequately modeled by fractional-order models
than integer-order models. Moreover, with the success in the synthesis of real noninteger
differentiator and the emergence of new electrical circuit element called “fractance” [13],
fractional-order controllers [14, 15] including fractional-order PID controllers [14] have been
proposed to enhance the robustness and performance of control systems.

Some literatures published about stability of fractional-order linear time-delay systems
[16–19]. In the base of Lyapunov’s second method, some work has been done in the field of
stability of fractional-order nonlinear systems without delay [20, 21]. But it seems that a few
attentions have been paid to the stability of fractional-order nonlinear time-delay systems.

When the system involves time delay, it should be regarded as a functional differential
equation (FDE). In this case, analysis of the stability relies on the Lyapunov-Krasovskii
functional [22, 23]. However, the Razumikhin stability theory is more widely used to prove
the stability of time-delay systems [22, 23], since the construction of Lyapunov-Krasovskii
functional is more difficult than that of Lyapunov-Razumikhin function.

The purpose of this paper is to develop the Razumikhin theorem for fractional-order
nonlinear time-delay systems.

The manuscript is organized as follows. In Section 2 some basic definitions of
fractional calculus are mentioned. Section 3 is devoted to fractional nonlinear time-delay
systems. Section 4 presents the generalization of the fractional Razumikhin theorem when
both fractional derivatives and delay are present.

2. Preliminaries and Definitions

In the fractional calculus the Riemann-Liouville and Caputo fractional derivatives are defined
respectively [1–3]:
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where x(t) is an arbitrary differentiable function, n ∈ N, t0D
q
t and c

t0D
q

t
are the Riemann-

Liouville and Caputo fractional derivatives of order q on [t0, t], respectively, and Γ(·) denotes
the Gamma function.
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For 0 < q ≤ 1 we have
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Some properties of Riemann-Liouville and Caputo derivatives are recalled below
[1–3].

Property 1. When 0 < q ≤ 1, we have
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In particular, if x(t0) = 0, we have
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Property 2. For any v > −1, we have
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In particular, if 0 < q < 1, v > 0, and x(t) = (t − t0)v, then from Property 1, we have
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where a and b are arbitrary constants.

Property 4. From the definition of Caputo’s derivative when 0 < q ≤ 1 we have
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3. Fractional Nonlinear Time-Delay System

Let C([a, b],Rn) be the set of continuous functions mapping the interval [a, b] to R
n. In many

situations, one may wish to identify a maximum time delay r of a system. In this case, we
are often interested in the set of continuous function mapping [−r, 0] to R

n, for which we
simplify the notation to C = C([−r, 0],Rn). For any A > 0 and any continuous function of
time x ∈ C([t0 − r, t0 +A],Rn), t0 ≤ t ≤ t0 +A, let xt(θ) ∈ C be a segment of function ψ defined
as xt(θ) = xt(t + θ), −r ≤ θ ≤ 0.

Consider fractional nonlinear time-delay system

c
t0D

q

t
x(t) = f(t, xt), (3.1)

where x(t) ∈ R
n, 0 < q ≤ 1, and f : R × C → R

n. As such, to determine the future evolution
of the state, it is necessary to specify the initial state variables x(t) in a time interval of length
r, say from t0 − r to t0, that is,

xt0 = φ, (3.2)

where φ ∈ C is given. In other words x(t0 + θ) = φ(θ), −r ≤ θ ≤ 0.

Definition 3.1. Suppose that f(t, 0) = 0 for all t ∈ R. The solution x = 0 of (3.1) is said to be
stable if for any t0 ∈ R, ε > 0, there is a δ = δ(ε, t0) such that ‖φ‖ < δ implies that ‖xt(t0, φ)‖ < ε
for t ≥ t0. The solution x = 0 of (3.1) is said to be asymptotically stable if it is stable and there
is a δa = δa(t0) > 0 such that ‖φ‖ < δa implies that xt(t0, φ) → 0 as t → ∞. The solution
x = 0 is said to be uniformly stable if the number δ in the definition is independent of t0. The
solution x = 0 of (3.1) is uniformly asymptotically stable if it is uniformly stable and there is a
δa > 0 such that, for every η > 0, there is a T(η) such that ‖φ‖ < δa implies that ‖xt(t0, φ)‖ < ε
for t ≥ t0 + T(η) for every t0 ∈ R [17].

4. Fractional Razumikhin Theorem

As in the study of systems without delay, an effective method for determining the stability of
a time-delay system is Lyapunov method. Since in a time-delay system the “state” at time t
required the value of x(t) in the interval [t − r, t], that is, xt, it is natural to expect that, for a
time-delay system, corresponding Lyapunov function be a functional V (t, xt) depending on
xt, which also should measure the deviation of xt from the trivial solution 0.

Let V (t, φ) be differentiable, and let xt(τ, φ) be the solution of (3.1) at time twith initial
condition xτ = φ. Then we calculate the Caputo derivative of V (t, xt) with respect to t and
evaluate it at t = τ as follow, respectively:
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where 0 < q < 1.



