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Prognostic classification of early ovarian
cancer based on very low dimensionality
adaptive texture feature vectors from cell
nuclei from monolayers and histological
sections
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In order to study the prognostic value of quantifying the chro-
matin structure of cell nuclei from patients with early ovarian
cancer, low dimensionality adaptive fractal and Gray Level
Cooccurrence Matrix texture feature vectors were extracted
from nuclei images of monolayers and histological sections.
Each light microscopy nucleus image was divided into a pe-
ripheral and a central part, representing 30% and 70% of the
total area of the nucleus, respectively. Textural features were
then extracted from the peripheral and central parts of the
nuclei images.

The adaptive feature extraction was based on Class Dif-
ference Matrices and Class Distance Matrices. These matri-
ces were useful to illustrate the difference in chromatin tex-
ture between the good and bad prognosis classes of ovarian
samples. Class Difference and Distance Matrices also clearly
illustrated the difference in texture between the peripheral
and central parts of cell nuclei. Both when working with nu-
clei images from monolayers and from histological sections
it seems useful to extract separate features from the periph-
eral and central parts of the nuclei images.

*Corresponding author: Dr. B. Nielsen, Department of Informat-
ics, University of Oslo, P.O.Box 1080 Blindern, N-0316 Oslo, Nor-
way. Fax: +47 22 85 24 01; E-mail: birgitn@ifi.uio.no.

1. Introduction

Most women undergoing treatment for early ovar-
ian cancer have a good prognosis, but about 20% will
eventually die of the disease. Identifying patients with
increased risk of relapse is important, as it could be
used to select patients in need for adjuvant treatment
after surgery. In this study, we have extracted low di-
mensionality adaptive texture feature vectors for two
different texture analysis methods in order to quan-
tify the chromatin structure of cell nuclei from patients
with early ovarian cancer.

Texture features used for classification in digital
pathology are often selected from a large number of
rather ad hoc features, where uncertainty related to pa-
rameter settings also contribute to a relatively high di-
mensionality of the feature space. Whatever sophisti-
cated feature selection algorithms we use, the risk of
purely coincidental “good” feature sets may become
alarmingly high, if the available data set is limited.
This is particularly a problem if separate training and
test sets are not used [16]. The ordinary Gray Level
Cooccurrence Matrix (GLCM) method [6] is a good
example of a texture method with a large number of
pre-defined features combined with a number of free
parameters (number of gray levels, inter-pixel distance,
orientation). Identifying a few consistently valuable
features is important for many applications as it im-
proves reliability and enhances our understanding of
the phenomena that we are modelling. We have there-
fore proposed a small number of adaptive texture fea-
tures that can be extracted by applying the same ap-
proach to several texture methods [2,3,13,14]. These
adaptive texture features are based on Class Difference
Matrices and Mahalanobis Class Distance Matrices.
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The class difference matrix for a given texture
method (i.e., the Gray Level Cooccurrence Matrix
method [6]) contains the difference between the av-
erage frequency matrix (i.e., the average GLCM) of
each of the two classes. The class distance matrix con-
tains information on which matrix element that – when
taken one matrix element at a time – will provide high
class discrimination. Earlier [2,3,13], we have found
that the class distance matrices between different pairs
of mouse liver nuclei classes contained large areas of
consistently high values. These areas corresponded to
separate areas of consistently positive or negative class
difference values. For each nucleus image, we could
therefore combine information from the entries of the
normalized frequency matrix (i.e., the GLCM) based
on the class difference and distance matrices, to obtain
a small number of adaptive texture features for classi-
fication.

There are many reasons to believe that the chro-
matin distribution in the nucleus is by no means a ran-
dom process, resulting in a stationary texture across the
whole cell nucleus. Thus, measuring texture for a bi-
ologically relevant subpart of the nucleus can be ex-
pected to give better results than simply doing it for the
nucleus as a whole. Of particular interest is quantifi-
cation of the tendency of condensed heterochromatin
to be located adjacent to the nuclear envelope [22].
Based on the Statistical Geometric Features (SGF) of
Chen et al. [4], Walker and Jackway [19] proposed a
small set of additional features tailored to detect some
of these radial differences. However, the features de-
signed to measure the average displacement and av-
erage inertia of chromatin clumps from the center of
gravity of the nucleus, were not reported to capture
chromatin changes during cell dysplasia, when tested
on a set of cervical cell images [19]. Using a parti-
tioning of the cell nuclei into a peripheral and a cen-
tral part, we have repeatedly seen that the classifica-
tion based on chromatin texture will benefit from a ra-
dial dichotomy of the texture feature extraction [2,3,
11–13]. In transmission electron micrographs (TEM)
of ultrathin sections of liver cell nuclei we have found
that there is a change in the amount and arrangement of
condensed heterochromatin close to the nuclear enve-
lope from normal to malignant cells. The heterochro-
matin structures are fewer and larger in the malignant
cell nuclei. This is reflected in changes in texture pa-
rameters, particularly if these are extracted from the
peripheral part of the nuclei.

