
Research Article
Electron Energy Studying of Molecular Structures via
Forgotten Topological Index Computation

Wei Gao,1 Weifan Wang,2 Muhammad Kamran Jamil,3 and Mohammad Reza Farahani4

1School of Information Science and Technology, Yunnan Normal University, Kunming 650500, China
2Department of Mathematics, Zhejiang Normal University, Jinhua 321004, China
3Department of Mathematics, Riphah Institute of Computing and Applied Sciences, Riphah International University,
14 Ali Road, Lahore, Pakistan
4Department of Applied Mathematics, Iran University of Science and Technology, Tehran 16844, Iran

Correspondence should be addressed to Wei Gao; gaowei@ynnu.edu.cn

Received 26 April 2016; Revised 9 July 2016; Accepted 26 July 2016

Academic Editor: Teodorico C. Ramalho

Copyright © 2016 Wei Gao et al.This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

It is found from the earlier studies that the structure-dependency of total 𝜋-electron energy 𝐸𝜋 heavily relies on the sum of squares
of the vertex degrees of the molecular graph. Hence, it provides a measure of the branching of the carbon-atom skeleton. In recent
years, the sum of squares of the vertex degrees of themolecular graph has been defined as forgotten topological index which reflects
the structure-dependency of total 𝜋-electron energy 𝐸𝜋 and measures the physical-chemical properties of molecular structures. In
this paper, in order to research the structure-dependency of total 𝜋-electron energy 𝐸𝜋, we present the forgotten topological index
of some important molecular structures from mathematical standpoint. The formulations we obtained here use the approach of
edge set dividing, and the conclusions can be applied in physics, chemical, material, and pharmaceutical engineering.

1. Introduction

The principal quantum numbers, derived from electrons in
an atom or molecule, determine the range of electron energy
if we research on the orbital it occupies. “Atomic emission,” a
very common and interesting phenomenon in atoms, proves
to be both the origin of the Fraunhofer lines and an effective
approach in this field. To illustrate, it describes that oncemore
energy than minimum for the given situation is stored in one
electron, it could be emitted as a photon. Fraunhofer lines are
another significant technique which turns out to work pretty
well in identification and astronomy, where themeasurement
of “red shift” in stars exactly comes to the point. As we
know, spin and angular momentum can help to intensify the
whole energy of an electron, so it can be represented by the
set of all of its quantum numbers. To illustrate, the speed
that an electron orbits is considered as the electron energy
in physics and it could be looked upon as the effect of an
electron’s energy. But some special phenomena still could
occur in the real life and even though two electrons get the
same speed, they are not exactly the same. For instance, when

two electrons are the same except the spin quantumnumbers,
they can orbit at the same speed. The case is also likely to
happen in two electrons only different in angular momentum
numbers with one being a positive number and the other
being a negative number.

Having computed within the Huckel tight-binding
molecular orbital (HMO) approximation, we get 𝐸𝜋, the
total 𝜋-electron energy. As a quantum-chemical property of
conjugated molecules, it turns out to be in good accordance
to the thermodynamic properties. Based on the eigenvalues
of the adjacency matrix of the molecular graph, we can
compute out 𝐸𝜋, when the conjugated hydrocarbons are
still in their ground electronic states. The mentioned graph
can be described like this here: 𝐸𝜋 = 𝑛𝛼 + 𝐸𝛽. In the
graph, 𝑛 symbolizes the number of carbon atoms; 𝛼 is the
HMO carbon-atom Coulomband; 𝛽 is the carbon-carbon
resonance integrals; and for the majority (but not all),
conjugated 𝜋-electron systems,

𝐸 = 𝑛∑
𝑖=1

󵄨󵄨󵄨󵄨𝜆𝑖󵄨󵄨󵄨󵄨 . (1)
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Here, 𝜆1, 𝜆2, . . . , 𝜆𝑛 represent the eigenvalues of the adja-
cencymatrixA of the underlyingmolecular graph𝐺, forming
the spectrum of 𝐺.

Referring to the relative researches about𝐸𝜋 and focusing
on the research on its dependence on molecular structure
in specific, we find that the term 𝐸 is the only interesting
quantity, and it is defined in (1). As a matter of fact, it is
a common and traditional way to regard 𝐸 as the total 𝜋-
electron energy, expressed in 𝛽-units. Hence, there is a need
for us to mention that the quantity defined via (1) is called the
energy of the graph 𝐺 in mathematical.

