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For multiobjective optimization problems, different optimization variables have different influences on objectives, which implies
that attention should be paid to the variables according to their sensitivity. However, previous optimization studies have not
considered the variables sensitivity or conducted sensitivity analysis independent of optimization. In this paper, an integrated
algorithm is proposed, which combines the optimization method SPEA (Strength Pareto Evolutionary Algorithm) with the
sensitivity analysis method SRCC (Spearman Rank Correlation Coefficient). In the proposed algorithm, the optimization variables
are worked as samples of sensitivity analysis, and the consequent sensitivity result is used to guide the optimization process by
changing the evolutionary parameters.Three cases including amathematical problem, an airship envelope optimization, and a truss
topology optimization are used to demonstrate the computational efficiency of the integrated algorithm. The results showed that
this algorithm is able to simultaneously achieve parameter sensitivity and a well-distributed Pareto optimal set, without increasing
the computational time greatly in comparison with the SPEA method.

1. Introduction

Multiobjective optimization is widely used in many practical
engineering problems. Instead of a single optimal solution,
multiobjective optimization problem (MOOP), with conflict-
ing subobjectives, provides a set of compromise solutions,
which is known as Pareto optimal set [1]. In the Pareto
optimal set, corresponding to Pareto front, no one solution
can be considered to be better than any other, which means
that they cannot be improved in one objective without
degrading another [2]. There are two main alternative ways
to obtain the Pareto optimal set. One way is to introduce a
strategy based onweight coefficients that convert themultiple
objectives into a monoobjective. Only an optimal solution
corresponding to the defined weights can be obtained in
a single run, so multiple optimization runs with variable
objective weights are needed to obtain the solution set.
Furthermore, this method cannot be used to find Pareto
optimal solutions in problems having a nonconvex Pareto
optimal front [3]. The second way enables obtaining Pareto

optimal set in a single run and has been emphasized in
recent years. As the basis of decision-making, the Pareto
optimal set provides the decision maker with insight into
the characteristics of the problem before choosing a final
solution.

For most multiobjective optimization methods that can
obtain the Pareto optimal set in a single run, attention is
focused on preventing local optimal or designing individual
sorting or fitness assignments. However, one ignored thing
is when the influences of different parameters on the model
are disparate, and it may be uneconomical to spend a lot of
time on the secondary parameters. A wise approach is to give
higher priority to those parameters with significant influence
on the optimization objectives (a.k.a. “parameters with high
sensitivity”).

In this study, a new strategy which combines themethods
of parameter sensitivity analysis andmultiobjective optimiza-
tion is proposed. In the process of optimization, parameter
sensitivity is updated in real time with no extra analysis
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sample and then guides optimization by setting the parameter
priority.

The rest of this paper consists of the following. Section 2
presents the drawbacks of conventional methods. Section 3
describes the multiobjective optimization method and the
parameter sensitivity analysis method. Furthermore, some
improvements are made for these basic methods. Then,
Section 4 introduces the integrated algorithm. To validate the
effectiveness of the proposed algorithm, Section 5 examines a
mathematical problem, an airship envelope optimization, and
a truss topology optimization. Finally, Section 6 provides the
concluding remarks.

2. Problem Representation

MOOP is characterized by many optimization variables.
Consider a multiobjective optimization model with five
parameters. If each parameter is allocated 8 binary bits, hence
the gene is 40 bits long, and its sample space reaches 240 ≈
1012. If this was to be calculated directly, the computational
effort would be astronomical [4]. Even if 0.01% of the
total amount is calculated, there are 100 million individuals.
However, if after sensitivity analysis it is found that only
three of the parameters have significant influence on the
model, while the other two parameters have little influence,
higher priority can be allocated to the first three parameters.
A considerable amount of time can be saved by decreasing
the time spent on the insensitive parameters. One extreme
case is when the sensitivity of three parameters is 33.33%
each, and the sensitivity of the other two parameters is 0%.
Then the sample space is decreased to 224 ≈ 1.6 × 107. The
reduced sample space means the significant improvement of
optimization efficiency.

