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Recently, the computational speed and battery capability of mobile devices were greatly promoted. With an enormous number of
APPs, users can do many things in mobile devices as well as in computers. Consequently, more and more scientific researchers are
encouraged tomove their working environment from computers tomobile devices for increasing their work efficiency because they
can analyze data and make decisions on their mobile devices anytime and anywhere. Accordingly, we propose a mobile OpenMP
programming environment called MOMP in this paper. Using this APP, users can directly write, compile, and execute OpenMP
programs on their Android-basedmobile devices to exploit embedded CPU andGPU for resolving their problemswithout network
connection. Because of source compatibility, MOMP makes users easily port their OpenMP programs from computers to mobile
devices without any modification. Moreover, MOMP provides users with an easy interface to choose CPU or GPU for executing
different parallel regions in the same program based on the properties of parallel regions. Therefore, MOMP can effectively reduce
the programming complexity of heterogeneous computing inmobile devices and exploit the computational power ofmobile devices
for the performance of user applications.

1. Introduction

In recent years, the hardware of mobile devices such as
smartphones and tablets has been obviously upgraded.
Most of modern mobile devices have multicore CPU like
ARM, many-core GPU such as Adreno, PowerVR, Krait, and
NVIDIA Tegra, 1∼2GB RAM, and enough battery capability
to standby for dozens of hours. This remarkable hardware
advancement has made mobile devices comparable to com-
mon PCs in the execution performance of applications. On
the other hand, the amount and type of applications appear-
ing in Google Play and APP store are enormous and diverse.
A lot of software programs such as MS Office, Skype, Adobe
Professional, and Photoshop have released mobile versions.
With these APPs, users can domany things in mobile devices
as well as in PCs. Consequently, mobile devices have become
the most important equipment for users to connect with net-
works for handling their daily affairs including communica-
tion, working, shopping, learning, and playing because they
are easier than laptops to be owned and carried.

Reacting to this development trend, some scientific soft-
ware such as Octave [1] and Addi [2] recently appeared in

Google Play to provide users with MATLAB-like environ-
ment. Using these two APPs, researchers and engineers can
make use of CPUs embedded in mobile devices to perform
mathematic computation and simulation by means of MAT-
LAB [3] instructions or scripts. As a result, they can effectively
increase their work efficiency because they usually carry their
smartphones with themselves anytime anywhere and can
continuously do their researches on the smartphones even
when they leave from offices or laboratories. Moreover, they
can save energy consumed for resolving their problems since
the processors embedded within mobile devices usually are
higher in energy efficiency than the processors of computers.

However, not all of problems are resolvable only by using
scientific simulation software. When users intend to exploit
the computation power of multicore CPUs or many-core
GPUs for speeding up data computation, they have to write
multiprocess or multithreading programs by using MPI [4],
Pthread, OpenMP [5], CUDA [6], or OpenCL [7]. Unfortu-
nately, most of the programs developed by these program-
ming APIs are not portable onto mobile devices because
mobile devices are different from computers in processor

Hindawi Publishing Corporation
Mobile Information Systems
Volume 2016, Article ID 4513486, 24 pages
http://dx.doi.org/10.1155/2016/4513486



2 Mobile Information Systems

architecture and operating system and do not support neces-
sary toolkits and runtime libraries. Although Java is effective
for resolving the problemof resource heterogeneity, it is not as
efficient as C/C++. Therefore, user programs usually have to
consume more time and energy if they are developed by Java
instead of C/C++. For resolving this problem, several APPs
such as C4droid [8], CppDroid [9], andCCTools [10] recently
were proposed for users to develop and execute C/C++
programs on mobile devices. Basically, these APPs provide
an embedded Linux terminal for users to develop programs.
Consequently, they allow users to write multithreaded pro-
grams by Pthread for exploiting multicore CPU in mobile
devices. However, they have some problems as follows.

First, the user interface of Linux terminal is not friendly
for those who are not used to operating Linux OS. Second,
multithreading programming is not easy enough for users.
When users make use of Pthread to develop applications,
they have to manually deal with problem partition, data
and thread synchronization, and load balance by themselves.
Consequently, the programming effort of users is increased
along with the code length of user programs.This is a big bur-
den for users to write programs on mobile devices especially
when the size of touch screen is not big enough. Third, these
APPs do not support GPU programming in mobile devices.
Although some smartphones support CUDA/OpenCL run-
time library and driver, no APP currently can provide an
IDE for users to develop CUDA or OpenCL applications on
mobile devices. They must write CUDA/OpenCL programs
in computers and download the programs from computers to
mobile devices for execution. As a result, it is not convenient
for users to exploit the computation power of GPUs in
mobile devices for resolving their problems especially at the
phase of application development because they need to repeat
remote programmodification and recompilationmany times
through unstable wireless networks.

As previously described, we propose a mobile OpenMP
programming environment called MOMP in this paper.
Using this APP, users can directly edit, compile, and execute
OpenMPprograms onmobile devices and exploit the compu-
tational power of embeddedCPUandGPU for resolving their
problems. OpenMP is a directive-oriented API. When users
develop parallel applicationswithOpenMP,what they need to
do is to add OpenMP directives into their C/C++ programs.
The OpenMP compiler of MOMP can generate Pthread and
OpenCL codes based on the semantic of OpenMP directives
and can automatically add the instructions necessary for data
partition and synchronization into the generated programs.
As a result, MOMP can effectively reduce the programming
complexity of heterogeneous computing in mobile devices
because it allows users to develop parallel applications for
exploiting the computational power of embedded CPU and
GPU with a uniform and directive-oriented programming
interface, that is, OpenMP, which is much easier than
Pthread, CUDA, and OpenCL. Moreover, MOMP provides
users with an extended directive to choose CPU or GPU
for executing different parallel regions in the same program
according to computation demand and parallelism in order
to obtain the best program performance.

The rest of this paper is organized as follows. Section 2
is the background of OpenMP and OpenCL. Sections 3 and
4 describe the framework and implementation of MOMP,
respectively. Section 5 discusses the experimental results of
performance evaluation. Section 6 is the discussion of related
work. Finally, Section 7 gives a number of conclusions for this
paper and our future work.

