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Owing to the abuse of antibiotics, drug resistance of pathogenic bacteria becomesmore andmore serious.Therefore, it is interesting
to develop amore reasonable way to solve this issue. Because they can destroy the bacterial cell structure and then kill the infectious
bacterium, the bacterial cell wall lyases are suitable candidates of antibacteria sources. Thus, it is urgent to develop an accurate and
efficient computational method to predict the lyases. Based on the consideration, in this paper, a set of objective and rigorous data
was collected by searching through the Universal Protein Resource (the UniProt database), whereafter a feature selection technique
based on the analysis of variance (ANOVA) was used to acquire optimal feature subset. Finally, the support vector machine (SVM)
was used to perform prediction. The jackknife cross-validated results showed that the optimal average accuracy of 84.82% was
achieved with the sensitivity of 76.47% and the specificity of 93.16%. For the convenience of other scholars, we built a free online
server called Lypred. We believe that Lypred will become a practical tool for the research of cell wall lyases and development of
antimicrobial agents.

1. Introduction

Bacteria are widely distributed on the earth, a significant
proportion of which can cause disease. The antibiotic can
efficiently treat infectious diseases caused by pathogens.
However, antibiotics abuse may cause bacterial drug resis-
tance. Thus, there is an ever-increasing need to find new
ways to address this important issue [1, 2]. In the search for
more effective therapeutic strategies, great effort has been
placed on the study and development of lyases, which benefits
from high potency activity toward drug-resistant strains and
a low inherent susceptibility to emergence of new resistance
phenotypes [3–7].

In 1896, the British bacteriologist Hankin found that
the bacteriophage has antibacterial activity [3]. Subsequently,
in 1921, Brunoghe and Maisin used bacteriophage to treat
staphylococcal skin disease in France, which was the first
reported application of bacteriophage to treat infectious
diseases [8]. Maxted [9], Krause [10], and Fischetti et al. [11]
found that the lysates of Group C streptococci infected with
C1 bacteriophage contain an enzyme which has the ability to
lyse streptococci and their isolated cell walls. The enzyme is
called endolysin which is encoded by bacteriophage gene. It
can cause bacteria death by degrading cell wall. It has been
reported that 10 ng endolysins can lead to 107 bacteria’s lysis
within 30 seconds [4, 12].
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Autolysins are another kind of lyases that are function-
ally similar to endolysins except they are bacteria-encoded
enzymes [13]. It has been reported that autolysins play
important roles in several fundamental biological phenom-
ena, such as cell wall enlargement, genetic transformation,
flagella extrusion, cell division, and lysis induced by fl-
lactam antibiotics, as well as in the “suicidal tendencies” of
pneumococci [14–16].

Due to their special biological activity, lyases have been
applied in antibacteria drug development. Thus, it is neces-
sary to perform intensive research on lyases to understand the
antibacterial mechanism. Although wet experiments are an
objective approach for accurately recognizing the lyases, they
are often time-consuming and costly. Due to the convenience
and high efficiency, computational methods have attracted
more and more attention. Many algorithms such as common
support vectormachine (SVM) [17–19], structured SVM [20],
artificial neural network (ANN) [21], Random Forest (RF)
[22], 𝐾-nearest neighbor (KNN) [23–25], Bayesian classifier
[26, 27], Mahalanobis discriminant [28, 29], LibD3C [30],
genetic algorithm [31], imbalanced classifier [32], learning
to rank [33], and ensemble learning [34, 35] have been
developed for protein function prediction. Various sequence
features descriptors such as amino acid composition [36, 37],
pseudo amino acid composition (PseAAC) [38], physico-
chemical properties [39], secondary structure features [40],
and N-peptide composition [41] were proposed to represent
protein sequences [42].

To deal with the problem about lyases prediction,
recently, a method was developed to identify cell wall
enzymes by using PseAAC and Fisher discriminant [43].
A maximum overall accuracy of 80.4% was obtained with
the sensitivity of 66.7% and the specificity of 88.6% [43].
However, furtherwork is needed due to the following reasons.
(i) The prediction quality can be further improved. (ii) No
web server for the prediction method in [43] was provided,
and hence its usage is quite limited, especially for themajority
of experimental scientists.

The present study was devoted to development of a
new predictor for identifying lyases. For this purpose, an
objective and strict benchmark dataset was constructed for
training and testing the proposed model in which protein
sequences were formulated by using an improved PseAAC.
For the convenience of other scholars, a free online server
called Lypred (at http://lin.uestc.edu.cn/server/Lypred/) was
established.