To consider parameter sensitivity in optimization pro-
cess, a traditional approach is to conduct a sensitivity analysis
at the first step, then to ignore insensitive parameters and
retain the sensitive parameters for optimization. However,
this approach has two obvious defects:

(1) Complicated and Duplicated Calculations. A large
amount of samples is needed in the global sensitivity
analysis to obtain accurate parameter sensitivity. It is
time-consuming to analyze these samples, and they
cannot be utilized in the later optimization. When
the sensitivity analysis is completed, the samples
are discarded. So if the samples in the sensitivity
analysis can be shared with the optimization process,
considerable computing time can be saved.

(2) Single Choice. In the traditional approach, the answer
to the question of whether a parameter should be
set as an optimization variable is either “yes” or
“no.” For parameters with low sensitivity, but which
cannot be ignored, there is no intermediate answer.
Another situation for the multiobjective optimization
model is that some parameters are very sensitive
to objective function 𝐴, but insensitive to objective
function 𝐵. In this case, to reduce the calculation
effort, separate analysis of the two targeted analytical
models, considering objective 𝐴 and objective 𝐵

separately, is necessary. This is not a good choice,
not only because it is complex, but also because all
the Pareto optimal solutions for all objectives cannot
be obtained. In optimization process, creating two or
more models should be avoided, or fatal differences
may be unknowingly produced by the modifications.

In order to eliminate the above defects, a new strategy
which integrates sensitivity analysis and optimization is
proposed. In this strategy, the sample resources are shared
between the sensitivity analysis and the optimization. Mean-
while, results of sensitivity analysis can be directly used to
guide the optimization process.

3. Basic Analysis Methods

3.1. Optimization Method

3.1.1. Strength Pareto Evolutionary Algorithm (SPEA). Evo-
lutionary algorithms (EA), which are random exploring
optimization algorithms based on the idea of the biological
evolutionary, are widely used and well suited for MOOP
to look for the global optimum [5–7]. Genetic algorithm
[8] (GA), which simulates natural selection and survival
of the fittest, is a typical example of EA. Many algorithms
have been proposed based on the basic concept of the GA,
such as Vector Evaluated Genetic Algorithm (VEGA) [9],
Multiobjective Genetic Algorithm (MOGA) [10], Nondom-
inated Sorting Genetic Algorithm (NSGA) [11], the Niched
Pareto Genetic Algorithm (NPGA) [12], Strength Pareto
Evolutionary Algorithm (SPEA) [13], Nondominated Sorting
Genetic Algorithm II (NSGA II) [14], Pareto Envelope-based
Selection Algorithm (PESA) [15], the Pareto Archived Evo-
lution Strategy (PAES) [16], and Micro-Genetic Algorithm
(Micro-GA) [17]. The core of the above methods is the GA
and differences are primarily the selection mechanism and
fitness evaluation [18]. Apart from the EA, swarm intelligence
[19], which derived from the concept of the social and
collective behavior, emerged recently and mainly includes
Ant Colony Optimization (ACO) [20, 21] and Particle Swarm
Optimization (PSO) [22–24].

In this paper, the SPEA is employed, which has been
recommended as one of the most efficient multiobjective
evolutionary algorithms [25, 26]. The characteristic of this
algorithm is the definition of an external population 𝑃󸀠 for
storing the nondominated solution amongst all the solutions
currently considered.Thenondominated solutionswithin the
entire search space constitute the Pareto optimal set. The
basic steps of the algorithm are showed schematically in
Figure 1. The steps of SPEA can be summarized as follows:
initialization; updating the external set; fitness assignment;
selection; crossover and mutation; termination [27].

The first key technique of the SPEA is the calculation of
clustering during updating of the external population. The
nondominated solutions of each generation are stored in
the external population. The size of the external population
should be limited to avoid approaching infinity during the
iteration. When the amount of the external population
exceeds the limit capacity 𝑁, an elimination strategy, based
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Figure 1: Flowchart of SPEA.

on Fuzzy cluster analysis, is initiated. When the elimination
strategy is executed, the first step is to obtain the distance
between two clusters in the external nondominated solution
set, then to merge the closest clusters into one. This process
is repeated until the number of clusters reduces to below
the limit capacity 𝑁. In this process, once two clusters
are merged, the distances of the remaining clusters will be
recalculated.The computational complexity is𝑂(𝑚𝑛2), where
𝑛 represents the actual individual amount of the external
solution set, and 𝑚 denotes the extra amount above the limit
capacity of the external nondominated solution set.