The images utilized in the earlier studies [2,3,11–
13] were obtained through electron microscopy and

were manually segmented. The potential of using these
methods in clinical work becomes much greater if they
can be applied to light microscopy images. In this
study we have therefore applied two of the methods
described earlier [13,14] on light microscopy images
of cell nuclei from ovarian cancer classified as FIGO
stage 1. The material consisted of two groups. The
patients in the “good prognosis” group survived the
follow-up period without a relapse, while the patients
in the “bad prognosis” group died of cancer-related
disease or relapsed during the follow-up period.

The distribution and organization of condensed chro-
matin within the cell nuclei may be studied either in
histological sections or in monolayers. There is no a
priori knowledge about which of the two modalities
that will give the optimal prognostic information when
this particular texture based classification is performed.
The present study therefore includes and compares tex-
ture analysis of light microscopy images of nuclei from
both histological sections and monolayers.

The textural phenomena that are observable close to
the nuclear membrane in images of slices through the
cell nuclei, will not necessarily be observable in the
extremely peripheral part of projection images of the
whole nuclear volume, as in monolayer images. Thus,
the radial differentiation of the textures may be very
different in the two sets of images. In addition, we
know that the monolayer material has gone through a
preparation process quite different from that of the his-
tological sectioned material. Therefore, the visual tex-
ture observed in the digital images is quite different.
This is even reflected in the average size of the cell nu-
clei. So the optimal texture analysis method is not nec-
essarily the same, and the optimal parameters within a
single method may also differ. This all contributes to
making a comparison of textures in sections and mono-
layers and the differentiation into central and periph-
eral nuclear segments an interesting issue.

We have chosen to compare the widely known and
very popular GLCM method to the new and powerful
fractal signature/lacunarity matrix method [13]. Earlier
[13,14], we have seen that these methods will benefit
from the class distance approach. The lacunarity ma-
trix method also provides a very useful tool for quanti-
tative description of structural differences between the
textures [11].

2. Material and methods

2.1. Early ovarian cancer

The cases of early ovarian cancer included in this
study were selected from a larger material of ovar-
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ian cancer classified as FIGO stage 1 [9]. The patients
were treated at The Norwegian Radium Hospital dur-
ing 1982–1989. The patients who survived the follow-
up period without a relapse were included in the good
prognosis group. The minimum length of follow-up for
patients alive without a relapse was ten years. The pa-
tients who died of cancer-related disease or relapsed
during this period were included in the bad prognosis
group.

2.1.1. Monolayers
Twenty cases were included in each of the two

groups. Paraffin-embedded tissue samples fixed in 4%
buffered formalin were sectioned (2×50µm) and enzy-
matically digested (Sigma protease, type XXIV, Sigma
Chemical C., St. Louis, Missouri, USA) for the prepa-
ration of isolated nuclei (monolayers) [7]. The nu-
clei were Feulgen–Schiff stained according to an es-
tablished protocol [17]. Blocks were selected by the
pathologist, who selected the tumour tissue to be pre-
pared.

The Fairfield DNA Ploidy System (Fairfield Imag-
ing LTD, Kent, England), which consisted of a Zeiss
Axioplan microscope equipped with a 40/0.75 objec-
tive lens (Zeiss), a 546 nm green filter and a black
and white high resolution digital camera (C4742-95,
Hamamatsu Photonics K.K., Hamamatsu, Japan) was
used. A shade correction was performed for each im-
age field and the image was stored in 1024 × 1024
pixels with a gray level resolution of 10 bits per pixel.
The pixel resolution was 166 nm per pixel on the cell
specimen.

Trained personnel performed a screening of the cells
in the microscope and selected tumour cells for the
analysis. Stromal cells, necrotic cells, doublets or cut
cells were disregarded. The nuclei were segmented
from the background by using a global threshold. The
histograms of all nuclei images were normalized to
the same mean value (650.0) and standard deviation
(120.0). This was done to normalize the first order
statistics while utilizing the whole range of gray levels,
and avoid clipping of the histograms. Figure 1 shows
examples of cell nuclei from each of the two groups.
The mean number of measured tumour nuclei per sam-
ple was 256, ranging from 185 to 294 nuclei. This ma-
terial was also included in [14].

2.1.2. Histological sections
In the experiment on histological sections, seven-

teen cases were included in the good prognosis group
and eighteen cases in the bad prognosis group. Due
to practical preparation problems only twenty-nine of

Fig. 1. Four cell nuclei from a good prognosis sample (upper) and
four nuclei from a bad prognosis sample (lower). The nuclei were
selected from monolayers.