More details on total 𝜋-electron energy can be found in
Gutman et al. [1–5], Angelina et al. [6], Türker and Gutman
[7], Jones et al. [8], Radenković and Gutman [9], Peric et al.
[10], Morales [11], Markovic [12], and Morales [13].

A research on the structure-dependency of total 𝜋-
electron energy 𝐸𝜋 in 1972 proposed an approach to the bra-
nching of the carbon-atom skeleton by demonstrating that
the sum of squares of the vertex degrees of the molecular
graph can determine 𝐸𝜋. What is more, it also pointed that𝐸𝜋 tends to be influenced by the sum of cubes of degrees
of vertices of the molecular graph. Indeed, the formulas for
total 𝜋-electron energy 𝐸𝜋 also concern the sum of cubes of
vertex degrees (in many references, this value can be denoted
by ∑𝜎31). In a clear fashion, this quantity is a measure of
branching as well.

Thus, in a recent research on the structure-dependency of
the total 𝜋-electron energy, it was indicated that another term
on which this energy depends is in the form (see Furtula and
Gutman [14])

𝐹 (𝐺) = ∑
V∈𝑉(𝐺)

𝑑 (V)3 = ∑
𝑢V∈𝐸(𝐺)

(𝑑 (𝑢)2 + 𝑑 (V)2) , (2)

where 𝑑(V) is denoted as the degree of vertex V (the number of
vertex adjacent to vertex V). In addition, this sum was named
forgotten topological index or shortly the 𝐹-index.

In theweb site, http://www.moleculardescriptors.eu/data-
set/dataset.htm, the potential ability of the𝐹-index was tested
using a dataset of octane isomers, which is in accordance
to the International Academy of Mathematical Chemistry.
In the simplest form, the 𝐹-index does not recognize het-
eroatoms and multiple bonds, and this becomes the reason
why dataset is chosen as a measure. A list of data including
boiling point, melting point, heat capacities, entropy, density,
heat of vaporization, enthalpy of formation, motor octane
number, molar refraction, acentric factor, total surface area,
octanol-water partition coefficient, and molar volume help
to compose the octane dataset. The 𝐹-index shows its strong
bonds with most properties here. As a consequence, 𝐹-index
proves to have correlation coefficients greater than 0.95 in
entropy and acentric factor.

However, for many other physicochemical character-
istics, 𝐹-index may not be fully correlated. In order to
strengthen the predictive ability of 𝐹-index in potential
chemical applications, a linear framework was proposed as
follows (see Furtula and Gutman [14]):

∑
𝑢V∈𝐸(𝐺)

(𝑑 (𝑢) + 𝑑 (V)) + 𝜆 ∑
𝑢V∈𝐸(𝐺)

(𝑑 (𝑢)2 + 𝑑 (V)2) , (3)

where 𝜆 is an adaptive parameter which can be adjusted
according to the detailed applications in chemical or phar-
macy engineering (generally speaking, 𝜆 always take value
from −20 to 20); the first term ∑𝑢V∈𝐸(𝐺)(𝑑(𝑢) + 𝑑(V)) was
defined as the first Zagreb index which was one of the most
traditional indexes in chemical science. By means of a large
number of experimental studies, this framework can be used
in each of the physicochemical properties with fixed octane
database. As an example, an evident improvement can be
obtained in the octanol-water partition coefficient, and it
was pointed out that the absolute value of the correlation
coefficient gets a tight maximum if taking 𝜆 = −0.14 in the
above framework. Then, by virtue of derivation, the octanol-
water partition coefficient of octanes can be stated as the
following representation:

log𝑃 = −0.2058( ∑
𝑢V∈𝐸(𝐺)

(𝑑 (𝑢) + 𝑑 (V))

− 0.14 ∑
𝑢V∈𝐸(𝐺)

(𝑑 (𝑢)2 + 𝑑 (V)2)) + 7.5864,
(4)

where log𝑃 is the logarithm function of the octanol-water
partition coefficient. This fact implies that the error of
mean absolute percentage is only 0.06% and the correlation
coefficient can reach to 0.99896.

In real engineering implements, themodel∑𝑢V∈𝐸(𝐺)(𝑑(𝑢)+𝑑(V)) + 𝜆∑𝑢V∈𝐸(𝐺)(𝑑(𝑢)2 + 𝑑(V)2) can be regarded as a
generalized framework. For different chemical applications,
adaptive parameter 𝜆 is a key factor which can be changed to
the optimal value according to the detailed applications. In
the above example, 𝜆 takes −0.14, while for other applications𝜆 can take other values and it is determined by detailed
physical-chemical properties and measured in the chemical
experiments.

