
Paradigms and Compilers for Parallel
Processing: Guest Editor's Introduction

BOLESLA W K. SZYMANSKI
Department of Computer Science and Scientific Computation Research Center, Rensselaer Polytechnic Institute, Troy, NY 12180;
e-mail: szymansk@cs.rpi.edu

This is an introduction to a special issue devoted to the
current research in the area of foundations of parallel
scientific computing. In recent years, high-perfor
mance !'omputing underwent a cleep transformation.
The declining share of the parallel processing market
held by traditional supercomputers and the waning
popularity of the single-instruction multiple-c!ata
(SJYID) machines, together with the increasing rule of
dusters of workstations. created the mnditions for the
rapid spread of parallel computing in government and
indw;try. The emphasis shifted from record-breaking
performance for any price to price-pt>rformance opti
mization. The successful companies. such as Silicon
Graphics or IB\1, use the performance gains driven
by the general market to improve the performan!'e of
their parallel machines. In contrast. companies that
relied on processors designed specifically for their ar
chitectures, like Kendall Squan· Research or the
Thinking Machine Corporation. were less successful
in staying in the computer design market. Parallel
processing has been becoming ubiquitous at all levels
of computing technology. In microprocessor design.
superscalar techniques (executing multiple instruc
tions at the same time) are now a standard.

It is important to realize that despite these trends,
parallel computing captures a small fraction of the
overall information technology industry. The parallel
computer industry constitutes about 0.5% of the L.S.
information technology market. Such a small percent
age of the overall market indicates a narrow user base
that <'·an be easily saturated with new products. In
addition, parallel computing has been highly depen-

Rt'c{'ived \'lareh 1996
Revist>d \larch 1997

© 1997 b~ John WilPY & Sons. Inc.

Scientific Prof(mmmin~. \"ol. 6. pp. l.'i9-162 (1997)

ce<: 1 o,-,s-92-!4:/97/020 1 Zl9-0-+

dent on government policies; institutions and govern
ment-supportec! universities traditionally constituted
more than one half of all users.

The weaknesses of parallel machines stem from the
following two factors:

1. 1\"arrow application base: Parallel architectures
arr best suited to solve large and highly tuned,
course-grained. and/ or data -parallel problems.

2. Rapid change of hardware: Every new gt'rwra
tion of paraliPl architectures differs from the
previous uae, forcing the users to redevelop their
applications. Often, porting and tuning an ap
plication to a new architecture can take as long
as the time needed to introduce a new architec
ture, making the ported code obsolete at the
moment it is readv for use.

Part of the difficulty in making parallel computing
widespread and popular has been the lack of standards
in parallel programming interfaces. As discussed be
low, such standards are emerging and gaining wide
spread acceptance.

Several different architectural approaches to paral
lel processing are slowly converging to a similar solu
tion. The workstations interconnected through a fast
network, when dedicated to a single application, be
have like a multiprocessor. The modern shared mem
ory multiprocessor relies on an interconnection net
work between the global memory and local processor
caches, and therefore behaves similarly to the distrib
uted memory multiprocessor. Finally, distributed
memory machines through extensive use of message
caching, faster interconnection networks, and smaller
communication latencies approach in their behavior
shared memory machines with local caches. The over
all trend is to use powerful computing nodes intercon
nected through a high-speed network oflarge capacity.
The associated trend is to rely on standard, commodity

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/208555408?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

160 SZY\L\.'\Sl\:1

off-tlw-shdf component,; to improve tlw priet>-perfor
mancP ratio of such architecturt>s.