Fig. 2. Four cell nuclei from a good prognosis sample (upper) and
four nuclei from a bad prognosis sample (lower). The nuclei were
selected from histological sections.

the fourty cases that were used in the monolayer anal-
ysis were also included in the study of histological
sections (twelve good prognosis samples and seven-
teen bad prognosis samples). Paraffin embedded tissue
samples fixed in 4% buffered formalin were sectioned
(2 µm), put on slides, prepared and Feulgen–Schiff-
stained as described for monolayers with the follow-
ing exceptions: enzymatic digestion (Sigma protease)
were used on the sections for 25 minutes. Afterwards
the sections were post-fixated in 4% formalin for 60
minutes. The histograms of all nuclei images were nor-
malized to the same mean value (640.0) and standard
deviation (145.0). Thus, the whole range of gray levels
is used and no histogram clipping occurs, but the nor-
malization parameters are slightly different from those
of the monolayer data. Figure 2 shows examples of cell
nuclei from each of the two groups. The mean number
of measured nuclei per sample was 277, ranging from
110 to 329 nuclei.

2.2. Peel-off scanning

In order to extract separate estimates of texture fea-
tures in the periphery and center of the 2D cell nu-
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Fig. 3. Left: A cell nucleus from a good prognosis sample. The border between the 30% peripheral and 70% central part is outlined as a thin white
line. Right: The 1D gray level signal corresponding to the peripheral part of the 2D nuclei image. The nucleus is selected from a histological
section.

cleus image, an 8-neighbour backtracking bug follower
[15] has been used in a spiral scanning algorithm [11].
Starting with the 2D image of the segmented cell nu-
cleus, we follow the (outer) contour of the nucleus, and
spiral inwards as we peel off pixels, layer by layer,
from the nucleus, forming a discrete 1D gray level sig-
nal. In this type of spiral scanning, which we call “peel-
off scanning”, the resulting 1D gray level curve only
reflects the size and contrast of structures inside the
nucleus, not the shape of the nuclear membrane. We
also note that the pixels of the 1D signal are assumed
to be equidistant, regardless of whether they were 4- or
8-neighbours in the original 2D context.

In TEM images of ultrathin sections of liver cell nu-
clei we have previously found that there is a change in
the amount and arrangement of condensed chromatin
close to the nuclear envelope from normal to malignant
cells. The condensed chromatin structures are fewer
and larger in the malignant cell nuclei. A simple geo-
metric modeling of this observed 2D phenomenon will
indicate that the condensed chromatin structures close
to the nuclear membrane will overlap in a projected 2D
image of the 3D monolayer structure. Thus, the textu-
ral phenomena that are observable close to the nuclear
membrane in images of sections through the cell nuclei
will not necessarily be observable in the extreme pe-
ripheral part of projection images of the whole nuclear
volume, as in monolayer images. As it is very hard to
predict the optimal way of partitioning the nucleus for
the two modalities, we have chosen to use the same
area fraction for both the histological sections and the
monolayers images. Therefore, the 1D gray level sig-
nal resulting from the “peel-off scanning” of each cell

nucleus image was divided into a peripheral 30% and a
central 70% segment. Since each pixel of the image is
visited only once in this scanning process, we also get
a 30%/70% split in terms of nuclear area. The texture
features in the present study were extracted from these
two segments. Figure 3 shows an example of a 2D cell
nucleus image and the resulting 1D signal from the pe-
ripheral 30% segment. The peripheral segment corre-
spond to about 5–6 pixel layers of the nucleus in the
“peel-off scanning”. The repetitive pattern in the 1D
signal correspond to one circumference of the remain-
ing area of the cell nucleus in the “peel-off scanning”
process.

2.3. Gray Level Cooccurrence Matrices

The Gray Level Cooccurrence Matrix (GLCM)
method [6] is a way of extracting second order statis-
tical texture features. A GLCM is a matrix where the
number of rows and columns is equal to the number
of gray levels, G, in the image. In the case of our 1D
signal, the matrix element P (i, j|d) contains the prob-
ability for changes between gray levels i and j at a par-
ticular pixel displacement distance d. In this study we
have used G = 16 gray levels and d = 3. Separate
GLCM were accumulated from the peripheral 30% and
the central 70% 1D segments.

2.3.1. GLCM Class Distance Matrices
For each of the N (ωc) training set images of class ωc

we find the Gray Level Cooccurrence Matrix Pn(i, j).
For each element in this matrix we then estimate the
class conditional probability distributions PP (i, j|ωc)
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Fig. 4. Upper: The average normalized GLCM, P (i, j|ωc), computed from the peripheral part of all the monolayer nuclei images in the good
prognosis group. Lower: The difference between the P (i, j|ωc) computed from the peripheral and central parts of monolayer nuclei images in
the good prognosis group. The matrices are visualized both as gray-scale and surface plots.

of the normalized matrix value, based on all the N (ωc)
training set images of class ωc. Based on these class
conditional distributions, we compute the average nor-
malized GLCM, P (i, j|ωc), for each class ωc, the
class variance matrix σ2

P (i, j|ωc), the Class Difference
Matrix ∆P (i, j|ω1, ω2), and finally the GLCM Maha-
lanobis Class Distance Matrix, JP (i, j|ω1, ω2) between
the two classes ω1 and ω2 [14]:

P (i, j|ωc) =
1

N (ωc)

N (ωc)∑
n=1

Pn(i, j),

∆P (i, j|ω1, ω2) = P (i, j|ω1) − P (i, j|ω2), (1)

JP (i, j|ω1, ω2) =
(P (i, j|ω1) − P (i, j|ω2))2

(σ2
P (i, j|ω1) + σ2

P (i, j|ω2))/2
.