In thewhole article, themolecular structure ismodeled as
a graph𝐺with vertex set𝑉(𝐺) and edge set 𝐸(𝐺), where each
vertex represents an atom and each edge denotes a chemical
bond between two atoms. A topological index defined on the
molecular graph can be considered as a real-valued function𝑓 : 𝐺 → R+ which maps each chemical structure to a
real score. Except the forgotten topological index, there are
several famous indices introduced and applied in chemical
engineering, such as Wiener index, harmonic index, sum
connectivity index, and eccentric index (see Gao et al. [15–
19], Yang et al. [20], Marana et al. [21], and Li et al. [22] for
more details). The terminologies and notations used but not
clearly defined in our paper can be found in Bondy andMutry
[23].

Although there have been many advances in degree-
based and distance-based indices of molecular graphs, the
studies of forgotten topological index for special chemical
molecular structures are still largely limited. For this reason,
we give the exact expressions of forgotten topological index
for several chemical molecular structures which commonly
appeared in various chemical environments.



Journal of Chemistry 3

3m
3m − 1

3m − 2

Figure 1: 𝑖th period of SC5C7[𝑝, 𝑞] nanotube.

The rest of the context is arranged as follows: first,
we present the forgotten topological index of some nanos-
tructures: SC5C7[𝑝, 𝑞] nanotubes, H-naphtalenic nanotubes
NPHX[𝑚, 𝑛], TUC4[𝑚, 𝑛] nanotubes, PAMAM dendrimers:
PD1[𝑛], PD2[𝑛], and DS1[𝑛], VC5C7[𝑝, 𝑞], and HC5C7[𝑝, 𝑞]
nanotubes, zigzag TUZC6[𝑚, 𝑛], and armchair TUAC6[𝑚, 𝑛]
nanotubes; second, we calculate the forgotten topological
index of several kinds of polyomino chains.

Themain trick in our article to deduce the expected result
is edge set dividing technology. Let 𝛿(𝐺) and Δ(𝐺) be the
minimum and maximum degree of 𝐺, respectively. The edge
set 𝐸(𝐺) can be divided into several partitions: for any 𝑖,2𝛿(𝐺) ≤ 𝑖 ≤ 2Δ(𝐺), let 𝐸𝑖 = {𝑒 = 𝑢V ∈ 𝐸(𝐺) | 𝑑(V) + 𝑑(𝑢) = 𝑖};
for any 𝑗, (𝛿(𝐺))2 ≤ 𝑗 ≤ (Δ(𝐺))2, let 𝐸∗𝑗 = {𝑒 = 𝑢V ∈𝐸(𝐺) | 𝑑(V)𝑑(𝑢) = 𝑗}. Using this dividing, the 𝐹-index can
be expressed as

𝐹 (𝐺) = ∑
𝐸𝑖

∑
𝑢V∈𝐸𝑖

(𝑑 (𝑢)2 + 𝑑 (V)2)
= ∑
𝐸∗
𝑗

∑
𝑢V∈𝐸∗
𝑗

(𝑑 (𝑢)2 + 𝑑 (V)2) . (5)

More specifically, if we denote 𝐸𝑖𝑗 = {𝑒 = 𝑢V ∈ 𝐸(𝐺) | 𝑑(V) =𝑖, 𝑑(𝑢) = 𝑗}, then the 𝐹-index can be further stated as

𝐹 (𝐺) = ∑
𝐸𝑖𝑗

󵄨󵄨󵄨󵄨󵄨𝐸𝑖𝑗󵄨󵄨󵄨󵄨󵄨 (𝑖2 + 𝑗2) . (6)

In view of this alternation and the detailed analysis of
molecular structures, the 𝐹-index of special chemical graphs
can be determined.

2. Forgotten Topological Index of Nanotubes

In the field of nanomaterial and nanotechnology, there are a
large number of new nanostructures being discovered each
year. It needs more chemical experiments to figure out their
biochemical properties. In this section, we focus on the
nanostructures and present the forgotten topological index
of some special kinds of nanorelated molecular graphs.