2. Background

OpenMP is a sharedmemory parallel programming interface
managed by OpenMP architecture review board. It consists
of compiler directives, runtime library, and environment
variables. Users can easily control the parallelism of their
C/C++/Fortran programs by using OpenMP directives. The
parallelism of OpenMP basically is classified into two kinds,
that is, task parallelism and data parallelism. Task parallelism
is to create threads for executing different sections while data
parallelism is to generate threads for sharing the work of the
same for-loop. On the other hand, users can make use of
scheduling-clauses such as static, dynamic, and guide or the
OpenMP runtime functions to determine the way of work
sharing in a given parallel region. For thread synchronization,
they can use atomic to specify which variable should be
updated atomically. They also can use data clauses to control
the attribute of shared variables. For example, the private
clause makes the threads of the same parallel region to have
their own copy of the same variable. The firstprivate clause
makes these copies be initialized with the original value of
the variable. The lastprivate clause makes the variable be
updated with the value of the copy in the last thread that
leaves from the parallel region.The reduction clause canmake
the values of the copies be reduced by a specific operation
such as add, subtract,multiple, divide,max, andmin. Because
the OpenMP compiler can automatically generate the cor-
responding multithreading codes according to OpenMP
directives, OpenMP is effective for reducing the complexity
of multithreading programming, and thereby it has become
a popular shared memory parallel programming standard
for shared memory multiprocessors. Many researches [11, 12]
were aimed at enabling OpenMP programming interface
based on software distributed sharedmemory systems [13, 14]
for reducing the programming complexity of computational
clusters. In recent years, GPGPU has successfully become
an alternative for high performance computing because it
can provide high computation performance with low energy.
Because the complexity of GPU programming such as CUDA
andOpenCL is too high formost of users, manyOpenMP-to-
CUDA or OpenCL compilers such as Cetus [15], OpenMPC
[16], OMPi [17], andHMCSOT [18] were proposed to address
this issue.

OpenCL is an open programming interface proposed by
Khronos Group to support heterogeneous computing. The
runtime library of OpenCL consists of Platform, Device,
Context, Program,Kernel,MemoryObject, CommandQueue,
Image, and Sampler.The execution flowofOpenCLprograms
basically is composed of the steps as follows. The first is to
get a platform available in the execution node and allocate an
available device in the platform by clGetPlatformIDs() and
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clGetDeviceIDs().The second is to build a context executable
on the allocated device and construct a CommandQueue for
the context to accept the command from the user program by
clCreateContext() and clCreateCommandQueue().The third
is to generate a source program and compile the source pro-
gram into an executable program by clCreateProgramWith-
Source() and clBuildProgram(), respectively. The fourth is to
create a kernel for obtaining the entry point of the kernel
function in the executable program by clCreateKernel(). The
fifth is to allocate input and output MemoryObjects (i.e.,
device memory) accessible for the kernel and then copy data
from host memory to the input MemoryObjects by clCreate-
Buffer() and clEnqueueWriteBuffer(), respectively. The sixth
step is to launch the kernel function to the allocated device for
execution by clEnqueueNDRangeKernel(). The seventh is to
copy the execution result from the output MemoryObjects to
host memory by clEnqueueReadBuffer() after the execution
of the kernel function finishes. Recently, several studies such
as JCL [19], VCL [20], and SunCL [21] were dedicated to the
implementation of OpenCL cluster for resolving problems
with a cluster of distributed heterogeneous processors.

Different from the previous work, this work is aimed at
proposing a mobile programming environment for reducing
the programming complexity of heterogeneous computing
on mobile devices. In the proposed programming environ-
ment, OpenMP programs are translated into OpenCL ones
which can be executed by CPU or GPU. For the applica-
tions implemented with recursive algorithms, dynamic task
creation and task dependency maintenance are necessary.
However, OpenCL does not support dynamic parallelism
until the second version. Almost all mobile devices produced
by different vendors currently support only OpenCL 1.1
or 1.2 embedded profile, which does not provide dynamic
parallelism. Therefore, this work currently is focused on the
implementation of OpenMP 2.0 on mobile devices for data-
parallelism applications.

3. Framework

MOMP is developed based on a mobile integrated develop-
ment environment called UbiC, which was proposed by our
previous work [22]. With the support of UbiC, users can edit,
compile, execute, and debug their C programs on Android-
based mobile devices without the help of remote servers.
UbiC consists ofGUI, programeditor, compiler, executer, and
debugger as shown in Figure 1. UbiC adopts Clang [23] to
compile C programs into LLVM [24] IRs. When users press
the execution button, the executor of UbiC loads the LLVM
IRs of the working program and translates LLVM IRs into
optimized native codes for execution by means of MCJIT.
Consequently, UbiC can allow user programs to be portable
onto any platform that supports LLVM while simultaneously
obtaining a good performance as well as native codes. On
the other hand, UbiC adopts a modified LLVM interpreter
instead of gdb to be program debugger because of cost
consideration. It inserts DWARF-3 tags into user programs
when it compiles the programs. When users debug their

UbiC
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Figure 1: Framework of UbiC.

programs, the modified LLVM interpreter retrieves the nec-
essary information from program contexts for users to debug
their programs according to the inserted tags. Currently,
the program debugger supports breakpoint, single step, and
variable view for users to trace the execution status of their
programs. Although UbiC provides a complete and friendly
C programming environment, it does not support OpenMP.
Basically, the GUI interface of MOMP is as same as that
of UbiC while the compiler and executor of MOMP are
different from those of UbiC because MOMP is dedicated to
supporting OpenMP. Therefore, the following description is
focused on the compiler and executor of MOMP.

The program compiler of MOMP mainly consists of
Java-based OmniDriver, frontend and backend compiler.
The frontend compiler is constructed by yacc and C while
the backend compiler is implemented by Java. Here we
give an example program to explain the flow of program
compilation in MOMP as shown in Figure 2. This example
program is composed of two parallel regions: one is matrix
multiplication and another is vector addition. When users
press the compilation button of GUI to compile this program,
the program compiler of MOMPwill compile the program as
follows.