2. Material and Method

2.1. Benchmark Dataset. A high quality dataset is the key
to building a robust and accurate predictor. The lyases in
bacteria or bacteriophage were regarded as positive samples
which were derived from the UniProt [44]. Negative samples,
namely, the nonlyases, were also derived from bacteriophage
and downloaded from the UniProt. In order to guarantee the
reliability of the benchmark dataset, we optimized the data
according to the following standards: firstly, the sequences
whose proteinwaswith annotations of “Inferred fromhomol-
ogy” or “Predicted” were excluded; secondly, we removed the

sequences which are the fragments of other proteins; thirdly,
the protein sequences containing unknown residues, such as
“B,” “J,” “O,” “U,” “X,” and “Z,” were eliminated; fourthly, to
avoid overestimation of prediction model that resulted from
the high sequence identity, the CD-HIT program [45] was
adopted to eliminate redundant sequence by setting the cutoff
of sequence identity to 40%. As a result, a total of 68 lyases
and 307 nonlyases were obtained to form the final benchmark
dataset.

2.2. Features Extraction. A sequence can be represented by
two different forms: one is the sequential form and the
other is the discrete form [46]. The most common and
straightforward way to characterize a protein is to use all the
residues in its sequence written as follows:
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residue of protein 𝑃, respectively. Based on the information,
a query protein can be predicted by the BLAST or FASTA
program. The results are always good for the query sequence
which has high similar sequences in benchmark dataset;
however, it fails to work when the similar sequences for the
query sequence are not found in the training dataset [47].
Therefore, the similarity-based method is not suitable for the
case that no homologue was found in the benchmark dataset.
The discrete form can overcome the shortcoming and is easy
to be treated in statistical prediction.Thus, it has been widely
used in protein and DNA formulation [48, 49]. The PseAAC
is a typical discrete form that has beenwidely used for protein
function prediction [46, 50, 51].

It is well known that the polypeptide chains fold to
tertiary structures based on the physicochemical properties
of residues. Thus, it is not enough to analyze the residue
compositions of protein molecules. Hence, we proposed to
represent protein samples by using an improved PseAAC
which includes not only 𝑔-gap dipeptide composition, but
also correlation of physicochemical property between two
residues.

According to the concept of PseAAC, a protein𝑃with the
length of 𝐿 can be formulated in a (400+𝑛𝛿) dimension space
as given by
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where 𝜑
𝑖
denotes the normalized occurrence frequency of the

𝑖th kind of 𝑔-gap dipeptide in protein 𝑃 formulated as
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Thus, each protein sample can be expressed by 400 + 𝑛𝛿

kinds of features according to (2)–(7).

2.3. Feature Selection. Some features are noise or redundant
information which will reduce the predictive performance of
classification models. Thus, it is very important to develop a
method to evaluate the contribution of every feature to the
classification. Here, we used ANOVA [52] to rank features
defined as
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where 𝐹(𝑖) represents the 𝐹-score of the 𝑖th feature type,
𝑓
𝑖
(𝑠, 𝑗) is the feature value of the 𝑖th feature type of the 𝑠th

sample in the 𝑗th protein type, and 𝑚
𝑗
is the number of

samples in the 𝑗th protein type. It is obvious that the larger
the 𝐹(𝑖) value, the better the discriminative capability the 𝑖th
feature has.

In order to eliminate the redundant features, we firstly
ranked all features according to their 𝐹-score from high to
low. The first feature subset only contained the feature with
the largest 𝐹-score; then, a new feature subset was generated
when the feature with the second largest 𝐹-score was added.
The process was repeated until all features were added. The
SVM was used to evaluate the performance for each feature
subset. The feature subset with the best performance is
deemed the optimal feature subset which does not contain
redundant features.

2.4. Support Vector Machine. The SVM is a linear-classifier-
based supervised machine learning method, which has been
successfully used in many bioinformatics fields [48–51, 53–
57]. To attain the goal of classification, SVMutilizes the kernel
function to deal with the nonlinear transformation, and thus
linear inseparable can be converted to a linear problem in
high-dimension Hilbert space. In this work, the software
LIBSVM [58] was used to execute SVM.

2.5. Performance Standard. To provide a more intuitive and
easier-to-understand method to evaluate the prediction per-
formance, we used the following criteria: the sensitivity (Sn),
the specificity (Sp), Mathew’s correlation coefficient (MCC),
the overall accuracy (OA), and the average accuracy (AA),
which were defined as
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Table 1: The original values of nine physicochemical properties used in this study.