2.1. Forgotten Topological Index of SC5C7[𝑝, 𝑞] Nanotubes
and H-Naphtalenic Nanotubes. In nanoscience, SC5C7[𝑝, 𝑞]
(where 𝑝 and 𝑞 express the number of heptagons in each row
and the number of periods in whole lattice, resp.) nanotube
is a class of C5C7-net which is yielded by alternating C5
and C7. The standard tiling of C5 and C7 can cover either a
cylinder or a torus, and each period of SC5C7[𝑝, 𝑞] consisted
of three rows (more details on 𝑖th period can be referred to in
Figure 1).

H-Naphtalenic nanotubes NPHX[𝑚, 𝑛] (where 𝑚 and𝑛 are denoted as the number of pairs of hexagons in

first row and the number of alternative hexagons in a
column, resp.) are a trivalent decoration with sequence of
C6,C6,C4,C6,C6,C4, . . . in the first row and a sequence of
C6,C8,C6,C8, . . . in the other rows. In other words, this
nanolattice can be considered as a plane tiling of C4, C6, and
C8.Therefore, this class of tiling can cover either a cylinder or
a torus.

Now, our first result on the forgotten topological index
of SC5C7[𝑝, 𝑞] nanotubes and H-naphtalenic nanotubes is
stated as follows.

Theorem 1. One has

𝐹 (SC5C7 [𝑝, 𝑞]) = 216𝑝𝑞 − 76𝑝,
𝐹 (NPHX [𝑚, 𝑛]) = 270𝑚𝑛 − 76𝑚. (7)

Proof. According to the molecular graph structure
SC5C7[𝑝, 𝑞], we see that |𝐸(SC5C7[𝑝, 𝑞])| = 12𝑝𝑞 − 2𝑝
and its edge set can be separated into three subsets:

(i) 𝐸4 (or 𝐸∗4 ), 𝑑(𝑢) = 𝑑(V) = 2, |𝐸4| = |𝐸∗4 | = 𝑝.
(ii) 𝐸6 (or 𝐸∗9 ), 𝑑(𝑢) = 𝑑(V) = 3, |𝐸6| = |𝐸∗9 | = 12𝑝𝑞−9𝑝.
(iii) 𝐸5 (or 𝐸∗6 ), 𝑑(𝑢) = 2, 𝑑(V) = 3, and |𝐸5| = |𝐸∗6 | = 6𝑝.
ForH-naphtalenic nanotubesNPHX[𝑚, 𝑛], we check that|𝐸(NPHX[𝑚, 𝑛])| = 15𝑚𝑛−2𝑚 and its edge set can be divided

into two partitions:

(i) 𝐸6 (or 𝐸∗9 ), 𝑑(𝑢) = 𝑑(V) = 3, |𝐸6| = |𝐸∗9 | = 15𝑚𝑛 −10𝑚.
(ii) 𝐸5 (or 𝐸∗6 ), 𝑑(𝑢) = 2, 𝑑(V) = 3, |𝐸5| = |𝐸∗6 | = 8𝑚.

At last, we get the desired formulations in terms of the
definitions of forgotten topological index.

2.2. Forgotten Topological Index of TUC4[𝑚, 𝑛] Nanotubes
and PAMAM Dendrimers. In the nanoscience, TUC4[𝑚, 𝑛]
nanotubes (where 𝑚 and 𝑛 are denoted as the number of
squares in a row and the number of squares in a column, resp.)
are plane tiling of C4. This tessellation of C4 can cover either
a torus or a cylinder. The 3D representation of TUC4[6, 𝑛] is
described in Figure 2.

Using the trick of edge set dividing, we yield the following
statement.

Theorem 2. One has

𝐹 (TUC4 [𝑚, 𝑛]) = 64𝑚𝑛 − 10𝑚. (8)

Proof. By observing the structure of TUC4[𝑚, 𝑛], we verify
that |𝐸(TUC4[𝑚, 𝑛])| = 2𝑚𝑛 + 𝑚 and its edge set can be
divided into three partitions:

(i) 𝐸6 (or 𝐸∗9 ), 𝑑(𝑢) = 𝑑(V) = 3, |𝐸6| = |𝐸∗9 | = 2𝑚.
(ii) 𝐸7 (or 𝐸∗12), 𝑑(𝑢) = 3, 𝑑(V) = 4, |𝐸7| = |𝐸∗12| = 2𝑚.
(iii) 𝐸8 (or 𝐸∗16),𝑑(𝑢) = 𝑑(V) = 4, |𝐸8| = |𝐸∗16| = 𝑚(2𝑛−3).
Therefore, the expected formulation is followed by the

definitions of forgotten topological index.
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Figure 2: The 3D expression of TUC4[6, 𝑛].