Another key issue, namely, the calculation of individuals
fitness, can be obtained as follows. Firstly, the external
nondominated individual fitness is defined as a percentage
of the individuals covered by it [3] and the percentage is
expressed as a real value in [0, 1) (also called strength)
[13]. Subsequently, the fitness of the other individuals in
the population 𝑃 is defined as the sum of strengths of all
external Pareto solutions by which it is covered. This fitness
assignment ensures the diversity of the dominated set and the
nondominated set [3].

A tournament selection mechanism is adopted to choose
the individual, from both the external population 𝑃󸀠 and
the evolutionary population 𝑃, to take part in the evolution.
Then the crossover and mutation operations are performed,
to generate the next generation or to exit the optimization
process if the generation counter exceeds the defined value.

3.1.2. Improvement of SPEA. The elimination strategy “Fuzzy
cluster analysis” is initiated when the number of clusters
exceeds the limit capacity 𝑁. In this process, the removed
individual cannot be recycled to the external nondominated
set. Comparatively speaking, some optimal individuals gen-
erated by later generation may be worse than those removed
in previous generations.This means that the Pareto front will
retreat [18]. A simple example of Pareto retreating is shown in
Figure 2. In the former generation, individual 𝐵 is removed
because it is too close to individual𝐴. In the next generation,
a new individual 𝐵󸀠 joins the nondominated set. However, 𝐵󸀠
is dominated by 𝐵. In other words, if 𝐵 still exists, 𝐵󸀠 would
never have the chance of being an optimal solution. In this
way, the Pareto front retreats; that is to say, it cannot guarantee
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Figure 2: Recession of the Pareto front.

that the individuals of the external nondominated set are the
optimal solutions. It does not meet the optimal concept and
is more obvious in a linear model with a smaller capacity of
the external population.

To prevent this phenomenon, the SPEA should be mod-
ified slightly. (1) The external nondominated set should be
stored orderly using dichotomy according to some objective
function; (2) a mapped distance collection should be used
to store the data of cluster distance to avoid duplicate
calculation; (3) a backup collection of external nondominated
solutions is adopted to recycle those removed individuals
because of overcrowding. This is similar to the 𝜀-Pareto
front selection strategy proposed by Laumanns et al. [28].
With these improvements, the removed individuals have
the chance to move back to the external nondominated set
to guarantee no retreat of the Pareto front. Furthermore,
the time complexity is decreased to 𝑂(𝑛 log 𝑛), in which 𝑛
represents the size of the external nondominated set.

3.2. Sensitivity Analysis Method

3.2.1. Evaluation of Traditional Methods. Sensitivity analysis
is used to qualitatively, or quantitatively, evaluate the influ-
ence of parameters on the output variables [29]. Multipa-
rameter sensitivity analysis methods include local sensitivity
analysis and global sensitivity analysis. Local sensitivity
analysis obtains the influence of a parameter on the output
variable by changing the parameter while other parameters
remain unchanged. The essence of this method is single-
parameter sensitivity analysis, which does not consider the
correlation between parameters. What is more, the result is
unstable for a nonlinear model. For the global sensitivity
analysis, all the input parameters are varied to obtain the
output variable; that is to say, correlation between parameters
is considered.The traditional global sensitivity analysismeth-
ods include multivariate regression [30], Morris’s method
[31], Sobol’s method [32], Fourier Amplitude Sensitivity
Analysis [33], and Extended Fourier Amplitude Sensitivity
Analysis [34].

However, these existing global sensitivity analysis meth-
ods cannot be directly embedded in optimization process.
The main reasons are as follows:

(1) Requirement for samples: randomness and unbiased-
ness are two basic properties of the samples used
for traditional sensitivity analysis methods. But the
optimization process, based on the GA, can only
provide biased samples which are tending towards the
optimal set.