Abstract and Applied Analysis 5

Theorem 4.1. Suppose that f : R×C → R
n in (3.1)maps R×(bounded sets in C) into bounded sets

in R
n, and α1, α2, α3 : R+ → R+ are continuous nondecreasing functions, α1(s), α2(s) are positive

for s > 0, and α1(0) = α2(0) = 0, α2 strictly increasing. If there exists a continuously differentiable
function V : R × R

n → R such that

α1(‖x‖) ≤ V (t, x) ≤ α2(‖x‖), for t ∈ R, x ∈ R
n, (4.3)

and the Caputo fractional derivative of V along the solution x(t) of (3.1) satisfies

c
t0D

q

t
V (t, x(t)) ≤ −α3(‖x(t)‖), for 0 < q ≤ 1, whenever V (t + θ, x(t + θ)) ≤ V (t, x(t)) (4.4)

for 0 < q ≤ 1 and θ ∈ [−r, 0], then system (3.1) is uniformly stable.
If, in addition, α3(s) > 0 for s > 0 and there exists a continuous nondecreasing function

p(s) > s for s > 0 such that condition (4.4) is strengthened to

c
t0D

q

t
V (t, x(t)) ≤ −α3(‖x(t)‖), if V (t + θ, x(t + θ)) ≤ p(V (t, x(t))) (4.5)

for 0 < q ≤ 1 and θ ∈ [−r, 0], then system (3.1) is uniformly asymptotically stable.If in addition
lims→∞α1(s) = ∞, then system (3.1) is globally uniformly asymptotically stable.

The integer-order derivative version of this theorem can be found in [22, 23].

Proof. To prove uniform stability, for any given ε > 0, let 0 < α2(δ) < α1(ε). Then for any
given t0 and φ, with ‖φ‖ < δ, we have V (t0 + θ, φ(θ)) ≤ α2(δ) < α1(ε) for θ ∈ [−r, 0]. Let x
be solution of (3.1)with initial condition xt0 = φ. According to (4.4), as t increases, whenever
V (t, x(t)) = α2(δ) and V (t + θ, x(t + θ)) ≤ α2(δ) for θ ∈ [−r, 0], c

t0D
q

t
V (t, x(t)) ≤ 0, therefore,

by Property 4 and (4.3), V (t, x(t)) ≤ V (t0, x(t0)) ≤ α2(δ) for all t ≥ t0. Due to the continuity
of V (t, x(t)), it is therefore impossible for V (t, x(t)) to exceed α2(δ). In other words, we have
V (t, x(t)) ≤ α2(δ) < α1(ε) for t ≥ t0 − r, but this implies that ‖x(t)‖ ≤ ε for t ≥ t0 − r.

To complete the proof of the theorem, suppose that δ > 0,H > 0 are such that α2(δ) =
α1(H). Such numbers always exist by our hypotheses on α1 and α2. In fact, since α2(0) = 0
and 0 < α1(s) ≤ α2(s) for s > 0, one can preassign H and then determine a δ such that
the desired relation is satisfied. If α1(s) → ∞ as s → ∞, then one can fix δ arbitrarily and
determineH such that α2(δ) = α1(H). This remark and reasoning that follows will prove the
uniform asymptotic stability of x = 0 as well as the fact that x = 0 is a globally uniformly
asymptotically stable.

If α2(δ) = α1(H), the same argument as in the proof of uniform stability shows that
‖φ‖ ≤ δ implies that ‖x(t)‖ ≤ H, V (t, x(t)) < α2(δ) for t ≥ t0 − r. Suppose that 0 < η ≤ H
is arbitrary. We need to show that there is a number t = t(η, δ) such that for any t0 ≥ 0 and
‖φ‖ ≤ δ the solution x(t) of (3.1) satisfies ‖x(t)‖ ≤ η, t ≥ t0 + t + r. This will be true if we show
that V (t, x(t)) ≤ α1(η), for t ≥ t0 + t.

From the properties of function p(s), there is a number a > 0 such that p(s) − s > a for
α1(η) ≤ s ≤ α2(δ). Let N be the first positive integer such that α1(η) +Na ≥ α2(δ), and let
γ = infα−12 (α1(η))≤s≤Hα3(s) and T = (Nα2(δ)Γ(1 + q)/γ)

1/q.
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We now show that V (t, x(t)) ≤ α1(η) for all t ≥ t0 + T . First, we show that V (t, x(t)) ≤
α1(η) + (N − 1)a for t ≥ t0 + (α2(δ)Γ(1 + q)/γ)

1/q. If α1(η) + (N − 1)a < V (t, x(t)), for t0 ≤ t ≤
t0 + (α2(δ)Γ(q + 1)/γ)1/q, then, since V (t, x(t)) ≤ α2(δ) for all t ≥ t0 − r, it follows that

p(V (t, x(t))) > V (t, x(t)) + a ≥ α1
(
η
)
+Na ≥ α2(δ) ≥ V (t + θ, x(t + θ)) (4.6)

for t0 − r ≤ t ≤ t0 + (α2(δ)Γ(1 + q)/γ)
1/q.