Figure 4 (upper) shows the average GLCM computed
from the peripheral part of all the monolayer nuclei im-
ages in the good prognosis class. Examples of GLCM
Class Difference and Distance Matrices are shown in
Figure 5.

2.3.2. Adaptive GLCM features
For each nucleus image, we combine those GLCM

matrix elements that contribute the most to the class

separability into adaptive GLCM features, simply by
using the squared class distance matrix values as sum-
mation weights [14]. We utilize the fact that in the two-
class problem, the class difference has a sign, depend-
ing on whether the first or the second class matrix el-
ement contains the highest average probability. So the
weighted summation is performed over the two disjoint
partitions of the class difference matrix ∆P by using
the binary decision functions:

Ω(+)(i, j|∆P ) =
{

1 if ∆P (i, j|ω1, ω2) � 0,
0 otherwise,

Ω(−)(i, j|∆P ) = 1 − Ω(+)(i, j|∆P ).
(2)

The two adaptive GLCM features for any given image
of class ω1 or ω2 having a GLCM matrix P (i, j|d) are
then given by the matrix summation [14]:

FP (+) =
∑
i,j

P (i, j) · J2
P (i, j) · Ω(+)(i, j|∆P ),

FP (−) =
∑
i,j

P (i, j) · J2
P (i, j) · Ω(−)(i, j|∆P ).

(3)
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Fig. 5. Left: The GLCM Class Difference Matrix, ∆P (i, j|ω1, ω2), computed from the peripheral 30% (upper) and the central 70% (lower) 1D
segments of nuclei from monolayers. The positive values in the surface plots (and the lighter areas in the gray-scale plots) correspond to matrix
elements that are more probable for the good prognosis class than for the bad prognosis class. Right: The Mahalanobis Class Distance Matrix,
JP (i, j|ω1, ω2), between the good and bad prognosis classes, based on the GLCM matrices, computed from the peripheral 30% (upper) and the
central 70% (lower) segments.
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2.4. Fractal Signature Vectors

Our method for estimation of fractal features from
1D curves [1,11,13] is based on the polygonization
method of Wall and Danielsson [21]. This method
gives a linear approximation to planar curves by ob-
taining a subset of the original set of points in such
a way that the new curve formed by a sequence of
line segments joining the points in the subset does not
“deviate” more than a certain amount from the origi-
nal points. There are several ways of quantifying the
“deviation”. Here we have used the area-to-line-length
ratio of Wall and Danielsson [21]. Wall–Danielsson’s
method steps from point to point through an ordered
sequence of points (xi, fi), and outputs the previous
point as a new breakpoint if the area deviation Ai per
unit length of the approximating line segment si ex-
ceeds a prespecified tolerance, T . If |Ai|/si < T , i
is incremented and (Ai, si) is recomputed. Otherwise,
the previous point is a new breakpoint and the previ-
ous value of si is stored. This method is purely sequen-
tial and very fast, particularly when the x-values are
assumed equidistant (∆x = 1).

We approximate the 1D gray level signal by poly-
gonization with several values of the tolerance, T . The
set of tolerance values is computed from a Fibonacci
sequence [1,11,13]. For each tolerance value the total
length of the line segments that approximate the curve
is summed up by ST =

∑
i si.

For each cell nucleus we compute the slope of the
best fitted straight line through three and three points in
the {log(T ), log(ST )}-domain. We call this the fractal
signature, ϕn(T ) [13] of the central T -value.

2.4.1. Fractal Signature Class Distance Vectors
For each tolerance value T , the class conditional

probability distributions Pϕ(T |ωc) of the fractal sig-
nature ϕ(T ) are estimated, based on the N (ωc) cells
of class ωc. We compute the average Fractal Signa-
ture Vector ϕ(T |ωc) for each class ωc, the class vari-
ance vector σ2

ϕ(T |ωc), the Class Difference Vector
∆ϕ(T |ω1, ω2) as well as the Fractal Signature Maha-
lanobis Class Distance Vector, Jϕ(T |ω1, ω2), between
the classes [13]:

ϕ(T |ωc) =
1

N (ωc)

N (ωc)∑
n=1

ϕn(T ),

∆ϕ(T |ω1, ω2) = ϕ(T |ω1) − ϕ(T |ω2),

Jϕ(T |ω1, ω2) =
(ϕ(T |ω1) − ϕ(T |ω2))2

(σ2
ϕ(T |ω1) + σ2

ϕ(T |ω2))/2
.