(2) Requirement for parameters: the analysis parameters
of the traditionalmethods should follow certain rules.
Assuming the sensitivities of parameters 𝑥
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optimization process, the parameters (optimization
variables) of each generation cannot meet the above
law.

(3) Time-consumption: take Sobol’s method as an exam-
ple; two sample groups would include thousands of
parameters, which implies thousands of combined
parameters are needed to determine parameter sen-
sitivity.

In mathematical statistics, parameter sensitivity can be
considered to reflect the correlation between the input
parameters and output variables. Therefore, the correlation
concept is applied in sensitivity analysis to overcome the
above disadvantages.

3.2.2. Rank Correlation Coefficient. The correlation coeffi-
cient can be used for sensitivity analysis, as mentioned in
literatures [35, 36]. Related evaluation methods have linear
correlation coefficients with fixed variable distance and rank
correlation coefficients with fixed variable order, which is also
called the sequential correlation coefficient.

In the present investigation, the Spearman Rank Cor-
relation Coefficient (SRCC) is used. The concept of SRCC
is inherited from the Pearson product-Moment Correlation
Coefficient (PMCC) [37]. In statistics, they are frequently
used as tools to analyze the correlation between the input
variable 𝑋 and the output variable 𝑌. For PMCC, 𝑋-𝑌
pairs must follow a normal distribution. However, this
assumption is not feasible for each generation of optimization
variables. SRCC obtains correlation coefficient based on the
parameter rank rather than the raw value as PMCC. This
operation is described as rank transformation. It linearizes
monotonic nonlinear relationships between variables and
reduces the effects of extreme values. This transformation
converts the sensitivity measure from one of linearity to one
of monotonicity and is widely used in parameter screening
and sensitivity analysis of model output [35]. Furthermore,
the sample distribution has no influence on the SRCC
result [36], which makes the SRCC calculation feasible using
optimization variables.

Monotonically increasing transformation invariance and
robustness are two important characteristics of the rank
correlation coefficient [38]. Monotonically increasing trans-
formation invariance means that the value of the rank
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Table 1: An example of ranking.

Raw 𝑋
𝑖

Rank Final rank 𝑥
𝑖

9.1 1 1
7.0 2 (2 + 3)/2 = 2.5
2.6 4 4
7.0 3 (2 + 3)/2 = 2.5

correlation coefficient is free from linear increase or nonlin-
ear increase, as long as the variables transformation meets
increasing trend. This is different from the linear correlation
coefficient whose value is stable only when the transforma-
tion is increasing linearly. Assume that two variables 𝑥, 𝑦
whose ranges are [0, 1] satisfy uniform distribution and the
relationship of 𝑥 = 𝑦. Both linear correlation coefficient
and rank correlation coefficient are 1.0. Some samples are
extracted and transformed according to 𝑥

1
= 𝑥 and 𝑦

1
=

𝑦3. In this case, the linear correlation coefficient changes
into 0.8985, but the rank correlation coefficient is still 1.0.
Robustness means a strong impact resistant ability against
abnormal actions. It can reproduce its prediction results
(e.g., the order of importance of the input parameters) when
repeating the analysis on different samples of the same
population [36].

Rank is defined as the increasing (or descending) sort
value of the raw parameters. If two parameters have the same
sort value, an average value will be adopted. Table 1 gives a
simple example of ranking.

Assume that there exist random variables 𝑋 = {𝑋
1
,

𝑋
2
, 𝑋
3
, . . . , 𝑋

𝑖
} and 𝑌 = {𝑌

1
, 𝑌
2
, 𝑌
3
, . . . , 𝑌

𝑖
}; correspond-

ingly, the SRCC, namely, 𝜌
𝑠
, is given by

𝜌
𝑠
= ∑𝑛

𝑖=1
(𝑥
𝑖
− 𝑥) (𝑦

𝑖
− 𝑦)

√∑𝑛
𝑖=1

(𝑥
𝑖
− 𝑥)2 ⋅ ∑𝑛

𝑖=1
(𝑦
𝑖
− 𝑦)2

, (1)

where the 𝑥
𝑖
, 𝑦
𝑖
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3.2.3. Evaluation of SRCC. For the rank assignment strategy,
the SRCC needs to be recalculated when a new individual
is generated. For tens of thousands of analyzed individu-
als, SRCC recalculation is a heavy burden. An alternative
approach is to apply dichotomy in sorting the rank, instead
of average-rank-strategy for those duplicated variables, which
can reduce the time complexity from 𝑂(𝑛) to 𝑂(log 𝑛), in
which 𝑛 is the size of analyzed individuals.