Hypothesis (4.5) implies that

c
t0D

q

t
V (t, x(t)) ≤ −α3(‖x(t)‖) ≤ −γ (4.7)

for t0 ≤ t ≤ t0 + (α2(δ)Γ(1 + q)/γ)
1/q. Consequently,

c
t0D

q

t

(

V (t, x(t)) + γ
(t − t0)q
Γ
(
1 + q

)

)

≤ 0, (4.8)

and hence by Property 4, for all

t0 ≤ t ≤ t0 +
(
α2(δ)Γ

(
1 + q

)
/γ

)1/q (4.9a)

we have

V (t, x(t)) ≤ V (t0, x(t0)) − γ (t − t0)q
Γ
(
1 + q

) ≤ α2(δ) − γ (t − t0)q
Γ
(
1 + q

) (4.9b)

on the same interval. The positive property (4.2) of V implies that V (t, x(t)) ≤ α1(η)+(N−1)a
at t1 = t0 + (α2(δ)Γ(1 + q)/γ)

1/q. But this implies that V (t, x(t)) ≤ α1(η) + (N − 1)a for all
t ≥ t0 + (α2(δ)Γ(1 + q)/γ)

1/q, since c
t0D

q

t
V (t, x(t)) is negative by condition (4.5), and therefore

(d/dt)(V (t, x(t))) is negative when V (t, x(t)) = α1(η) + (N − 1)a.
Now, let tj = (jα2(δ)Γ(1 + q)/γ)

1/q, j = 1, . . . ,N, t0 = 0, and assume that, for some
integer k ≥ 1, in the interval tk−1 − r ≤ t − t0 ≤ tk, we have

α1
(
η
)
+ (N − k)a ≤ V (t, x(t)) ≤ α1

(
η
)
+ (N − k + 1)a. (4.10)

By the same type reasoning as above, we have

c
t0D

q

t
V (t, x(t)) ≤ −γ (4.11)
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for tk−1 ≤ t − t0 ≤ tk, and we have

c
t0D

q

t

(

V (t, x(t)) + γ
(t − t0)q
Γ
(
1 + q

)

)

≤ 0, (4.12)

V (t, x(t)) + γ
(t − t0)q
Γ
(
1 + q

) ≤ V
(
t0 + tk−1, x

(
t0 + tk−1

))
+ γ

t
q

k−1
Γ
(
1 + q

) , (4.13)

and we have

V (t, x(t)) ≤ V
(
t0 + tk−1, x

(
t0 + tk−1

))
+ γ

t
q

k−1
Γ
(
1 + q

) − γ (t − t0)q
Γ
(
1 + q

)

≤ α2(δ) − γ (t − t0)q
Γ
(
1 + q

) + (k − 1)α2(δ)

= kα2(δ) − γ (t − t0)q
Γ
(
1 + q

) ≤ 0

(4.14)

if t − t0 ≥ (kΓ(1 + q)α2(δ)/γ)
1/q. Consequently,

V
(
t0 + tk, x

(
t0 + tk

))
≤ α1

(
η
)
+ (N − k)a (4.15)

and, finally, V (t, x(t)) ≤ α1(η) + (N − k)a for t ≥ t0 + tk. This completes the induction and we
have V (t, x(t)) ≤ α1(η) for all t ≥ t0 + (Nα2(δ)Γ(1 + q)/γ)

1/q. This proves the theorem.

Lemma 4.2. Let q ∈ (0, 1) and V (t0) ≥ 0, then

c
t0D

q

t
V (t) ≤ t0D

q
t V (t). (4.16)

Proof. By using Property 1 we have c
t0D

q

t
V (t) = t0D

q
t V (t) − V (t0)(t − t0)−q/Γ(1 − q). Because

q ∈ (0, 1) and V (t0) ≥ 0, we obtained that c
t0D

q

t
V (t) ≤ t0D

q
t V (t).

Theorem 4.3. Suppose that the assumptions in Theorem 4.1 are satisfied except replacing c
t0D

q

t
by

t0D
q
t , then one has the same result for uniform stability, uniform asymptotic stability, and global

uniform asymptotic stability.

Proof. It follows from Lemma 4.2 and V (t, x(t)) ≥ 0 that c
t0D

q

t
V (t, x(t)) ≤ t0D

q
t V (t, x(t)),which

implies that c
t0D

q

t
V (xt(ϕ)) ≤ t0D

q
t V (xt(ϕ)) ≤ −w(xt(ϕ)) for all t ≥ t0. Following the same proof

as in Theorem 4.1 yields uniform stability, uniform asymptotic stability, and global uniform
asymptotic stability.
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5. Conclusion

The combination of the fractional calculus and delay techniques seems to describe better
the dynamics of the complex systems, namely, because both theories take into account the
memory effects. Having in mind these aspects, in this paper we generalized the fractional
Razumikhin theorem in presence of Caputo fractional derivative and delay. By using the
Caputo and the Riemann-Liouville we have proved two corresponding theorems. The
obtained theorems contain as particular case the fractional calculus version as well as the
time-delay one.
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[16] M. P. Lazarević, “Finite time stability analysis of PDα fractional control of robotic time-delay

systems,”Mechanics Research Communications, vol. 33, no. 2, pp. 269–279, 2006.
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