(4)

2.4.2. Adaptive Fractal Signature features
By using the binary decision functions:

Ω(+)(T |∆ϕ) =
{

1 if ∆ϕ(T |ω1, ω2) � 0,
0 otherwise,

Ω(−)(T |∆ϕ) = 1 − Ω(+)(T |∆ϕ)
(5)

the two adaptive fractal signature features for any given
image of class ω1 or ω2 having a fractal signature vec-
tor ϕ(T ) are given by the vector summation [13]:

FS(+) =
∑
T

ϕ(T ) · J2
ϕ(T ) · Ω(+)(T |∆ϕ),

FS(−) =
∑
T

ϕ(T ) · J2
ϕ(T ) · Ω(−)(T |∆ϕ).

(6)

2.5. Lacunarity Matrices

The fractal dimension and the fractal signature is
based on the total length of the line segments that ap-
proximate the original gray level curve for each tol-
erance value. This simple measure does not take into
account the distribution of line segment lengths, and
may therefore not be sufficient for texture analysis and
characterization. One may in fact produce textures hav-
ing the exact same fractal dimension, but with differ-
ent textures. Mandelbrot [10] introduced the term la-
cunarity, Λ, to characterize the deviation from texture
homogeneity. In the case of line segments from poly-
gonization, if the distribution of line lengths is nar-
row, the lacunarity is low, if the distribution is wide,
lacunarity is higher. Λ is often estimated as a scalar,
e.g., the variance of the distribution [18], for each tol-
erance value, giving a lacunarity vector. Instead, we
have chosen to maintain all the information about the
distribution of the length of the line segments. Thus,
for each 1D gray level curve, we estimate the proba-
bility distribution p(s) of the length, si, of the line seg-
ments approximating the curve, for each tolerance pa-
rameter T [11]. We store these into a Lacunarity Ma-
trix, Λn(s, T ), covering the whole range of the toler-
ance parameter T [13]. The line lengths are grouped
into ranges, 1–10, 11–20, etc.

2.5.1. Lacunarity Class Distance Matrices
From the class-conditional distributions of each el-

ement of the lacunarity matrix, PΛ(s, T |ωc), we cal-
culate the average Lacunarity Matrix Λ(s, T |ωc) for
each class ωc, the class variance matrix σ2

Λ(s, T |ωc),
the Class Difference Matrix ∆Λ(s, T |ω1, ω2) and fi-
nally the Lacunarity Mahalanobis Class Distance Ma-
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Fig. 6. Upper: The mean lacunarity matrix, Λ(s, T |ωc), computed from the central part of all the monolayer nuclei images in the good prognosis
group. Lower: The difference between the Λ(s, T |ωc) computed from the peripheral and central parts of monolayer nuclei images in the good
prognosis group. The matrices are visualized both as gray-scale and surface plots.

trix, JΛ(s, T |ω1, ω2), between the two classes ω1 and
ω2 [13]:

Λ(s, T |ωc) =
1

N (ωc)

N (ωc)∑
n=1

Λn(s, T ),

∆Λ(s, T |ω1, ω2) = Λ(s, T |ω1) − Λ(s, T |ω2),

JΛ(s, T |ω1, ω2) =
(Λ(s, T |ω1) − Λ(s, T |ω2))2

(σ2
Λ(s, T |ω1) + σ2

Λ(s, T |ω2))/2
.

(7)

Figure 6 (upper) shows the mean lacunarity matrix
computed from the central part of all the monolayer
nuclei images in the good prognosis class. The figure
(lower) also shows that there is a marked difference be-
tween the lacunarity matrices from the two segments
of cell nuclei within the good prognosis class. Figure 7
shows examples of Lacunarity Class Difference and
Class Distance Matrices.

2.5.2. Adaptive Lacunarity features
By using the decision matrices (i.e., bit maps):

Ω(+)(s, T |∆Λ) =
{

1 if ∆Λ(s, T |ω1, ω2) � 0,
0 otherwise,

Ω(−)(s, T |∆Λ) = 1 − Ω(+)(s, T |∆Λ)

(8)

the two adaptive lacunarity matrix features for any
given image of class ω1 or ω2 having a lacunarity ma-
trix Λ(s, T ) are given by the matrix summation [13]:

L(+) =
∑
s,T

Λ(s, T ) · J2
Λ(s, T ) · Ω(+)(s, T |∆Λ),

L(−) =
∑
s,T

Λ(s, T ) · J2
Λ(s, T ) · Ω(−)(s, T |∆Λ).