The value of SRCC ranges from −1.0 to 1.0, as shown
in Figure 3. Greater absolute value of SRCC means greater
influence of 𝑥 on 𝑦.

Another characteristic of SRCC is that all the straight lines
with different slopes have the same SRCC value, which is 1.0
or −1.0, as shown in Figure 4.

According to the SRCC characteristic, the two straight
lines with different slopes have the same sensitivity, as shown
in Figure 5. In fact, when 𝑥

1
and 𝑥

2
change the same extent,

Δ𝑦 corresponding to the two curves is different. Based on
the principle of single-parameter sensitivity analysis, the

influences of 𝑥
1
and 𝑥

2
on the 𝑦 are different. Superficially

SRCC cannot confirm the true sensitivity. Fortunately, this
embarrassing situation only occurs in the model with a
single input parameter. For bivariate or multivariate models,
the relationship between the insensitive input parameter 𝑥
and the output variable 𝑦 would be strongly affected by
other sensitive parameters. In other words, the relationship
between 𝑥 and 𝑦 will be evident in Figure 6, rather than a
straight line with slope 0 corresponding to SRCC = 1.0.

The sensitivity based on the SRCC is decided as follows:
firstly, obtaining an input parameter matrix by random
variable technology; secondly, changing the input parame-
ters simultaneously and obtaining the corresponding output
variables; and thirdly, statistically analyzing the influence of
the input parameters on the output variables. The essence
of this method is global sensitivity analysis rather than local
sensitivity analysis.

4. The Integrated Algorithm

Crossover probability (𝑝
𝑐
) and mutation probability (𝑝

𝑚
) are

the two basic evolutionary parameters in EA. The smaller
value of the two parameters implies the smaller probability
to generate new genes [39, 40]. In the integrated algorithm
SRCC-SPEA, the results of sensitivity analysis are used to
guide the activity of the variables in the optimization process
by modifying the 𝑝

𝑐
and 𝑝

𝑚
.

For an optimization model, which has four variables
(𝐴, 𝐵, 𝐶,𝐷) and three objectives (𝑓

1
, 𝑓
2
, 𝑓
3
), the modified 𝑝

𝑐

and 𝑝
𝑚
are obtained as follows:

(1) Extract the normalized sensitivity, which means that
the sumof all the variables sensitivities of the specified
objective is 1.0, as listed in Table 2.

(2) Sum the sensitivity of each variable. In this way,
the influence of a variable on all the objectives is
considered.

(3) It is well known that the value of evolutionary param-
eters should not be too large to avoid nonconvergence
of the optimization process [39]. Therefore, the cor-
rection coefficient is set as normalized value based on
the most sensitive variable to avoid the evolutionary
parameters exceeding the defined value.

Assume that the original global 𝑝
𝑐
and 𝑝

𝑚
are 0.400 and

0.020, respectively. The actual probability for each variable
can be obtained by multiplying 𝑝

𝑐
, 𝑝
𝑚
with their correction

coefficient, as reported in Table 2.Themost sensitive variable
is 𝐴, whose correction coefficient is 1.0 and evolutionary
parameters remain as the defined value. Variables with low
sensitivity are assigned with low evolutionary parameters
corresponding to smaller opportunity in following genetic
evolution.Thus,more optimizing computation is allocated on
the analysis of individuals with higher sensitivity, which can
effectively accelerate the optimization process.

In this improved algorithm SRCC-SPEA, the individuals
obtained from the optimization process serve as source
samples for sensitivity analysis. The results of the SRCC
provide the information for optimization priority of the



6 Mathematical Problems in Engineering

Table 2: A brief example of modifying evolutionary parameters.