Parallel programmt>rs face a daunting challenge.
espt>cially with incrt>asing largt> and complt>x applica
tions. They must idt,ntify paralldism in an application.
extract. and translatt' that paralldism into their codes.
design and implt>ment communication and synchroni
zation that prt>serye the program sema11tics. and foster
the efficiency of parallf'l execution. All thf'se ~tt>p~ must
be guided by the currently availablf' architectnres
which may change tomorrow. makillg some of the
designs suboptimal or inefficient. :\ot surprisingly. in
such an environmf'nt parallt>l programming has expP
riencNl a long and difficult maturation process. Yet.
two basic paradigms Pmerged: data parallelism and
message passing. The first one is popular because of
its simplicity. Iu this paradigm tht•re i,.; a t;ingle pro
gram (and therdore a single thread of execution)
which is replicated on many processors and each copy
operatrs on a separate part of the data. A SL\1D version
of this approach requires hardware support and is
considered useful only for a limited range of applica
tions. Its loosely synchronized cotmterpart. often rp
ferred to as a single-program multiple-data (SP\TD)
paradigm. is more universal. SP""lD paralkl computa
tion exrcution consists of two stages:

1. The computational stage. when copies of the
same program art> executed in parallel on each
processor locally. The execution can differ in
the conditional branches taken. the m11nlwr of
loop iterations ext>cuted, ete.

:2. The data exchange stage. when all procesAors
concurrently engage in exchanging nonlocal
data.

It should be noted that the data exchange stage is
very smiple in the case of shared memory machines
(when it can be enforced by use of locks or barrit>rs).
By reordering the computation and properly selecting
the frequency of synchronization. partial illterleaving
of eomputation and communication stages can be
achieved. The SPSID model matehes well the needs
of scientific computing which often requires applying
basically the same algorithm at many points of a com
putational domain. SPMD parallel programs are con
ceptually simplt> because of a single program executing
on all processors. hut they are more complex then
SIMD programs.

For complicated applications. running a single pro
gram across all parallel processors may be unnecessar
ily restrictive. In particulaL dynamically changiug
programs with unpredictable execution times nsult in
poorly balauced parallel computation~ when imple-

mented in SP:\1D paradigm. This is because SP\1D
processes synchronize at the data exchange stage. and
none of the processe~ can procet>d to the next cornput a
tiona! stage until all others reach the data exchange
stage.

The memory tlistribnted machint>s use message
passing for exchanging data between different proces
sors. The SP~ID mcHielmay shield the l!S('r from speci
fyinf! tlw detailed data tHovenwnts thanks to data dis
tribution directives from which a ('Oinpiler gen~rates
the message-passing statements. llowever, the users
which dN·ide to write the uwssage-passing statements
themselves han' full control over tlw program execu
tion. In particular. the user may define how many and
v.·hirh procf'ssors ~ynchronizf' at the given instance of
parallel execution. This <lpproach gives the user a lot
of flt>xibility at the cost of requiring the user to make a
wry intricate and detailt•d de;;cription of the program.
The program;; tend to be longer and more ('OJnplex
than tlu•ir SP.\lD cmmterparts. and therefore more
error protJe. However. once debugged and tuned up,
the prowams art> more efficient. The flexibility of the
messaging-passing model makes it applicable for a
variety of prohlt>ms. As discussed below. the ~tandard
library of functions for lllf'ssagt> passing. \lPl. is be
coming a universal tool for parallel software devel
opment.

Tlwre is a lot of research parallel programming
languages with different flavor~ to choose from, start
ing from functionaL dataflow to objt>ct orit>ntcd. logi
cal, etc. Howewr. the majority of rurllling scientific
parallel programs were written in Fortran. Since the
1 <JSOs. this langwlf!C was a favorite choicf for writer,
of ~cientific programs and particularly for generations
of graduate o;tudents i11 applit>d ~cienn-~. On-r the
year~. Fortran undf'nq•nt a remarkable tran~forma
tion, from one of the first languages at all to the first
languagt> with a well-df'fined standard (Fortran (Jb)

to the structured programming of Fortran 77. to data
parallel and object-oriented Fortran 90. and finally
to the newest standard of high-performance Fortran
(IIPF). Each generation brought with it nf'w features
ami set a new standard for the manufarturers of hard
ware and compilers. Critics of HPF argue that the
I IPF language is not general enough. In particular.
IIPF does not allow for dynamically dt•fined align
ments and distributioll that art' pennitted in some
other languages (HPF+. Vienna Fortran). llowewr,
standardization of tlw language features is ext rem ely
important for users. compilers, and tool writers be
cause it protects their ;;oftware invt>stments against
chang(•s in the architecture. In that respe('t. the intro
du('tion of Fortran 90 and then I IPF is an important
step forward toward more stable parallel software.