First, the compiler driver sets up the arguments and path
of program compilation and expands the source program
by the preprocessor of Clang. Second, the frontend com-
piler translates the source program into an abstract syntax
tree which are composed of X objects. Third, the backend
compiler generates another source program based on the
abstract syntax tree. In the new source program, the two
parallel regions are extracted from the main function and
then translated into Pthread modules (e.g., ompc func 1
and ompc func 2) and OpenCL ones (e.g., cuker 1 and
cuker 2). On the contrary, the main functions are modified
by replacing the two parallel regions with the stub1 and
stub2 function, which are used to invoke the Pthread-
version modules or OpenCL-version modules according to
the architecture of target processor. Finally, Clang compiles
the new source program, which consists of main module,
Pthread modules, and OpenCL modules to generate an
executable file (i.e., output.ll) of LLVM IRs. The OpenMP
translator of the backend compiler is implemented based
on OMPICUDA, which was proposed by our previous work
[25]. The implementation of the OpenMP translator will be
detailed in Section 4.

When users press the execution button of GUI to run
the example program, the executor of MOMP loads the
executable file, that is, output.ll, of the program, and then exe-
cutes the executable file through LLVM by means of MCJIT,
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Figure 2: Flow of program compilation in MOMP.

as shown in Figure 3. Because the executable file is runnable
on any platform that supports LLVM, MOMP effectively
maintains the portability of user programs. It is worth saying
thatMOMP provides an extended directive called target() for
users to select the Pthread orOpenCL version for a given par-
allel region to be executed on runtime based on parallelism
degree and computation demand. If the target directive is set
as “pthread,” the executor loads the Pthread-version module
of the parallel region and executes the module by CPU. By
contrast, it loads the OpenCL-version module and executes
themodule with GPU by default if the target directive is set as
“opencl.” However, not all of mobile devices support both of
GPU and the OpenCL driver. For example, MiPAD supports
only theCUDAdriver for itsNVIDIAK1GPU.Consequently,
the executor loads the OpenCL-version module and executes
the module with GPU if both of the OpenCL driver and GPU
are available.Otherwise, it loads theOpenCL-versionmodule
while executing the module with other types of processors
like ARM CPU if the OpenCL driver but GPU is available. If
both of OpenCL and GPU are not available, it automatically
changes to load the Pthread-version module of the parallel
region and execute themodule byARMCPU. Bymeans of the
target directive, users can easily adapt the type of processors
used to execute different parallel regions for optimizing the
total execution performance of their programs through the
same programming interface.

4. Implementation

Basically speaking, there are two important jobs in the
implementation of MOMP. The first is to port the OpenMP
compiler of OMPICUDA onto mobile devices. The second is
to implement a reduced OpenCL runtime library based on
CUDA driver API for NVIDIA mobile GPU such as K1. We
detail how to accomplish these two jobs as follows.

4.1. OpenMP Compiler. The entry point of the OpenMP
compiler consists of a launcher and omniDriver. They were
originally implemented by C and shell script, respectively.
The launcher is responsible of passing the arguments of
program compilation to omniDriver for creating a template.
This template stores the necessary information such as native
compiler, programming language, and the paths of runtime
and dynamic linking libraries such as “-L/libraryPATH/. . .-
lpthread” for the backend of theOpenMP compiler to analyze
and translate user programs into executable files. To accom-
plish the functions of launcher and omniDriver, we faced and
resolved the problems on Android for MOMP as follows.

Although Android is constructed based on Linux, it does
not support bash or all the shell instructions. Unfortunately,
this problem results in that the omniDriver implemented by
shell script is not workable in Android. For resolving this
problem, we implemented a new launcher and omniDriver
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Figure 3: Program execution in MOMP.

by means of Java programming language in order to connect
with the user interface and the backend of the OpenMP com-
piler in MOMP. On the other hand, most of the shell instruc-
tions used by the backend of the OpenMP compiler can
be processed by invoking “/bin/sh -c” via. Runtime.exec().
However, Runtime.exec() does not support the I/O redirec-
tion of instructions.Therefore, MOMP intercepts redirection
instructions first.Then, it uses InputStreamReader to retrieve
the output of Runtime.exec() and writes or appends the
retrieved output into the original destination files of the redi-
rection instruction. For example, if the instruction is “ls >>
file,” MOMPwill use Runtime.exec() to run “ls” first.Then, it
will retrieve the output of Runtime.exec() and will append or
write the output into file when the file is available or unavail-
able, respectively.

OpenMP allows users to set up the number of threads
forked for the execution of parallel regions in their programs
by using the OMP NUM THREADS environment variable.
When the programs are executed, the runtime system of
OpenMP retrieves the environment variable by calling the
getenv() function to decide the number of forked threads.
However, the environment variables in Android platforms
are read only for user applications. To attack this problem,
the OpenMP compiler of MOMP uses Java’s ProcessBuilder
to create a child process for program execution and sets a
group of environment variables for the child process because
ProcessBuilder can set up the environment variables for
forked processes. When the child process executes user
programs, the runtime system of MOMP is able to retrieve
the environment variables set by the OpenMP compiler with
calling the getenv() function.

During program compilation, the immediate files gener-
ated by the OpenMP compiler are stored in the/temp direc-
tory while this directory is not always available or accessible

for any applications in any Android platforms. In Android,
each application is allowed to access only its own directory
such as /data/data/<packagename>/files. Consequently, the
OpenMP compiler cannot access the root directory and the
/tmp directory. For resolving this problem, MOMP creates
a /tmp directory under /data/data/<MOMP>/files for the
OpenMP compiler to store the immediate files of program
compilation.

On the other hand, the OpenMP compiler of
OMPICUDA supports OpenMP-to-CUDA but OpenMP-to-
OpenCL translation. However, most of modern mobile devi-
ces support OpenCL but CUDA.Therefore, we implemented
an OpenMP-to-OpenCL (simply denoted by OMPCL) trans-
lator for MOMP. Because most of CUDAAPI can be mapped
onto OpenCL API, the OMPCL translator of MOMP mainly
is implemented based on the framework of the OpenMP-
to-CUDA translator of OMPICUDA. For considering paper
length, we detailed only how the OMPCL translator maps
the parallel regions of OpenMP to OpenCL kernels and
the variables used in parallel regions from host memory to
device memory for the execution of kernels as follows.

4.1.1. Mapping Parallel Regions to Kernels. OpenMP pro-
gramming is based on a fork-join model while both of
CUDA and OpenCL are based on a client-server model. It
is necessary for the OMPCL translator to map the fork-join
model onto the client-server one. The OMPCL translator
implements the mapping of the two programming models as
shown in Figure 4.