(9)

2.6. Classification

Bayesian classification with equal prior probabili-
ties for each class was used as the rule for classifica-
tion. The feature distribution within each class was as-
sumed to be multivariate normal and the within-class
covariance matrices were assumed equal. Initially, the
value of each texture feature used to classify each pa-
tient of the ovarian data set was the mean value of the
distribution of feature values of the nuclei representing
the sample (patient). We have verified that the distri-
butions of each of the 6 features obtained from the ap-
proximately 250 cell nuclei per patient are very close
to normal distributions. The mean feature value and
the standard deviation are not only good parameters to
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Fig. 7. Left: The Lacunarity Class Difference Matrix, ∆Λ(s, T |ω1, ω2), computed from the peripheral 30% (upper) and the central 70% (lower)
1D segments of nuclei from monolayers. The positive values in the surface plot (and the lighter areas in the gray-scale plot) correspond to matrix
elements that are more probable for the good prognosis class than for the bad prognosis class. Right: The Mahalanobis Class Distance Matrix,
JΛ(s, T |ω1, ω2), between the good and bad prognosis classes, based on the lacunarity matrices, computed from the peripheral 30% (upper) and
central 70% segments.
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describe the statistical distribution of the feature value
for a given patient, but may also be natural features to
use when classifying the patients. However, this does
not mean that these two distribution parameters are the
optimal patient features for classification. In a previ-
ous study [14], we observed that the class distance was
increased by about 40% by using the 10 or 90 per-
centile of an adaptive feature instead of the median or
the mean. Therefore, the standard deviation and the 10
and 90 percentiles of the six feature value distributions
for each patient have also been tried.

Because of the small number of ovarian samples
available, we have used the leave-one-out method to
estimate the misclassification rates. Thus, the same
data set was used both to define and evaluate the linear
discriminant functions. However, for each cycle of the
leave-one-out, new class difference and class distance
matrices were obtained.

3. Results

3.1. Monolayers

Figure 5 shows GLCM Class Difference and Class
Distance Matrices obtained from the peripheral and
central 1D segments of monolayer cell nuclei. The
class distance matrices contain large areas of consis-
tently relatively high values. These areas correspond to
separate areas of consistently positive or negative class
difference values. The mean feature value over all cells
for each patient gave a 35–40% classification error for
each of the two adaptive GLCM features of Eq. (3),
both for the peripheral and central part of the cell nu-
clei. However, when we consider both the mean, stan-
dard deviation and the 10 and 90 percentiles of the fea-
ture value distributions, the features from the periph-
ery tend to give lower errors (3%) than the center. As
shown in [14], we find that a lower classification error
is obtained by using the percentiles. The 90 percentile
of the GLCM feature FP (+)(p) from the peripheral part
of the nuclei gave an error rate of 27.5%.

The Fractal Signature features (Eq. (6)) gave slightly
higher errors than the adaptive GLCM features. Again
the peripheral features were better, and the best feature
was found among the percentiles.

Figure 7 shows Lacunarity Class Difference and
Distance Matrices obtained from the peripheral and
central segments, demonstrating that the highest class
differences and the highest class distances within each
segment are localized into certain parts of the matrices.

As seen in Fig. 6, there is a marked difference be-
tween the lacunarity matrices from the two segments of
cell nuclei within a given class, and these differences
are also localized into consistent areas of the matrix.
The classification performance of the adaptive lacunar-
ity features (Eq. (9)) were slightly better than for the
adaptive GLCM features. The mean feature value over
all cells for each patient gave a 32.5% classification er-
ror for each of the single adaptive lacunarity features
L+(p) and L−(p), and the 90 percentile of L+(p) gave
an error rate of 27.5%. So again we see that the pe-
ripheral data have an edge, and that the best feature
is found among the percentiles. Searching for the best
pair of adaptive features from the same method (either
GLCM, Fractal Signature or Lacunarity), the best com-
bination was two lacunarity features, one from the pe-
ripheral and one from the central part of the cell nu-
clei, giving an error rate of 25.0%, as estimated by the
leave-one-out method. The best combination of three
and four adaptive fractal and adaptive GLCM features
would give error rates of 20.0% and 15.0%, respec-
tively. However, this would involve searching through
17.296 and 194.580 possible combinations, quite con-
trary to our aim of reducing the risk of selecting good
feature sets by coincidence.

3.2. Histological sections

The difference in favour of the peripheral features is
still present among the fractal signature and lacunarity
features. The best single adaptive feature was the 10
percentile of the lacunarity feature L−(p), giving an
error rate of 22.9% (Fig. 8).

The best pair of adaptive features from the same
method (either GLCM, Fractal Signature or Lacunar-
ity), again turned out to be a combination of two lacu-
narity features, the 10 percentile of the lacunarity fea-
ture L−(p) from the peripheral segment and the mean
of L+(c) from the central segment, giving an error rate
of 17.1% (Fig. 9).