Variables Sensitivity Correction
coefficient

Evolutionary parameters
𝑓
1

𝑓
2

𝑓
3

Sum 𝑝
𝑐

𝑝
𝑚

𝐴 0.56 0.52 0.36 1.44 1.00 0.400 0.020
𝐵 0.13 0.30 0.32 0.75 0.52 0.208 0.010
𝐶 0.25 0.09 0.23 0.57 0.40 0.160 0.008
𝐷 0.06 0.09 0.09 0.24 0.17 0.068 0.003

−1.0−0.8−0.400.40.81.0

Figure 3: Relationship of SRCC value versus variable distribution.

−1.0 −1.0 −1.01.0 1.0 1.0 1.0

Figure 4: SRCC value of straight lines.

x

y

Line 1 SRCC = 1

Line 2 SRCC = 1

Figure 5: Curves with different slope.

variables.When the sensitivity analysis sample is small, SRCC
results can be unstable and deviate far from the true values
[36]. So, SRCC should achieve stabilization before guiding the
optimization process. The SRCC can be safely considered as
stable when the deviation between 5 consecutive generations
is less than 5%. Figure 7 depicts the process of the SRCC-
SPEA.

5. Case Studies

Three cases are carried out to verify the practical applicability
and superiority of the integrated algorithm SRCC-SPEA.

x

y

SRCC = 0

Figure 6: Output 𝑦 versus insensitive parameter 𝑥.

5.1. Mathematical Problem. In this section, a mathematical
problem is used to verify the accuracy of optimization
method SRCC-SPEA and sensitivity analysis method SRCC.
The mathematical problem is defined as

𝑓
1
= sin (𝑥 + 0.3𝑦) ,

𝑓
2
= cos (𝑥 − 0.3𝑦) ;

𝑥, 𝑦 ∈ [0, 𝜋
2 ] ; min (𝑓

1
, 𝑓
2
) .

(2)

All the evolutionary parameters are listed in Table 3.
The theoretical solution set of this model in the first

quadrant is defined as 𝑓2
1

+ 𝑓2
2

= 1; 𝑓
1
, 𝑓
2

∈ [0, 1]. From
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Table 3: The evolutionary parameters.

Number of each generation Number of external population Max generation Cross probability Mutation probability
50 50 50 0.40 0.02
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Figure 7: Process flowchart for integrated algorithm.
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Figure 8: Comparison of Pareto optimal set between SRCC-SPEA
and theory.

Figure 8, the Pareto optimal set of SRCC-SPEA shows a
satisfactory agreement with theoretical result.

Figure 9 shows the comparison of parameters sensitivity
between SRCC and Sobol’s method. The values obtained by
the twomethods are not too dissimilar and the sensitivity sort
is in agreement. The result demonstrates the effectiveness of
SRCC, used as sensitivity analysis, to guide the optimization.
By checking the final data, it is found that 𝑥 is relatively more

Table 4: The optimization variables.

Optimization variables Reference value Constraints
𝑎
1
/m 59.5 55.0∼64.0

𝑎
2
/m 84.0 80.0–88.0

𝑃/Pa 400 350–450
𝑡/mm 0.20 0.10–0.30
𝐸/Gpa 12.0 11.0–13.0

sensitive than 𝑦. The correction coefficient of 𝑥 and 𝑦 is 1.0
and 0.19, so a higher evolution priority is allocated to 𝑥.

5.2. Optimization of an Airship Envelope. A multiobjective
optimization model of an airship envelope, whose geometry
is shown in Figure 10, is proposed in this part.

5.2.1. Variables and Constraints. The optimization variables
are listed in Table 4, in which 𝑡, 𝑃, and 𝐸 represent
material thickness, differential pressure, and elastic modulus,
respectively. Except for the constraints for the optimization
variables, the envelope volume, which is directly related with
the payload capacity andmaximum operating altitude [41], is
fixed as 12.6 × 104m2. The value of 𝑏 is calculated based on
the value of 𝑎

1
and 𝑎
2
.