An OpenMP program basically consists of sequential
regions and parallel regions. When an OpenMP program is
translated into an OpenCL one, the sequential regions and
parallel regions of the OpenMP program are mapped onto
the host (i.e., client) program and kernels (i.e., server) of
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the OpenCL one, respectively.Whenever the execution of the
host program arrives at a parallel region, it copies the shared
data necessary for the parallel region from host to device
by calling clEnqueueWriteBuffer() because device memory
is independent to host memory. Then, it launches a kernel
by calling clEnqueueNDRangeKernel() to device for concur-
rently processing the shared data in the device memory by
multiple GPU threads. Finally, it copies the execution result
of the kernel fromdevice to host by invoking clEnqueueRead-
Buffer(). As previously described, the fork and join operations
of OpenMP are mapped onto the clEnqueueNDRangeKer-
nel() and clFinish() of OpenCL, respectively.

4.1.2. Mapping Variables from Host Memory to Device Mem-
ory. The working threads in a parallel region may access
global, shared, and local variables. Global and shared vari-
ables are shareable for all the threads while local variables
are not shareable, and they are duplicated for each thread.
Accordingly, the OMPCL translator allocates shared and
global variables on the global memory of GPU for data
sharing among different thread blocks while it allocates
local variables to the registers of GPU for each thread. To
achieve thismemory allocation policy, theOMPCL translator
traverses all the global and shared variables that are accessed
in the parallel region andmarks the variables as GlobalShared
and LocalShared. Because OpenCL does not support global
variables and not all global variables are accessed in parallel
region, the OMPCL translator creates two data structures,
that is, GlobalShared and LocalShared to pass global and
local shared variables into OpenCL kernels for GPU threads
to access these shared variables. We used an example as
shown in Figure 5 to explain how the OMPCL translator use
these two data structures for mapping global and local shared
variables from host memory onto device memory.

In this example, there are two one-dimensional matrices,
that is, a and b, with 128 integer numbers. Because the two
matrices are globally shared, the OMPCL translator defines

a GlobalSahred data structure called globals to represent
matrices a and b. In contrast, the c matrix declared in the
main function is locally shared. Consequently, the OMPCL
translator defines a LocalShared data structure called Locals
to represent the matrix c. In addition, the OMPCL trans-
lator extracts the parallel region from the main function
in Figure 5(a) to generate a kernel function called open-
clKernel with two parameters named as globals and locals,
which are globals pointer and locals pointer, respectively. In
addition, it changes the expression, that is, c[i]=a[i]+b[i] in
the parallel region to be locals->c[i]=globals->a[i]+globals-
>b[i] as shown in Figure 5(b). On the other hand, the
OMPCL translator generates a function called parallel0 for
the host program to offload the parallel region onto device
for execution as shown in Figure 5(c). In this function, the
first step is to allocate one globals and locals data structure
in device memory and then copy matrices a, b, and c from
hostmemory to the globals and locals data structure in device
memory. The next step is to create a kernel binding with the
openclKernel function and then launch the kernel to device
for execution.Thefinal step is to copy the locals data structure
from device memory to the c matrix in host memory.

On the other hand, the values of pointer variables used in
parallel regions are invalid to device memory because of dif-
ferent address spaces. This problem is unable to be addressed
at the time of program compilation because the values of
pointer variables usually are determined and changed at run-
time. To resolve this problem, the OMPCL translator gener-
ates a mapping table for tracking the information of host
memory segments directed by pointer variables as shown
in Figure 6. This mapping table is divided into global and
dynamic sections because pointer variables may direct to
global variables or dynamically allocated memory spaces.
When an OpenMP program is compiled, the OMPCL trans-
lator searches global variables in the program and creates a
registry global variable function for each global variable to
store the start addresses and lengths of the global variable into
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(a) The original user program (b) The kernel program translated from (a)

(c) The host program to (b)

Figure 5: Mapping variables from host memory to device memory.

the global section of the mapping table at run time. However,
this method is not workable for dynamically allocated mem-
ory spaces. To resolve this problem, we added a hooker into
dynamic allocation functions includingmalloc, valloc, calloc,
and realloc in this paper. Whenever a dynamic allocation
function is invoked, the hooker will fill the start address and
length of allocation memory space into the dynamic section
of the mapping table.

In addition to the mapping table, the OMPCL creates an
exchange pointer function for each pointer variable used in
the parallel region before launching the kernel corresponding
to the parallel region to device. The execution flow of the
exchange pointer function is as shown in Figure 7. The first
is to search the mapping table to find out the value of the
pointer variable (assume that it is addr) is located in which
host memory segment. The second is to check if the devPtr
field of the host memory segment is null, that is, whether the
memory segment is mapped onto a device memory segment
or not. If it is true, it is necessary to allocate a device memory

space as big as the host memory segment and update the
mapping table by filling the start address (assume that it is
devaddr3) of allocated device memory space to the devPtr
field copy first. Then, the next step is to copy data from the
host memory segment to the allocated device memory space.
The final is to change the value of the pointer variable to be
devaddr3+(addr-a3). It is worth noting that the value of the
pointer variable is changed back to addr by referencing the
mapping table after the execution of the kernel finishes. By
the above process, user programs can transparently access the
same pointer variables in both of parallel regions and kernels.

4.2. A Reduced OpenCL Runtime Library Based on CUDA.
MOMP translates OpenMP directives into OpenCL codes
to exploit GPUs in mobile devices for data computation.
However, some mobile devices such as MiPAD embedded
with NVIDIA GPU support only CUDA driver but no
OpenCL runtime library. As a consequence, the OpenCL
programs generated by the MOMP compiler are unable to be
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executed by thesemobile devices. To resolve this problem, we
developed a reducedOpenCL runtime library calledMCOCL
(mobile CUDA-based OpenCL) based on CUDA driver
for MOMP in this paper. Because MOMP provides users
with OpenMP but OpenCL to develop parallel-computing
applications in mobile devices, this reduced runtime library
currently consists of only theOpenCL functions necessary for
the OMPCL compiler to generate OpenCL source programs

as shown in Table 1. We briefly describe the implementation
of some of these functions as follows.

clGetDeviceIDs() is used to get the handles and count
of devices available in a platform. In fact, the meaning of
most of the parameters used in the CUDA driver API is as
same as that used in the OpenCL API. For example, both of
CUdevice and cl device id are used to obtain the information
of devices. Consequently,MCOCL uses cuDeviceGetCount()
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Table 1: The OpenCL functions necessary for MOMP.