Now, we use PD1 to denote PAMAMdendrimers with tri-
functional core unit generated by dendrimer generations 𝐺𝑛
with 𝑛 growth stages, use PD2 to denote PAMAM dendrimer
with different core generated by dendrimer generations 𝐺𝑛
with 𝑛 growth stages, and use DS1 to express other kinds of
PAMAM dendrimer with 𝑛 growth stages.

Theorem 3. One has

𝐹 (PD1) = 492 ⋅ 2𝑛 − 258,
𝐹 (PD2) = 656 ⋅ 2𝑛 − 310,
𝐹 (DS1) = 228 ⋅ 3𝑛 − 160.

(9)

Proof. By observation of PAMAM dendrimer PD1, PD2, and
DS1, we ensure that the edge set of PD1 can be divided into
four partitions:

(i) 𝐸3 (or 𝐸∗2 ), 𝑑(𝑢) = 1, 𝑑(V) = 2, |𝐸3| = |𝐸∗2 | = 3 ⋅ 2𝑛.
(ii) 𝐸∗3 , 𝑑(𝑢) = 1, 𝑑(V) = 3, |𝐸∗3 | = 6 ⋅ 2𝑛 − 3.
(iii) 𝐸∗4 , 𝑑(𝑢) = 𝑑(V) = 2, |𝐸∗4 | = 18 ⋅ 2𝑛 − 9.
(iv) 𝐸5 (or 𝐸∗6 ), 𝑑(𝑢) = 2, 𝑑(V) = 3, |𝐸5| = |𝐸∗6 | = 21 ⋅ 2𝑛 −12.
The set 𝐸(PD2) can be divided into four subsets.

(i) 𝐸3 (or 𝐸∗2 ), 𝑑(𝑢) = 1, 𝑑(V) = 2, |𝐸3| = |𝐸∗2 | = 4 ⋅ 2𝑛.
(ii) 𝐸∗3 , 𝑑(𝑢) = 1, 𝑑(V) = 3, |𝐸∗3 | = 8 ⋅ 2𝑛 − 4.
(iii) 𝐸∗4 , 𝑑(𝑢) = 𝑑(V) = 2, |𝐸∗4 | = 24 ⋅ 2𝑛 − 11.
(iv) 𝐸5 (or 𝐸∗6 ), 𝑑(𝑢) = 2, 𝑑(V) = 3, |𝐸5| = |𝐸∗6 | = 28 ⋅ 2𝑛 −14.

Figure 3: The 3D lattice of the zigzag TUZC6[10, 7].

Moreover, the edge set of DS1 can be divided into three
parts.

(i) 𝐸5, 𝑑(𝑢) = 1, 𝑑(V) = 4, |𝐸5| = 4 ⋅ 3𝑛.
(ii) 𝐸4, 𝑑(𝑢) = 𝑑(V) = 2, |𝐸4| = 10 ⋅ 3𝑛 − 10.
(iii) 𝐸6 (or 𝐸∗8 ), 𝑑(𝑢) = 2, 𝑑(V) = 4, |𝐸6| = |𝐸∗8 | = 4 ⋅ 3𝑛 −4.
Finally, the results are deduced bymeans of the definitions

of forgotten topological index.

2.3. Forgotten Topological Index of VC5C 7[𝑝, 𝑞] and
HC5C 7[𝑝, 𝑞] Nanotubes. The aim of this subsection is
to compute the forgotten topological index of VC5C7[𝑝, 𝑞]
and HC5C7[𝑝, 𝑞] (where 𝑝 is the number of pentagons in the
first row and 𝑞 is the number of repetitions in four first rows
of vertices and edges) nanotubes. The molecular structures
of these nanotubes consist of cycles C5 and C7 (C5C7 net
which is a trivalent decoration constructed by alternating C5
and C7) by different compound. It can cover either a cylinder
or a torus.

Now, we present the main results in this subsection.