5.2.2. Objectives. The objective function is expressed as
min{𝑓

1
, 𝑓
2
, 𝑓
3
}, where 𝑓

1
, 𝑓
2
, and 𝑓

3
represent volume of the

material, structural strain energy, and maximum envelope
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Figure 11: Pareto optimal set of SRCC-SPEA and SPEA.

stress, respectively. With the fixed volume density, which
is 550 kg/m3, volume of the material reflects the envelope
self-weight. Structural strain energy and maximum envelope
stress are defined to indicate the stiffness and ultimate
strength of the envelope. The value of evolutionary param-
eters refers to Table 3.

5.2.3. Results. The three-dimensional Pareto optimal set of
the fiftieth generation is shown in Figure 11. To further
clarify the advantage of SRCC-SPEA, Figure 12 shows the
Pareto optimal set of (𝑓

1
-𝑓
3
) and Figure 13 shows the optimal

parameters (𝑡-𝐸) corresponding to the Pareto optimal set.
Obviously, the Pareto optimal set of SRCC-SPEA shows
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Figure 13: Optimal parameters (𝑡-𝐸) of SRCC-SPEA and SPEA.

better uniformity than SPEA after the 50th iteration, which
indicates that more iteration steps are needed for SPEA to
obtain the better result.

The time-consumption, which relates to the computer
capacity, is about 5 hours for both SPEAand SRCC-SPEA. But
sensitivity of the optimization variables can also be obtained
by SRCC-SPEA, and their correction coefficients are listed in
Table 5. Theoretically, variables 𝑃 and 𝐸 have no influence
on the volume of the material 𝑓

1
. The sensitivities of 𝑃 and

𝐸 obtained by SRCC are 0.90% and 0.81%, which are nearly
close to zero.Themost sensitive variable is material thickness
𝑡, which indicates that optimization computation will focus
on the evolution of 𝑡 and less genetic opportunity is paid on
other variables.

5.3. Truss Topology Optimization. In this section, the pro-
posed algorithm is demonstrated by a truss topology opti-
mization with discrete variables. The truss simply supported
at both ends (see Figure 14), has a length of 3m and a regular
triangle cross section with a side length of 0.3m. The section
of each rod is 0.006m2. A concentrated force 900N is applied

A

B

C

F

Figure 14: Schematic diagram of the truss.

at the middle of top chord and material density is set as
1700 kg/m3.

The optimization variables are the truss segment number
𝑁, truss type marked as TYPE, and nominal length of each
segment chord. The value of 𝑁 is set as 6, 7, 8, and 9. TYPE,
whose value is listed in Table 6, is defined to describe the
difference of segment number between three chords (𝐴, 𝐵, 𝐶).
The nominal length of segment chord is stored by three
arrays: 𝐴(𝑖), 𝐵(𝑖), and 𝐶(𝑖), 𝑖 = 1, 2, 3, . . . , 9. The actual
length of each chord is decided by the proportional weight of
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Figure 15: Optimization process of SRCC-SPEA and SPEA.

Table 5: Sensitivities and correction coefficients of the optimization
variables.

𝑓
1

𝑓
2

𝑓
3

Correction
coefficient

𝑎
1

7.47% 8.48% 7.08% 0.10
𝑎
2

2.94% 0.59% 0.89% 0.02
𝑃 0.90% 17.36% 9.17% 0.12
𝑡 87.87% 63.51% 72.89% 1.00
𝐸 0.81% 10.05% 9.96% 0.09

Table 6: The value of optimization variable TYPE.

TYPE value 0 1 2 3
Segment number

𝐴 𝑁 𝑁 + 1 𝑁 𝑁
𝐵 𝑁 𝑁 𝑁 + 1 𝑁
𝐶 𝑁 𝑁 𝑁 𝑁 + 1

nominal length. The total number of optimization variables
is 29.

Two optimal objectives are minimizing deformation (𝑓
1
)

andminimizingweight (𝑓
2
).The evolutionary parameters are

listed in Table 7.
Figure 15 displays the optimization process of SRCC-

SPEA and SPEA. For the SRCC-SPEA method, the Pareto
optimal set changes little after the 500th iteration. But for
the SPEA method, deviation still exists between the 750th
iteration and the 1000th iteration. This indicates that the
terminated generation can be set as 500 and much time can
be saved for SRCC-SPEA.