Amino acids Hydrophobicity Hydrophilicity Rigidity Flexibility Irreplaceability Mass pI pK(𝛼-COOH) pK(𝛼-NH
3

+)
A 0.62 −0.5 −1.338 −3.102 0.52 15 6.11 2.35 9.87
C 0.29 −1 −1.511 0.957 1.12 47 5.02 1.71 10.78
D −0.9 3 −0.204 0.424 0.77 59 2.98 1.88 9.6
E −0.74 3 −0.365 2.009 0.76 73 3.08 2.19 9.67
F 1.19 −2.5 2.877 −0.466 0.86 91 5.91 2.58 9.24
G 0.48 0 −1.097 −2.746 0.56 1 6.06 2.34 9.6
H −0.4 −0.5 2.269 −0.223 0.94 82 7.64 1.78 8.97
I 1.38 −1.8 −1.741 0.424 0.65 57 6.04 2.32 9.76
K −1.5 3 −1.822 3.950 0.81 73 9.47 2.2 8.9
L 1.06 −1.8 −1.741 0.424 0.58 57 6.04 2.36 9.6
M 0.64 −1.3 −1.741 2.484 1.25 75 5.74 2.28 9.21
N −0.78 0.2 −0.204 0.424 0.79 58 10.76 2.18 9.09
P 0.12 0 1.979 −2.404 0.61 42 6.3 1.99 10.6
Q −0.85 0.2 −0.365 2.009 0.86 72 5.65 2.17 9.13
R −2.53 3 1.169 3.060 0.60 101 10.76 2.18 9.09
S −0.18 0.3 −1.511 0.957 0.64 31 5.68 2.21 9.15
T −0.05 −0.4 −1.641 −1.339 0.56 45 5.6 2.15 9.12
V 1.08 −1.5 −1.641 −1.339 0.54 43 6.02 2.29 9.74
W 0.81 −3.4 5.913 −1.000 1.82 130 5.88 2.38 9.39
Y 0.26 −2.3 2.714 −0.672 0.98 107 5.63 2.2 9.11

where TP is the number of lyases that were correctly pre-
dicted, FN denotes the number of lyases that were predicted
as the nonlyases, TN is the number of nonlyases that were
correctly predicted, and FP denotes the number of nonlyases
that were predicted as the lyases.

In addition, we also chose the receiver operating charac-
teristic curve (ROC curve) to measure the performance of
the proposed model. ROC curve is a kind of comprehensive
index that is drawn by using (1 − Sp) as the abscissa and Sn
as the ordinate. Thus, it reveals the continuous variable of Sn
and Sp. Generally, we only need to calculate the area under
the ROC curve (auROC).The greater the auROC is, the better
the discriminate capability the prediction model has is.

3. Results and Discussion

3.1. Forecasting Accuracy. In this work, 9 kinds of physico-
chemical properties were selected in improved PseAAC [47].
The nine physicochemical properties are hydrophobicity,
hydrophilicity, rigidity, flexibility, irreplaceability, side chain
mass, pI at 25∘C, pK of the 𝛼-COOH group, and pK of the
𝛼-NH

3

+ group [47], respectively. The original values of the
physicochemical properties for 20 amino acids were all listed
in Table 1. According to (2)–(7), each protein sample can
be formulated by a (400 + 9𝛿) dimension vector including
400 𝑔-gap dipeptide compositions and 9𝛿 correlation factors
based on physicochemical properties between two residues.
From (3)–(5), the prediction performance of our method
was influenced by two parameters, namely, 𝑔 and 𝛿, where
𝑔 describes the local sequence-order effect and 𝛿 represents
the global sequence-order effect. The current study searched

for the optimal values for the two parameters according to the
following standard:

0 ≤ 𝑔 ≤ 9, with step Δ = 1

1 ≤ 𝛿 ≤ 10, with step Δ = 1.

(10)

In cross-validation test, n-fold cross-validation, jackknife
cross-validation, and independent dataset test are often
used for measuring the performance of prediction model.
Although the jackknife cross-validation is deemed the most
objective because it can always yield a unique result for
benchmark dataset given [59, 60] and it has been more and
more widely used, it also has obvious drawbacks, such as the
large calculation and being time-consuming. Hence, the 5-
fold cross-validation was adopted in this work for searching
the optimal parameters and the optimal feature subset. Once
the optimal feature subset was determined, we used jackknife
cross-validation for verification ulteriorly.