Theorem 4. One has

𝐹 (VC5C7 [𝑝, 𝑞]) = 432𝑝𝑞 + 48𝑝,
𝐹 (HC5C7 [𝑝, 𝑞]) = 216𝑝𝑞 + 40𝑝. (10)

Proof. By graph analysis and computation, we have|𝐸(VC5C7[𝑝, 𝑞])| = 24𝑝𝑞 + 6𝑝 and |𝐸(HC5C7[𝑝, 𝑞])| =12𝑝𝑞 + 5𝑝. Furthermore, we yield two partitions of edge set𝐸(VC5C7[𝑝, 𝑞]) : 𝐸6, 𝑑(𝑢) = 𝑑(V) = 3; 𝐸5, 𝑑(𝑢) = 2 and𝑑(V) = 3; and three partitions of edge set 𝐸(HC5C7[𝑝, 𝑞]) :𝐸4, 𝑑(𝑢) = 𝑑(V) = 2; 𝐸6, 𝑑(𝑢) = 𝑑(V) = 3; 𝐸5, 𝑑(𝑢) = 2 and𝑑(V) = 3.
Consider nanotubes VC5C7[𝑝, 𝑞] with any 𝑝, 𝑞 ∈ N; we

get |𝐸5| = |𝐸∗6 | = 12𝑝 and |𝐸6| = |𝐸∗9 | = 24𝑝𝑞 − 6𝑝. For
nanotube HC5C7[𝑝, 𝑞] with any 𝑝, 𝑞 ∈ N, we deduce |𝐸4| =|𝐸∗4 | = 𝑝, |𝐸5| = |𝐸∗6 | = 8𝑝, and |𝐸6| = |𝐸∗9 | = 12𝑝𝑞 − 4𝑝.

Therefore, in terms of definitions of the forgotten topo-
logical index, we get the final conclusion as expected.

2.4. Forgotten Topological Index of Two Classes of Polyhex
Nanotubes. As the last part of this section, we aim to study
the forgotten topological index of two classes of polyhex
nanotubes: zigzag TUZC6[𝑚, 𝑛] and armchair TUAC6[𝑚, 𝑛],
where 𝑚 is the number of hexagons in the first row and 𝑛 is
the number of hexagons in the first column. The molecular
structures of TUZC6[𝑚, 𝑛] and TUAC6[𝑚, 𝑛] can be referred
to in Figures 3 and 4, respectively.

Now, we present the main results in this section.
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Figure 4: The 3D lattice of the armchair TUAC6[𝑚, 𝑛].

Theorem 5. One has

𝐹 (TUZC6 [𝑚, 𝑛]) = 54𝑚𝑛 + 16𝑚,
𝐹 (TUAC6 [𝑚, 𝑛]) = 54𝑚𝑛 + 16𝑚. (11)

Proof. It is not hard to check that |𝐸(TUZC6[𝑚, 𝑛])| =|𝐸(TUAC6[𝑚, 𝑛])| = 3𝑚𝑛 + 2𝑚. Consider nanotubes
TUZC6[𝑚, 𝑛] with any 𝑚, 𝑛 ∈ N; we deduce that its edge set
can be divided into two parts:

(i) 𝐸6 (or 𝐸∗9 ), 𝑑(𝑢) = 𝑑(V) = 3 and |𝐸6| = |𝐸∗9 | = 3𝑚𝑛 −2𝑚.
(ii) 𝐸5 (or 𝐸∗6 ), 𝑑(𝑢) = 2, 𝑑(V) = 3, and |𝐸5| = |𝐸∗6 | = 4𝑚.

For nanotubes TUAC6[𝑚, 𝑛] with any 𝑚, 𝑛 ∈ N, we find that
its edge set can be divided into three parts:

(i) 𝐸4 (or 𝐸∗4 ), 𝑑(𝑢) = 𝑑(V) = 2, and |𝐸4| = |𝐸∗4 | = 𝑚.
(ii) 𝐸6 (or 𝐸∗9 ), 𝑑(𝑢) = 𝑑(V) = 3, and |𝐸6| = |𝐸∗9 | = 3𝑚𝑛−𝑚.
(iii) 𝐸5 (or 𝐸∗6 ), 𝑑(𝑢) = 2, 𝑑(V) = 3, and |𝐸5| = |𝐸∗6 | =2𝑚.

Therefore, the conclusion is deduced in view of the
definition of forgotten topological index.