4. Discussion

The pixels of the 1D signal are assumed to be
equidistant, regardless of whether they were 4- or 8-
neighbours in the original 2D context. Does this intro-
duce a distortion in the texture measure? There are sev-
eral aspects to this. It is common practice when using,
e.g., GLCM or GLRLM to implicitly use the chess-
board distance metric, and thus to mix the information
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Fig. 8. The adaptive lacunarity feature L(−)(p) extracted from the
30% peripheral part of nuclei from histological sections are plotted
for each sample of ovarian cancer. Each sample (patient) is repre-
sented by the 10 percentile of the distribution of the feature value
extracted from about 280 cell nuclei per sample. The dotted line rep-
resents the decision boundary for the classifier computed from the
whole data set.

obtained from horizontal/vertical and diagonal steps.
Thus, the results of a 2D GLCM or GLRLM analysis
and a similar 1D analysis of the peel-off-scanning gray
level signal will be the same [12]. We have chosen to
represent the results of the peel-off-scanning as con-
secutive pixel values, without storing the coordinates
of the pixels or the Euclidian distances between neigh-
boring pixels. This speeds up the subsequent compu-
tations during polygonization. A disadvantage is that
some line lengths may be underestimated, thus affect-
ing both the fractal signature and the lacunarity ma-
trix. Our aim is not to obtain exact estimates of the true
fractal signature or the true lacunarity, but merely to
differentiate between the classes. And there does not
seem to be any reason to believe that the underesti-
mated line lengths will systematically affect one class
of cells more than the other.

There is a marked difference in the GLCM class dif-
ference and distance matrices computed from the pe-
ripheral 30% and the central 70% segments of nuclei
from monolayers (see Fig. 5). These subtle texture dif-
ferences are very hard to see in the gray level images.

We note that the peripheral part of a 2D nucleus im-
age from monolayers only reflects the chromatin struc-
ture close to the nuclear membrane, while the central

Fig. 9. The mean value of the adaptive lacunarity feature L(+)(c) is
plotted versus the 10 percentile of the feature L(−)(p) for samples
from the good prognosis (◦) and bad prognosis (∆) classes. The de-
cision boundary for the classifier computed from the whole data set
is also indicated. The nuclei are from histological sections.

segment will contain information about the chromatin
structure throughout the whole nucleus.

This difficulty is not present in the images of histo-
logical sections. When working with sections we have
observed a non-uniform dying throughout the material.
Variable thickness of the sections may be one of the
reasons for this. We have observed that some samples
have a higher probability of high gray level values in
the central part of the nuclei. Although the histograms
of all nuclei are normalized, this may influence the lo-
cation of the peaks of the difference and distance ma-
trices of both the peripheral and central segments. It
may also be responsible for the more noisy appearance
of the class distance matrices from the histological sec-
tions than from the monolayers.

On a larger data set, it would be of interest to study
the merits of different ways of normalizing the image
histograms prior to the computation of class difference
and class distance matrices. As we are performing sep-
arate feature extraction from the two parts of the nu-
clei, it may be best to also perform separate histogram
transforms to the two segments. However, given the
relatively small data set, it would be futile to test a mul-
titude of combinations of strategies.

In order to understand some of the differences be-
tween the two classes expressed in terms of differ-
ences in the chromatin structure, it is obviously of
interest to analyze the results of the polygonization-
based fractal lacunarity method. Therefore, 2D nor-
malized histograms of the line lengths versus distance
between breakpoints in the x-direction of the 1D digi-
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Fig. 10. 2D difference histogram of line length s versus distance in
x-direction of the digital curve. This illustrates the difference be-
tween the mean normalized histograms extracted from all cells in the
good and bad prognosis classes, computed for tolerance T = 3.25.
The histograms were extracted from the 70% central segment of the
monolayer cell nuclei. The lighter area corresponds to line segments
that are more probable for the good prognosis class than for the bad
prognosis class and the darker area corresponds to line segments that
are less probable for the good prognosis class than for the bad prog-
nosis class.

tal curve were generated. Mean histograms were com-
puted over all cells in each class, and difference his-
tograms (Fig. 10) for each polygonization tolerance
value were used as a tool to analyze the difference
in texture between the classes. We note that line seg-
ments of the same length may have widely different in-
tensity gradients. From Fig. 10 one may observe that
for a given horizontal distance between breakpoints in
the 1D signal, shorter polygonization line segments are
more probable in bad prognosis cell nuclei, generally
implying lower gray level gradients. This leads directly
to the observation that GLCM matrices would be more
concentrated along the diagonal in the bad prognosis
class than in the good prognosis class, as confirmed by
Fig. 5.

Conners and Harlow [5] concluded that the cooc-
currence matrix cannot discriminate between all visual
texture pairs if only one intersample distance is uti-
lized. This suggests that a number of intersample dis-
tances should be used for a more accurate classifica-
tion. Similarly, the number of gray levels may be var-
ied. Using few levels is equivalent to viewing the im-
age on a coarse scale, whereas more gray levels give
an image with more detail. The performance of a given
pre-defined GLCM feature, as well as the ranking of
the features, may depend on the number of gray lev-
els used. Even in our method, a statistically reliable es-

timate of the GLCM joint probability distribution per
cell is needed. So the matrix should contain a reason-
ably large occupancy level in those locations where the
corresponding class distance matrix values are high.
This can generally be achieved by restricting the num-
ber of gray value quantization levels. Based on previ-
ous experience we have chosen G = 16 gray levels
and the distance d = 3 for the GLCM method in order
to reduce the total number of features to be evaluated.
We note that other (G, d)-combinations were not tested
prior to this choice.