Sensitivity of the 29 optimization variables to all the
objectives can also be obtained, as listed in Table 8. It is
found that the first two most sensitive variables to weight 𝑓

2

are 𝑁 and TYPE. Truss segment number 𝑁 has the most
obvious influence on deformation 𝑓

1
. The nominal length

of each segment chord along chord 𝐴 has greater influence
on deformation than the other two chords 𝐵 and 𝐶. After
modification, more optimization computation will focus on
the evolution of 𝑁.

The higher number of optimization variables implies the
better effect of optimization computation reallocation, corre-
sponding to the more obvious effectiveness of the integrated
algorithm SRCC-SPEA.That is why the SRCC-SPEA obtains
the even distributed Pareto optimal set much more quickly
than SPEA for the truss topology optimization problem with
29 variables. What is more, conducting sensitivity analysis
separately for 29 variables using traditional global sensitivity
analysis method means considerable computational effort.
But the time-consumption of SRCC-SPEA was almost equal
to SPEA, which means lots of computational time would be
saved.

6. Conclusions

In this paper, a novel integrated algorithm SRCC-SPEA was
proposed based on the improvements of the optimization
method SPEA and sensitivity analysis method SRCC. The
elimination strategy “Fuzzy cluster analysis” of SPEA is
improved to avoid the retreat of the Pareto front and reduce
the time complexity. Dichotomy replaces the average-rank-
strategy for SRCC rank assignment to reduce the time
complexity.

In contrast with traditional evolutionary algorithmSPEA,
the characteristics of SRCC-SPEA can be summarized as
follows: (1) based on the results of sensitivity analysis, SRCC-
SPEA effectively improves the survivability competence of
sensitive variables by changing the evolutionary parameters;
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Table 7: The evolutionary parameters.

Number of each generation Number of external population Max generation Cross probability Mutation probability
60 60 1000 0.40 0.02

Table 8: Sensitivities and correction coefficients of the optimization
variables.

Variables 𝑓
1

𝑓
2

Correction coefficient
𝑁 13.63% 18.95% 1.00
TYPE 5.03% 10.13% 0.47
𝐴1 0.19% 2.00% 0.07
𝐴2 1.28% 5.14% 0.20
𝐴3 11.52% 6.66% 0.56
𝐴4 3.23% 0.95% 0.13
𝐴5 9.89% 3.78% 0.42
𝐴6 12.58% 0.19% 0.39
𝐴7 6.51% 1.32% 0.24
𝐴8 3.44% 1.06% 0.14
𝐴9 3.76% 2.20% 0.18
𝐵1 0.30% 4.05% 0.13
𝐵2 0.59% 4.08% 0.14
𝐵3 2.56% 2.03% 0.14
𝐵4 3.04% 2.64% 0.17
𝐵5 0.08% 1.18% 0.04
𝐵6 1.09% 1.21% 0.07
𝐵7 3.17% 0.18% 0.10
𝐵8 0.81% 3.14% 0.12
𝐵9 3.09% 2.01% 0.16
𝐶1 2.30% 2.79% 0.16
𝐶2 2.20% 3.88% 0.19
𝐶3 2.49% 5.85% 0.26
𝐶4 1.08% 1.10% 0.07
𝐶5 0.61% 0.67% 0.04
𝐶6 1.99% 0.63% 0.08
𝐶7 1.83% 7.69% 0.29
𝐶8 1.29% 0.73% 0.06
𝐶9 0.43% 3.76% 0.13

(2) SRCC-SPEA simultaneously obtains the parameter sen-
sitivity and Pareto optimal set in a single run without extra
samples, because the individuals of optimization work as
samples of sensitivity analysis. Great computational cost can
be saved compared to conducting sensitivity analysis and
optimization analysis separately; (3) SRCC-SPEA obtains an
even distributed Pareto optimal set more quickly than the
SPEA, and this advantage is more obvious for optimization
model with more variables.
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