3. Forgotten Topological Index of
Polyomino Chains

From the geometric point of view, a polyomino system is a
finite 2-connected plane graph in which each interior cell
is encircled by a regular square. In other words, it is an
edge-connected union of cells in the planar square lattice.
Polyomino chain is a particular polyomino system such that
the joining of the centers (set 𝑐𝑖 as the center of the 𝑖th square)
of its adjacent regular composes a path 𝑐1, 𝑐2, . . . , 𝑐𝑛. Let B𝑛 be
the set of polyomino chains with 𝑛 squares. There is 3𝑛 + 1
edges in every 𝐵𝑛 ∈ B𝑛, where 𝐵𝑛 is named as a linear chain
and denoted by 𝐿𝑛 if the subgraph of 𝐵𝑛 induced by the
vertices with 𝑑(V) = 3 is a molecular graph with exactly 𝑛 − 2
squares. Also, 𝐵𝑛 can be called a zigzag chain and labelled

as 𝑍𝑛 if the subgraph of 𝐵𝑛 is induced by the vertices with𝑑(V) > 2 is 𝑃𝑛.
The angularly connected squares or branched is a kink

of a polyomino chain. A maximal linear chain (containing
the terminal squares and kinks at its end) in the polyomino
chains is called a segment of polyomino chain. Let 𝑙(𝑆) be the
length of 𝑆 which is calculated by the number of squares in𝑆. For any segment 𝑆 of a polyomino chain, we get 𝑙(𝑆) ∈[2, . . . , 𝑛]. Furthermore, we deduce 𝑙1 = 𝑛 and 𝑚 = 1 for a
linear chain 𝐿𝑛 with 𝑛 squares and 𝑙𝑖 = 2 and𝑚 = 𝑛 − 1 for a
zigzag chain 𝑍𝑛 with 𝑛 squares.

Inwhat follows, we always assume that a polyomino chain
consists of a sequence of segments 𝑆1, 𝑆2, . . . , 𝑆𝑚 and 𝑙(𝑆𝑖) = 𝑙𝑖,
where 𝑚 ≥ 1 and 𝑖 ∈ {1, 2, . . . , 𝑚}. We derive that ∑𝑚𝑖=1 𝑙𝑖 =𝑛 + 𝑚 − 1.

The theorems presented in the following can deduce
the expression of forgotten topological index of polyomino
chains.

Theorem 6. Let 𝐿𝑛, 𝑍𝑛 be the polyomino chains explained
above. One gets

𝐹 (𝐿𝑛) = 54𝑛 − 22,
𝐹 (𝑍𝑛) = {{{

32, 𝑛 = 1,
72𝑛 − 58, 𝑛 ≥ 2.

(12)

Proof. For 𝑛 = 1, we can check the results directly. In the
following consideration, we always suppose that 𝑛 ≥ 2.

It is not hard to verify that |𝐸(𝐿𝑛)| = |𝐸(𝑍𝑛)| = 3𝑛+1. Let
𝑛𝑖𝑗 = 󵄨󵄨󵄨󵄨{(𝑢, V) | 𝑑 (𝑢) = 𝑖, 𝑑 (V) = 𝑗}󵄨󵄨󵄨󵄨 . (13)

(i) For the polyomino chain 𝐿𝑛, we have 𝑛22 = 2, 𝑛23 = 4,
and 𝑛33 = 3𝑛 − 5.

(ii) For zigzag chain 𝑍𝑛, we obtain 𝑛22 = 𝑛34 = 2, 𝑛23 = 4,𝑛24 = 2(𝑚 − 1), and 𝑛44 = 3𝑛 − 2𝑚 − 5.
Using 𝑚 = 𝑛 − 1 for 𝑍𝑛 and the definition of forgotten

topological index, we yield the desired results.

Theorem 7. Let 𝐵1𝑛 (𝑛 ≥ 3) be a polyomino chain with 𝑛
squares and of 𝑚 segments 𝑆1; 𝑆2 satisfy 𝑙1 = 2 and 𝑙2 = 𝑛 − 1.
Then, one has

𝐹 (𝐵1𝑛) = 54𝑛 − 4. (14)

Proof. It is trivial for 𝑛 = 3; we omit the detailed proof here.
For 𝑛 ≥ 4, we get 𝑛22 = 2, 𝑛23 = 5, 𝑛24 = 1, 𝑛34 = 3, and 𝑛33 =3𝑛 − 10. Therefore, by virtue of the definition of forgotten
topological index, the desired result is obtained.

We assume that 2 ≤ 𝑙(𝑖) ≤ 𝑛 − 1 with 1 ≤ 𝑖 ≤ 𝑚 in the
following consideration of this section.