Previously we have only used the mean of the cell
features obtained for each sample in the classification
[2,3,11–13]. We have seen [14] that the use of per-
centiles from the feature distribution of each sample
may improve the classification results. However, us-
ing a number of distribution parameters in addition to
the mean will obviously increase the actual number of
classification features. The reduction in feature space
dimensionality accomplished by the new adaptive tex-
ture features is therefore an important point. This is
particularly valuable when we extract the texture fea-
tures from two separate segments (center and periph-
ery) for each cell nucleus.

Thus, in the case of GLCM, if we had started out
with only the 9 most popular pre-defined GLCM fea-
tures, having two segments, and using only one (d, G)
parameter setting, we would have had a total of 72 pos-
sible features when we use the mean, the standard de-
viation and the two percentiles (10 and 90), and a stag-
gering 2556 possible pairs of features. This in contrast
to the 16 adaptive features obtained when we combine
2 matrix features with 2 cell segments and 4 distribu-
tion parameters. The number of possible feature pairs
is now only 120, reduced by a factor of 21.3, substan-
tially reducing the risk of selecting good feature pairs
by pure coincidence.

We use the mean, the standard deviation, or a per-
centile to represent the measured feature values from
an average of N = 256 (277) cell nuclei. It is well
known that for normally distributed data, the standard
error of the estimated mean µ̂ is given by σµ̂ = σ̂/

√
N ,

where σ̂ is the estimated standard deviation of the N
observations. For the standard deviation and the 10/90
percentile, this should be multiplied by a factor 1/

√
2

and 1.7094, respectively. In our case, the relative un-
certainty of the mean, σµ̂/µ̂, for the adaptive features
used here, is around 0.0125.

If we assume that the contents of each element of,
e.g., the GLCM matrix are normally distributed, the
same equation for the standard error of the mean ap-
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plies here. However, we know that the population of
such matrices is not at all even – it is usually concen-
trated around the main diagonal. So the texture ma-
trix does not stabilize in the same manner as the mean
feature value. But that is actually irrelevant, as we
put most weight on those matrix elements that exhibit
the greatest Mahalanobis distance, and these are also
among the ones with the highest population. Thus, the
stability of the computed very low dimensionality fea-
tures is by far more important than the detailed stability
of the entire texture matrices.

A possible extension of the adaptive feature extrac-
tion for the GLCM based method is to let a parameter
value vary within the class distance matrix, as Walker
et al. did for the GLCM matrices [20]. We would then
have to work with 3- or 4-dimensional class distance
matrices, depending on whether we included several
values of the inter-pixel distance, d, or several number
of gray levels in the image, G, or both. The size of the
matrix would naturally taper off as G was decreased.
It is important to note that the number of features ex-
tracted from each matrix in this way would remain the
same, 2, regardless of the dimensionality of the matrix
and the range of the parameters. GLCM class differ-
ence and distance matrices computed for d = 5, 7 and
G = 16 have shown gradually and consistent varia-
tions in the matrices as d varies. Thus, this approach
may be useful, as it will include a more complete de-
scription of the texture into the two adaptive features,
and at the same time even make the statistics more re-
liable.

In a retrospective study of 260 cases of stage 1
epithelial ovarian cancer, Kildal et al. [8] found that
image-based DNA ploidy measurements using Feul-
gen stained nuclear monolayer preparations gave ex-
cellent prognostic information. Almost the entire 10-
year mortality in this patient group was within the
group of patients whose tumours were judged “aneu-
ploid/polyploid”. By contrast, almost 95% of the pa-
tients with “diploid/tetraploid” tumours were still alive
after ten years. An interesting next step would be a fu-
sion of the best chromatin texture features with robust
quantitative features from image-based DNA ploidy
measurements in a combined classifier. It would also
be of interest to study details of the relation between
texture and ploidy measurements, to further understand
the mechanisms of chromatin organization as cancer
develops.

In conclusion, the texture of the peripheral part of
light microscopy images of ovarian cancer cell nuclei
differs from that of the central part of the nuclei. Both

when working with nuclei from histological sections
and monolayers it seems to be beneficial to perform a
radial differentiation of the texture feature extraction.
We have pointed out a procedure based on class differ-
ence and class distance matrices that both in the case
of GLCM matrices and fractal lacunarity matrices give
very low dimensionality adaptive texture feature vec-
tors. The best pair of such features was able to discrim-
inate between the two groups of good and bad prog-
nosis (from histological sections) with an error rate of
17%.
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