Based on (10), a total of 10× 10 = 100 groups of parameters
(𝑔, 𝛿) were investigated. For each parameter group (𝑔, 𝛿),
there are 400 + 9𝛿 feature subsets. Then, we used feature
selection technique defined in (8) to find out the best one
in each parameter group. Thus, we obtained the 100 highest
OAs for 100 groups of parameters (𝑔, 𝛿). To provide an overall
and intuitive analysis, the best OAs were drawn into a heat
map, where the column and row of the heat map represent
the parameters 𝑔 and 𝛿, respectively. Each element in the heat
map represents one of the 100 groups of parameters (𝑔, 𝛿)
and was colorized according to its highest overall accuracy
in feature selection process. From Figure 1, we noticed that
several elements are red indicating the maximum overall
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Figure 1: A heat map to show the overall accuracy in 5-fold cross-
validation with different parameter groups (𝑔, 𝛿).

accuracy of 91.73% when 𝑔 equals 0 or 4 and 𝛿 equals 7, 8,
9, and 10. Generally, a model with a small number of features
can reduce the risk of overfitting. After checking the feature
selected results, we found that when using feature selection
technique to optimize parameter group (𝑔 = 4 and 𝛿 = 7),
the optimal feature subset contains 63 features, which is less
than the optimal feature subset in other groups. Thus, the
final model was established based on the 63 features from
parameter group (𝑔 = 4 and 𝛿 = 7).

Because there is imbalance in our benchmark dataset, the
average accuracy and ROC curve were employed to evaluate
the model. Thus, we set a series of different classification
thresholds to seek the maximum of average accuracy. The
maximum AA and corresponding Sn, Sp, MCC, and OA
were listed in Table 2. The ROC curve can demonstrate
the predictive capability of the proposed method across the
entire range of SVM decision values. Thus, we plotted the
ROC curve in Figure 2. It shows that auROC is 0.926,
demonstrating that our model has capability to predict cell
wall lyases.

To investigate whether other algorithms have the same
or higher discriminate capability in the same feature space,
the performances of Random Forest, Näıve Bayes, and
LibD3C were examined by using jackknife cross-validation.
Random Forest and Näıve Bayes were executed by using free
package WEKA [61]. The LibD3C, a new selective ensemble
algorithm, is a hybrid model of ensemble pruning that is
based on 𝑘-means clustering and the framework of dynamic
selection and circulating in combination with a sequential
search method [30]. We used default parameters in LibD3C
to perform classification.

The jackknife cross-validated results were also recorded
in Table 2 for clear comparison. Note that the result for each
algorithm in Table 2 was calculated with the maximum AA.
As can be seen from the table, although Sn’s of RandomForest
andNäıve Bayes are no lower than SVM, other indicators (Sp,
MCC, OA, AA, and auROC) of SVM are the best.

Table 2: Comparison among the performances of different algo-
rithms.

Algorithm Sn (%) Sp (%) MCC OA (%) AA (%) auROC
SVM 76.47 93.16 0.678 90.13 84.82 0.926
Random Forest 80.88 85.02 0.572 84.27 82.95 0.905
Näıve Bayes 76.47 83.06 0.512 81.87 79.77 0.881
LibD3C 66.18 88.60 0.515 84.53 77.39 0.859
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Figure 2: The ROC curve for the proposed model with the 63
optimal features in jackknife cross-validation using SVM.

3.2. Online-ServerGuide. Auser-friendly online server called
Lypred was established. A simple guide about the server was
given below in order to further make it easier for the users.

Lypred has five pages. Users can browse the server at
http://lin.uestc.edu.cn/server/Lypred/ and see the home page
on the screen as shown in Figure 3. The Read Me page
provides a brief introduction about Lypred and the caveat
when being used. The Data page shows a brief description
about the benchmark dataset and the optimal feature subset
used in this work and provides links for downloading. The
relevant paper about the detailed development and algorithm
ofLypred can be seen by clicking theCitation button. Example
sequences in FASTA format can be found by clicking the
Example button right above the input box.

Users can not only type or copy/paste the query protein
sequences into the input box, but also upload FASTA/txt
file containing the query protein sequences at the center of
the home page of Lypred. Note that Lypred also has some
constraints so as to guarantee the reliability of the results:
firstly, protein sequencesmust be in FASTA format consisting
of a single initial line beginning with a greater-than symbol
(“>”) in the first column, followed by lines of sequence
data, and the sequence is deemed to end if there is another
line starting with “>”; secondly, the query protein sequence
should only contain 20 kinds of amino acids; thirdly, the
length of a query protein sequence should be no less than
eight.
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Figure 3: A semiscreenshot to show the home page of Lypred. Its
website address is http://lin.uestc.edu.cn/server/Lypred/.

4. Conclusions

With growing drug resistance of pathogenic bacteria, great
effort has been placed on the study and development of lyases.
Effective identification of lyases will provide convenience for
development of new antimicrobials. In this work, we used an
improved PseAAC including 𝑔-gap dipeptide compositions
and correlation factors of the physicochemical properties to
extract the characteristics of protein sequences. A feature
selection technique based on ANOVA was used to optimize
features. The results of AA of 84.82% and auROC of 0.926
make us believe that Lypred will become a powerful and
useful tool for the experimental study of bacterial cell wall
lyase.
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