clGetPlatformIDs clGetPlatformInfo
clGetDeviceIDs clCreateContext
clGetContextInfo clCreateProgramWithSource
clBuildProgram clGetProgramBuildInfo
clCreateKernel clEnqueueNDRangeKernel
clSetKernelArg clCreateCommandQueue
clCreateBuffer clEnqueueReadBuffer
clFinish clEnqueueWriteBuffer
clReleaseKernel clReleaseMemObject

and cuDeviceGet() to query the amount and identifiers of
devices when clGetDeviceIDs() is called by user programs.

clCreateContext() is used to get a context in a given
platform. An OpenCL context is created for one or more
devices. It is used by the OpenCL runtime system for man-
aging command queues, memory, programs, and kernels.
By contrast, a CUDA context is created by cuCTxCreate()
while it is useful for only one device. Consequently, MCOCL
calls cuCtxCreate() to create a CUDA context for each device
and store multiple CUDA contexts into a context array to
represent one OpenCL context. When user programs intend
to use different devices, MCOCL calls cuCtxPopCurrent()
and cuCtxPushCurrent() to achieve context switch.

clCreateCommandQueue() is aimed at creating a com-
mand queue for launching kernels. Since OpenCL sup-
ports user programs to asynchronously execute the kernels
appended in the command queue, MCOCL uses asyn-
chronous CUDA streams to implement OpenCL command

queues. When user programs call clEnqueueReadBuffer()
or clEnqueueWriteBuffer() by a blocking mode, MCOCL
invokes cuStreamSynchronize() to wait for the termina-
tion of a given kernel and then calls cuMemcpyHtoD() or
cuMemcpyDtoH() to perform memory copy from host to
device or from device to host. On the contrary, it invokes
cuMemcpyDtoHAsync() or cuMemcpyHtoDAsync() when
clEnqueueReadBuffer() or clEnqueueWriteBuffer() is called
by a nonblocking mode.When user programs calls clFinish()
to wait for the termination of kernels in the command
queue, MCOCL calls cuStreamSynchronize() to wait for the
termination of corresponding streams.

clBuildProgram() is to load a program source and
then build a program executable from the program source.
Although the cuModuleLoad() of CUDA is useful for loading
programs, the loaded programs are composed of PTX (Par-
allel Thread Execution) codes instead of OpenCL sources.
Therefore, MOMPmust be able to translate OpenCL sources
into PTX codes. Fortunately, LLVM provides libclc.bc to
make Clang able to translate OpenCL into PTX for NVIDIA
GPU. The execution flow of clBuildProgram() in MCOCL
is as shown in Figure 8. The first step is to write OpenCL
kernel codes into a file named as kernel.cl and compile this
file by Clang to create another file called kernel.ll composed
of LLVM IR. Because this kernel.ll file includes OpenCL
symbols necessary to be supported by liblic, MCOCL uses
llvm-link to link the kernel.ll with liblic to generate another
file called kernel.bc and then uses Clang to translate the
kernel.bc file into a PTX file called kernel.ptx. Finally, it calls
cuModuleLoad() to load the PTX file into memory to be a
CUmodule for clBuildProgram().ThisCUmodule is regarded
as program handle and is stored in cl program.Themessages
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and parameters of program compilation are also stored into
cl program for calling clGetProgramBuildInfo() to retrieve
these information later.

clSetKernelArg() is used to set the argument value for a
specific argument of a kernel. This function is as same as the
cuParamSetv() of CUDA. However, clSetKernelArg() uses
arg index to reference the augments of an OpenCL kernel
while cuParamSetv() accesses the parameters of a CUDA
kernel function by means of offset. In order to correctly
convert arg index into offset, MCOCL loads the kernel.ll as
an IR module for LLVM and then invokes the getFunction()
and getFunctionType() to retrieve the kernel from IRmodule
and the prototype of the kernel, respectively. Then, it calls
getParamType() and getTypeID() to extract the arguments
from the kernel prototype and get the types of the arguments.
Finally, it estimates the offset for 𝑖th argument by summating
argument lengths from the first argument to the (𝑖 − 1)th one
and stores the offsets of all the arguments into the cl kernel
created by clCreateKernel() for translating arg index to offset
later.

clEnqueueNDRangeKernel() is used to submit a com-
mand for executing a given kernel. The purpose of this
function is the same as that of cuLaunchKernel() while the
thread configuration used for OpenCL kernels is different
from that used for CUDA kernel functions. OpenCL uses
global work size and local work size to represent the num-
ber of global work-items in work dim dimensions and the
number of work-itemsmaking up a work group for executing
the kernel function, respectively. By contrast, CUDA uses
gridDim and blockDim to represent the dimensions of
a thread-block grid and a thread block, respectively. The
local work dim of OpenCL can be regarded as the blockDim
of CUDA. Consequently, MCOCL uses the local work dim
to specify the dimensions of a thread block. On the contrary,
it sets the dimensions of a thread-block grid by

grid width = ⌈
global work size [0]
local work size [0]

⌉ ,

grid height = ⌈
global work size [1]
local work size [1]

⌉ .

(1)

clCreateBuffer() is used to create a buffer object for data
communication between host and device. To implement this
function,MCOCLbasically calls cuMemAlloc() and cuMem-
cpyHtoD() to allocate device memory for the buffer object
and then copy data from host memory to the buffer object by
default. However, user programs can set the flags argument
of this function to specify the created buffer object is located
at host or device memory. Consequently, MCOCL invokes
different CUDA functions for clCreateBuffer() according to
the flags augment. For example, it calls cuMemAllocHost()
and memcpy() to allocate host memory for the buffer object
and then copy the data to the allocated host memory when
the flags argument is set as CL MEM ALLOC HOST PTR |
CL MEM COPY HOST PTR.

Table 2: Experimental environment.