HPF can bt> sprn as the flagship of tllf' data-parallelism
camp. On the othPr hand. the supportt>rs of nlf'ssage
passing-based paralld programming achiewd stan
dardization of their approach in tlw messagP-passing
inw-face (\IPI).

Paralld processing is at a critical point of its evolu
tion. Aftn a long prriod of intensr support by govPrn
mrnt and academia. it slowly moves to deriwd the
bulk of its support from the commercial world. Such a
move brings with it a change of emphasis from record
breaking performance to price performancp and sus
tained srwed of program Pxecution. Tlw winning archi
tt'ctures art' not only fast. but also economically sound.
As a result. therP is a dear trt>ml towards widPning
the basr of paralld procPssing both in hardware and
software. On the hardware side. that means using off
the-slwlf commercially available components (proces
sors. interconnection switches) which benefit from a
rapid pace of the tPchnological advancemPnt fuelPd
by the largP customer hasP. The otht>r effect is the
co!lvPrgPnce of different architecturPs thanks to
sprPading tlw succt>ssful solutions among all of tlwm.
\~"orkstations intPITonnectPd by a fast nPtwork ap
proach the rwrformancP of parallel machines. Shared
memory machines with multilevel caches and sophisti
cated pn·fNching strategies executf' programs with pf
ficiencv similar to that of distributt>d mernorv ma-. .
chinPs.

On the software sidr. thP widening bast' of the usPrs
relies on standardization of parallel programming
tools. By protecting the programmer· s investment in
software. standardization promotes development of li
hrariPs. tools. and application kits that in turn attract
more Pnd-usfrs to parallel processing. lt ap1wars that
parallel programming is t>nding a long period of craft
design and is entering a stagt> of industrial dPwlop
ment of parallel software.

The articles included in this issue wPrP selt>ctt>d
from 15 submissions. Although the st>lected articlf's
cover a rangt> of topics. they share a common theme
"·hich is widening the applicability of paralld pro
cessing. Tlw first article. ..Towards Architecture
Adaptable Parallel Programming:· by Santhosh
Kumaran and \liehael J. Quinn from Ort>gon State
l-nivPrsity. focust>s on the dividP-and-conquer ap
proach to designing parallPl software portablt> across a
range of parallel architectures. For the price of limited
generality at the lt>wl of the program design nwthodol
ogy. the authors simplify porting an application to a
nPw platform. Their system provides the user with
divide-and-conquer templates for exprt>ssiug parallel
ism. It also automatically selpcts the efficient parallt>l
algorithm for the specified architt>cture.

Tlw nt>wly developed multithrt>aded architecturPs

PAR\DIC.\1S A:\D CO.\IPILERS 161

providP a nwans for escaping tl1P limitation of the
data-paralldism paradigm. Tlw idea of mixing data
and task parallelism is not new. Howe,·er. without
multithreading support. it is very difficult to irnple
mPnt. In .. Data- Parallt>l Programming in a Multi
threadPd Environnwnt ,·· .\latthew I Iaines (the Cniver
sity of Wyoming) and Piynsh Mehrotra and David
Cronk (!CASE) discuss a run-time based packagP that
supports parallel program t>xecution on a multi
threaded architecturt'. Their package handles the
problt>m of rt>lative indPxing and collective communi
cation among the thread groups. thereby enabling dif
fprent groups of thrt>ads representing differPnt tasks
of a paralld application to run concurrently.