Theorem 8. Let 𝐵2𝑛 (𝑛 ≥ 4) be a polyomino chain with 𝑛
squares and𝑚 segments 𝑆1, 𝑆2, . . . , 𝑆𝑚 (𝑚 ≥ 3) satisfy 𝑙1 = 𝑙𝑚 =2 and 𝑙2, . . . , 𝑙𝑚−1 ≥ 3. Then, one infers

𝐹 (𝐵2𝑛) = 54𝑛 + 18𝑚 − 40. (15)
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Proof. For 𝐵2𝑛 with 𝑛 ≥ 4, we yield 𝑛22 = 2, 𝑛23 = 2𝑚, 𝑛24 = 2,𝑛34 = 4𝑚 − 6, and 𝑛33 = 3𝑛 − 6𝑚 + 3. Hence, according to
the definition of forgotten topological index, we derive the
desired results.

In a similar way, we deduce the following last two
conclusions in our paper.

Theorem 9. Let 𝐵3𝑛 be a polyomino chain with 𝑛 squares and𝑚 segments 𝑆1, 𝑆2, . . . , 𝑆𝑚 (𝑚 ≥ 3) satisfy 𝑙1 = 2, 𝑙2, . . . , 𝑙𝑚−1,𝑙𝑚 ≥ 3, or 𝑙𝑚 = 2, 𝑙1, 𝑙2, . . . , 𝑙𝑚−1 ≥ 3. Then, one obtains

𝐹 (𝐵3𝑛) = 18𝑚 + 54𝑛 − 40. (16)

Theorem 10. Let 𝐵4𝑛 be a polyomino chain with 𝑛 squares
and 𝑚 segments 𝑆1, 𝑆2, . . . , 𝑆𝑚 (𝑚 ≥ 3) meet 𝑙𝑖 ≥ 3 (𝑖 ∈{1, 2, . . . , 𝑚}). Then, one has

𝐹 (𝐵4𝑛) = 18𝑚 + 54𝑛 − 40. (17)

Remark 11. After the manuscript was in press, we received a
comment from Akbar Ali. It pointed thatTheorems 6–10 can
be obtained fromTheorem 3.1 in Ali et al. [24]. By comparing
Theorem 3.1 and our results Theorems 6–10, we found that
the results presented in our paper set the different parameter
from the result in Ali et al. [24]. More importantly, the tricks
used in our paper are completely different from the former
one. All the results yielded in our paper in light of edge set
dividing which raised the edge classification in detail. From
this point of view, the conclusions Theorems 6–10 are still
valuable to the readers.

4. Conclusion

In this paper, by means of analyzing of molecular graph
structure, edge set dividing approach, and mathematical
derivation, we report the forgotten topological index of
certain important and widely appeared chemical structures
such as SC5C7[𝑝, 𝑞] nanotubes, H-naphtalenic nanotubes
NPHX[𝑚, 𝑛], TUC4[𝑚, 𝑛] nanotubes, and some classes of
polyomino chains. These theoretical results achieved in our
paper reveal the structure-dependency characteristic of total𝜋-electron energy𝐸𝜋 for thesemolecular structures and illus-
trate the promising prospects of chemical pharmaceuticals
andmaterials engineering applications such as octanol-water
partition coefficient measure and the test of melting point
boiling point.

Regrettably, due to the lack of equipment and other exper-
imental conditions, we did not present a specific chemical
experiment to show how to apply the theoretical results to
specific chemical engineering, whereas we believe the results
obtained in this paper can provide theoretical support for the
chemical, pharmaceutical, medicine, and materials science
research.

Finally, we find out the following problems which may
become the further topics for the studies in this field:

(i) What are the upper and lower bound of𝐹-index in the
setting that some graph parameters (diameter, vertex
connectivity or edge connectivity, chromatic number,

etc.) are fixed? And which molecular structures can
reach these maximum or minimum numbers?

(ii) In many engineering applications in chemical, mate-
rial, medicine, and pharmaceutical field, how is 𝐹-
index used in these fields to test the physical, chemi-
cal, biology, and pharmacological properties?

(iii) What is the relationship between 𝐹-index and other
existing degree-based indices (such as atom-bond
connectivity index, first and second Zagreb indices,
Randic index, Balaban index, Narumi Katayama
index, geometric-arithmetic index, sum connectivity
index, harmonic index, etc.)?
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