XiaoMi MiPAD
OS Android 4.4.4
Processor-CPU Quad-Core ARM Cortex-A15 @ 2.2GHz
Memory 2GB LPDDR3

Cache
L1 cache 64KB (32KB I-cache, 32 KB D-cache)
per core
L2 cache Up to 4MB per cluster

Processor-GPU 192 NVIDIA CUDA� Cores (NVIDIA Kepler�
architecture)

SONY Z3
OS Android 4.4.4
Processor-CPU Qualcomm Snapdragon 801 ARMv7 @ 2.5GHz
Memory 3GB
Cache L0: 4 KB + 4KB, L1: 16 KB + 16KB, L2: 2MB
Processor-GPU Adreno 330 (578MHz)

Samsung Note3
OS Android 4.4.2
Processor-CPU Quad-Core Snapdragon 800 Krait @ 2.3GHz
Memory 3GB LPDDR3
Cache L0: 4 KB + 4KB, L1: 16 KB + 16KB, L2: 2MB
Processor-GPU Adreno 330 (578MHz)

InFocus M810
OS Android 4.4.4
Processor-CPU Qualcomm Snapdragon 801 ARMv7 @ 2.5GHz
Memory 2GB
Cache L0: 4 KB + 4KB, L1: 16 KB + 16KB, L2: 2MB
Processor-GPU Adreno 330 (578MHz)

Test AP
Matrix
multiplication

Matrix size (𝑁 ∗𝑁),𝑁 =
{512, 1024, 1536, 2048}

Nbody Body number = {1024, 2048, 3072, 4096}, Loop
= 100

SOR Matrix size (𝑁 ∗𝑁),𝑁 =
{1024, 2048, 3072, 4096}, Loop = 100

Mandelbrot set Image size (𝑁 ×𝑁),𝑁 = {256, 512, 768, 1024}

5. Performance Evaluation

We have evaluated the performance of MOMP in this paper.
Our experimental environment includes Xiaomi MiPAD,
Sony Z3, Samsung Note3, and InFocus M810. The resource
configurations of these four mobile devices are listed in
Table 2. We developed four applications including matrix
multiplication (MM), Successive over Relaxation (SOR),
Nbody, and Mandelbrot set. Both of MM and Nbody have
lots of data computation while MM requires more memory
space than Nbody. By contrast, the computation demand of
SOR is much less than MM and Nbody while the memory
demand of SOR is more than that of Nbody but less than
that ofMM.Mandelbrot set is an application, which generates
and draws fractal images based on recursive formulas. It
requires less memory space than MM and SOR but more
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than Nbody. Since Nbody and SOR are iterative applications,
the runtime system of MOMP forks multiple threads and
assigns the threads to multicore CPU or launches kernels
to GPU for concurrent execution at the beginning of each
iteration. When the execution processor is GPU, it copies
input data from host to device before a kernel is launched
and copies output data from device to host after the kernel
is terminated for each iteration. Basically, this performance
evaluation was to individually run the test applications on the
four mobile devices and estimate the execution time of the
test applications by using CPU or GPU in the mobile devices.

On the other hand, we estimated the performance of
memory accesses andmemory copy between host and device
(denoted as HtoD and DtoH) in mobile devices before we
did our experiments. The experimental result is shown in
Figure 9. The performance of memory accesses in MiPAD is
worse than that of the others. For memory copy between host
and device, MiPAD is the worst of the four mobile devices.
By contrast, Z3 is the best, and M810 almost is as good as
Z3. As to Note3, it is better than MiPAD but worse than Z3
and M810. We will use this result to explain the execution
performance of the four mobile devices later.

5.1. Performance ofMOMPUsingCPU inMobileDevices. Our
first experiment was aimed at evaluating the performance of
MOMP when it used CPU in mobile devices for executing
the test applications. We ran the test applications by forking
1, 2, and 4 threads to estimate the execution time of the test
applications executed by 1, 2, and 4 CPU cores (denoted as
OMP-1core, OMP-2core, and OMP-4core), respectively. To
measure the overhead of runtime system in MOMP, we cre-
ated a sequential version for the test applications by deleting
the OpenMP directives in the original source programs and
executed the sequential test applications by mobile devices.
The experimental result is shown in Figures 10, 11, 12, and
13. Basically, the execution performance of the OpenMP
programs is better than that of the sequential-C ones when
the core number is larger than one.The performance of all the
test applications is significantly improved with the increase
of core number no matter which mobile device is used for
program execution. However, the execution performance of
Mandelbrot is not improved well when the core number is
increased from 2 to 4 because the computation of this appli-
cation is not evenly distributed over four working threads.

On the other hand, the runtime system overhead of
MOMP is negligible for the performance of the MM, Nbody,
and Mandelbrot applications. However, it is significant for
the performance of the SOR application especially when it
is executed on MiPAD or Note3. Our performance profile
shows that when the SOR application is executed with
multiple threads, the numbers of cache misses, instructions,
and branches are significantly increased. It is worth noting
that the performance of the MOMP-1core case is better than
that of the sequential-C case when the MM and Mandelbrot
applications are executed with MiPad. There are two reasons
for this result. The first is that the speed of memory access
of MiPAD is slower than the others as shown in Figure 9. In
other words, the penalty cost of cache misses in MiPAD is
obvious especially. The second is that the OpenMP compiler

replaces the parallel region in themain function by a function
call. This is helpful for minimizing the size of the main func-
tion and the miss rate of instruction cache. Consequently, the
OpenMP compiler can save the overhead of cache misses for
the MM and Mandelbrot applications in MiPAD. However,
this situation does not appear in the other mobile devices
because the penalty cost of cache misses becomes much
smaller. It also disappears when the other applications are
executed in MiPAD because the granularity of the main
function in the Nbody and SOR application is smaller.

In this experiment, we also compared MOMP with
CCTools. Since CCTools uses gcc to compile user programs,
the executable files generated by CCTools are native codes.
By contrast, MOMP uses Clang to compile user programs
into LLVM IRs and converts IRs by MCJIT into native codes
for processors to execute the programs at runtime. In this
performance comparison, we ran the MM application with
the problem size of 2048 × 2048 float-point numbers, the
Nbody application for 4096 particles, the SOR application for
the problem size of 4096× 4096 float-point numbers, and the
Mandelbrot application for 1024 × 1024 pixels, respectively.
The result of performance comparison between MOMP
and CCTools is as depicted in Figure 14. The execution
performance of MOMP is better than that of CCTools for all
the test applications in MiPAD because MOMP can optimize
the executable codes of user programs according to the
architecture of ARM Cortex-A15 in MiPAD while CCTools
cannot.Moreover,MOMP ismore efficient for theNbody and
Mandelbrot applications than CCTools in most of the mobile
devices. Conversely, CCTools performs more efficiently than
MOMP for the SOR application in Z3, M810, and Note3
because the computational demand of the SOR application
is small, and MOMP has to spend extra time on converting
LLVM IRs into native codes at runtime.