As discussed above. global addrPss space. supported
by shared memory machines. is an attractive abstrac
tion for paralld programming. However. straightfor
ward shared memory implementation is not scalable.
So-called distributed shared memory (DSM) is an im
portant altt>rnative that combines a sharPd memory
programming modPl with tlw scalability of distributed
mPmory machinPs. In ·'Implementation and Perfor
maiwP of DSMPL ·· Luis M. Silva and Joao G. Silva
(the L niversity of Coimbra) and Simon Chapplt>
(Quads tone Ltd.) report on their experienct' with thP
parallel library called DS\IPI. The authors irnple
rnt>ntt>d DS.\1PI on top of .\1PI to provide DS.\1 abstrac
tion to thP library users. The articlt> comparps effi
cirncy of programs using DS.\IPI with those using .\IPI
directly. The test programs wert> run on a network of
workstations and a Cray T:3D. The rPsults indicate
that for several applications DS.\lPI library overht>ad
is nPgligible.

Adaptiw parallt>lism in which the number of pro
cessors running an application changPs at t>xecution
tinw is Pxplored in '·Run-TimP and Compiler Support
for Programming in Adaptiw Parallel Environments··
by Guy Edjlali. Gagan AgrawaL Alan Sussman. Jim
HumphriPs. and Joel Saltz (tlw University of Mary
land). The authors dt>veloped a run-time library that
enahlt>s the user to rPdistribute data and computation
when the number of participating processors changes.
It also supports recomputation of loop boundaries and
communieation patterns for redistributPd computa
tion. Tlw authors discuss how their librarv can bP
integrated with an HPF compiler. The reported results
indicate that the approach is effective if the changes
in the number of PxPcuting processors art' infrequent.
The library is targeted for parallel computation on a
network of nondedicated workstations which is
quickly becoming an important parallel computing
enginP.

The last article focuses on fundamental issues in
any transforming parallel compiler dt>sign. which is

162 SZYMA:\SKI

the representation of complex ranl!"e sets arising when
the arrays are traversed through complicated subscript
expressions. The article t>ntitled ··Precise Analysis of
Array Csage in Scientific Programs'' was written by
.\1. Manjunathaiah and Denis A. :\ieole (Uniwrsity of
Southampton). It introduces a new technique for an
exact represt>ntation of tht> results of binary operations
on array sections. Array sections define which array
elements are written or read by the program state
ments. Sections that art> regular, simplt>, or eon vex can
be compactly represented through shape descriptors.
However, some operations on sections. most notably
union, may create the sections that cannot be repre
sented by shape descriptors. The technique prest>nted
in this article enables a compact am:l f"xact repre;wnta
tion of the union result.

In preparation of this special issue, article review
was an important stage, both for the selection of the
best submissions as well as for improving the pub
lished articles. Many thanks are due to the following

volunteers for their timely ami thoughtful rt>views:
Peter Berezany (European Center of Excellence for
Parallel Computation), Zbigniew Chamski and Mi
chael F. O'Boyle (Cniversity oL\fanchester). Raja Das
(Georgia Institute of Technology) .. Susan F. Hummel
(Polytechnic University), Wesley Kaplow (AT&T Bell
Laboratories), Charles H. Koelbel (Rice Lniversity),
David R. Kohr (Argonne ~ational Laboratory), San
deep Kumar (l\orth Carolina State Cniversity), Lt>nore
.VI. R. Mullin (University at Albar1y). David O'Hallaron
(Carnegie Mellon Lniversity), Patricia Pine a (Alle
gheny College), Yuan Shi (Temple University), David
Skillicorn (Oxford liniversity), Mark A. Sweany
(Michigan Technological Cniversity), Parimala Thu
lasiraman and X in an Tang (McGilll :niversity), David
Wonnacott (Haverford Cniversity), Ewa Deelman,
Mukkai Krishnamoorthv. David Musser. Mohan ~ib
hanapudi. Charles :\orton, Peter Tannenbaum, Wes
ley Tuner, and Louis Ziantz (Rensst>lat>r Polytechnic
Institute).

Submit your manuscripts at
http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