5.2. Performance of MOMP Using GPU in Mobile Devices.
Our second experiment was aimed at evaluating the perfor-
mance of MOMP when it used the GPU of mobile devices
for executing the test applications. We ran the same test
applications with GPU and estimated the execution time of
the applications. The breakdown of the execution time of
the test programs is shown in Figures 15, 16, 17, and 18.
In these figures, the BuildPro label represents the cost of
clBuildProgram() which was called for generating a kernel
function for each parallel region in the test applications. In
addition, the HtoD and DtoH labels denote the cost of host-
to-device and device-to-host memory copy, respectively. The
execution label denotes the execution time of the kernel
launched by the test programs.

For the MM application, the performance of MOMP in
MiPAD is better than that in the others. Although MOMP
spent more time on program building in MiPAD because the
cost of memory accesses inMiPAD is high, it spent much less
time on data computation in MiPAD because the computa-
tion speed of MiPAD is fast. The same situation also happens
in the Nbody application. Because Nbody is a computation
intensive but data-intensive problem, almost all the execution
time of this application on the mobile devices except MiPAD
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Figure 9: Performance of memory accesses in mobile devices.

is spent on the execution of the kernel. As to Mandelbrot, its
execution performance is mainly dependent on the cost of
memory access and copy when it is executed by MiPAD. By
contrast, its execution time is determined by the cost of data
computation when it is executed by the other mobile devices.
Different from the previous applications, SOR requires a large

amount of data transfer between host and device while the
amount of data computation is relatively much less. Conse-
quently, MiPAD spends more time onmemory copy between
host and device but less time on the execution of the SOR
kernel than the other devices. Because the increased cost of
memory copy ismore than the saved cost of kernel execution,
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Figure 10: Performance of MM executed by CPU in mobile devices.

the execution performance of MiPAD is worse than those of
the other mobile devices for the SOR application.

On the other hand, we divided theCPU execution time by
the GPU execution time of the test applications to estimate
the performance improvement obtained by replacing CPU
with GPU, as shown in Figure 19. For the MM application,
the GPUs of Z3, Note3, and M810, respectively, provide 5,
5, and 4 times speedup in the best case. For the Nbody
application, the maximal performance difference between
GPU and CPU is 10, 9, and 7 times when MOMP uses Z3,

Note3, and M810, respectively. The SOR application obtains
2.5, 2, and 1.8 speedups, respectively, from the GPUs of M810,
Z3, and Note3. However, the performance comparison also
shows that when the problem size is small, the GPU of
MiPAD does not contribute performance improvement for
the test applications compared with the CPU of MiPAD. The
main reason is that MiPAD has to spend a long period of
time on program building and data transfer between host
and device for GPU while it does not need to do these
things for CPU. The benefit from saving computation time
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Figure 11: Performance of Nbody executed by CPU in mobile devices.

is seriously reduced by the cost of program building and
data transfer. Consequently, MiPAD does not provide perfor-
mance improvement as well as the other mobile devices for
the MM and Nbody applications and degrades the execution
performance of the SOR application when it replaces CPU
with GPU for program execution. Conversely, Mandelbrot
obtains a great performance improvement by replacing CPU
with GPU no matter which mobile device is used because it

has high parallelism and massive data computation but a few
of data communication between host and device.

5.3. Impact of Resource Selection. Our third experiment was
dedicated to evaluating the impact of resource selection on
the performance of user applications. We created an applica-
tion with two parallel regions that are aimed at resolving the
MM and SOR problems, respectively. We ran the two parallel
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Figure 12: Performance of SOR executed by CPU in mobile devices.

regions of the application inMiPADby threeways of resource
selection. The first way is to select CPU executing the two
parallel regions while the second way is to select GPU. The
third way is to select GPU for the parallel region of the MM
problem but CPU for the parallel region of the SOR problem.
The experimental result is shown in Figure 20.

We can find that the third way of resource selection is the
best for the performance of this application that has different

properties in different parallel regions. By contrast, the first
way is the worst because the MM application is computation
intensive while it is executed by CPU. Conversely, the second
way is better than the first but worse than the third because
it selects GPU for the parallel region of SOR while the SOR
problem is suitable to be executed by CPU but GPU.The pre-
vious discussion implies that selecting proper processors for
executing different parallel regions in the same application is
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Figure 13: Performance of Mandelbrot executed by CPU in mobile devices.

very important and necessary for the execution performance
of the application.MOMP provides an easy interface, namely,
target(pthread or opencl), for users to address this issue.

6. Related Work

In recent years, some researches have been done for reducing
the complexity of parallel programming on mobile devices.
We discussed these researchers as follows.

Android-Aparapi [26] supports users to exploit mobile
CPUs orGPUs for parallel processing data in Java. It can auto-
matically translate parallel Java bytecodes into OpenCL hosts
and OpenCL kernels or the codes of using Java Thread Pool
(JTP). It executes user programs with GPU by default. How-
ever, if OpenCL driver or GPU is not supported on mobile
devices, it will use multicore CPUs to execute user programs.
It is developed based on Aparapi [27] while it optimizes the
execution performance of Aparapi on Android. For example,
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Figure 14: Performance comparison between MOMP and CCTools.

it exploits Byte Buffer for data communication with OpenCL
kernels while minimizing the overhead of garbage collection.
It also tries to gather many computational instructions into
a single JNI call to minimize the overhead of Dalvik VM
(DVM) and OpenCL runtime. Although Android-Aparapi
successfully enables Java to be a uniform API for mobile
CPU and GPU, it is necessary to modify DVM for Android-
Aparapi.This implies that user applications are not portable to
any Android platform unless the modified DVM is installed
on target mobile devices. In addition, the front end of
Android-Aparpi must be executed at PC or workstation
for passing the classes of user programs to the backend at

mobile devices for generating OpenCL kernels and executing
the kernels with mobile GPU. As a result, Android-Aparapi
cannot allow users to directly develop applications onmobile
devices anytime and anywhere without network connection.

Pyjama [27] is a Java compiler and runtime system
for supporting OpenMP-like directives on Android. They
make use of JavaCC [28] to implement a source-to-source
translator for converting OpenMP to Java. Since the fork-
join model of OpenMP results in that GUI thread delays to
pick up user events, it proposes a GUI-aware directive called
freeguithread to automatically handle the synchronization
between GUI thread and the threads of parallel regions.
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Figure 15: Performance of MM executed by GPU in mobile devices.

Although Pyjama provides an easy API, that is, OpenMP-
like directives and GUI-aware directives for users to increase
the parallelism of their mobile applications and maintain
the responsiveness of the applications, it cannot exploit the
computational power of GPUs in mobile devices to increase
the execution performance of mobile applications.

CCTools is an integrated development environment on
mobile devices. The main advantage of this APP is allowing
users to directly edit, compile, and execute OpenMP pro-
grams on mobile devices through an embedded Linux termi-
nal. It makes use of gcc to compile users’ OpenMP programs.

However, the executable files generated by gcc are runnable
for CPU but GPU in mobile devices. Since it requires users
to manually type commands to edit, compile, and execute
their programs in a text-mode terminal, it is not friendly and
convenient for those who are not used to operating LinuxOS.

HIPA (Heterogeneous Image Processing Acceleration)
[29] is a domain specific language for speeding up image
processing on embedded systems and mobile devices. HIPA
enables users to design the kernels of image processing by C-
like language while it automatically converts the kernels into
CUDA/OpenCL/Renderscript/Filterscript ones to process
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Figure 16: Performance of Nbody executed by GPU in mobile devices.

imageswithGPU. In order to exploit GPU efficiently, itmakes
use of the memory hierarchy of GPU to minimize the cost
of data accesses. For instance, it stores the data shared by all
the threads in the same kernel at global memory and texture
memory while allocating the data shared by the threads of the
same thread block at sharedmemory or local memory.When
kernels are translated by means of Renderscript/Filterscript,
the expressions of accessing images are translated to call
rsGetElementAt function. Moreover, HIPA optimizes the
OpenCL implementation for HSA (Heterogeneous System

Architecture). Since host memory and device memory shares
the same region on HSA, HIPA uses mmap() and munmap()
tominimize the cost of data transfer between host and device.
With the support of HIPA, users need not deal with memory
allocation and data transfer and select execution processor
through environment variables. However, HIPA is dedicated
for image processing but general-purpose computing.

Although the above toolkits can effectively reduce the
parallel programming of multicore CPU or manycore-GPU
on mobile devices, they require users to compile programs
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Figure 17: Performance of SOR executed by GPU in mobile devices.

on computers and then move the executable files from
computers to mobile devices for execution except CCTools.
Moreover, most of them are not able to support a uniform
programming interface for users to exploiting CPUs and
GPUs in mobile devices. By contrast, MOMP provides a
complete and friendly programming environment for users
to develop parallel programs in mobile devices anytime any-
where without network connection. Furthermore, it supports
a uniformprogramming interface, that is, OpenMP, to reduce
the parallel programming complexity of multicore CPU and
many-core GPU on mobile devices at the same time.

7. Conclusions and Future Work

In this paper, we have successfully developed a mobile
OpenMP programming environment called MOMP. Using
this APP, users can develop OpenMP applications to exploit
the computational power of CPU and GPU inmobile devices
for resolving their problems anytime and anywhere without
the assistance of remote servers. In addition, they can easily
move their OpenMP programs from computers to mobile
devices without modifying their programs. It is convenient
for them to switch their computing environment between



Mobile Information Systems 21

256 512 768 1024

MIPAD

Problem size (n ∗ n)

0

5

10

15

20

25

30

Ex
ec

ut
io

n 
tim

e (
s)

256 512 768 1024

Z3

Problem size (n ∗ n)

0

5

10

15

20

25

30

Ex
ec

ut
io

n 
tim

e (
s)

M810

256 512 768 1024
Problem size (n ∗ n)

0

5

10

15

20

25

30

35

Ex
ec

ut
io

n 
tim

e (
s)

BuildPro
DtoH

HtoD
Execution

Note3

256 512 768 1024
Problem size (n ∗ n)

0

5

10

15

20

25

30

Ex
ec

ut
io

n 
tim

e (
s)

BuildPro
DtoH

HtoD
Execution

Figure 18: Performance of Mandelbrot executed by GPU in mobile devices.

computers and mobile devices. On the other hand, our
experimental results have shown that MOMP can effectively
exploit the computational power of mobile devices for the
execution performance of user programs, and it performs
more efficiently than CCTools for the test applications in
most of the experimental mobile devices. It is worth noting
that carefully selecting CPU and GPU is essential for the
execution performance of user programs.

Although mobile devices recently have become more
powerful in data computation, the high complexity of parallel
programming always was a big problem for users to move
their computation platform from computers toward mobile

devices. In this work, MOMP has successfully reduced
the programming complexity of heterogeneous computing
in mobile devices because OpenMP is much easier than
CUDA, OpenCL, and Pthread. This contribution is useful to
encourage users to move their working environment toward
mobile devices because they can save lots of time and effort on
learning new programming interface and application devel-
opment. Although MOMP currently supports only OpenMP
2.0, it is enough for users to develop lots of data-parallelism
applications with parallel loops. In past decades, OpenMP
programming has been popularly andwidely applied inmany
research areas such as high energy physics, bioinformatics,
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Figure 19: Speedup gained by replacing CPU with GPU in mobile devices.

data mining, earthquake prediction, and multimedia pro-
cessing and is also an important course for the department
of computer science and engineering in universities. The
appearance of MOMP is helpful for researchers and students
to make use of mobile devices for increasing their work
efficiency and learning effect becausemobile devices aremore
affordable and easier to carry for users than Notebooks.

Although the computational power of mobile devices
has been greatly improved, mobile devices still cannot work
as long as PCs because of finite battery capability. If user
programs cannot finish their work before they use up the bat-
tery power of mobile devices, the context of these programs

should be logged into storages in order to resume their execu-
tion later, or they must be executed from beginning. Accord-
ingly, we will develop a backup/recovery mechanism and a
live migration scheme to increase the reliability of MOMP. In
addition, we will extendMOMP to support OpenMP 3.0 and
4.0 when OpenCL 2.0 is available in mobile devices.
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