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A robust topology optimization (RTO) approach with consideration of loading uncertainties is developed in this paper. The
stochastic collocation method combined with full tensor product grid and Smolyak sparse grid transforms the robust formulation
into a weighted multiple loading deterministic problem at the collocation points. The proposed approach is amenable to
implementation in existing commercial topology optimization software package and thus feasible to practical engineering
problems. Numerical examples of two- and three-dimensional topology optimization problems are provided to demonstrate the
proposedRTOapproach and its applications.The optimal topologies obtained fromdeterministic and robust topology optimization
designs under tensor product grid and sparse grid with different levels are compared with one another to investigate the pros
and cons of optimization algorithm on final topologies, and an extensive Monte Carlo simulation is also performed to verify the
proposed approach.

1. Introduction

Structural optimization is an intrinsic element of engineer-
ing design for the purpose of improving the structural
performance and reducing costs. The major ingredients of
structural optimization are, in general, divided into three
levels, namely, sizing, shape, and topology optimization. The
aim of classic topology optimization is to obtain an optimal
material or design parameter distribution at a given structural
domain under nominal (i.e., deterministic) material proper-
ties, geometry, and loading conditions. Until now, a range
of topology optimization strategies has emerged, including
the homogenization method, introduced by Bendsøe and
Kikuchi [1], the density-basedmethod [2], bilinear evolution-
ary structural optimization (BESO) [3], and level set method
[4]. Details of various representative schemes can be found in
comprehensive reviews and text books [5–7].

Traditionally, structural topology optimizations are con-
ducted in a deterministic manner, known as determin-
istic topology optimization (DTO), where the design is

determined without taking into account various sources of
uncertainties [6]. However, uncertainties are unavoidably
observed in real-world applications due to insufficient knowl-
edge, manufacturing errors, changeable environment, and
so forth. This may lead to the vulnerable optimum struc-
ture or infeasible topologies due to the fluctuation of the
structure performance. Therefore, there is a strongly increas-
ing requirement to take the effect of uncertainty into consid-
eration for optimal topologies in structural design.

Recent years have witnessed various statements account-
ing for uncertainty in topology optimization process. In
reliability-based topology optimization (RBTO), optimal
designs with acceptable failure probabilities have been
achieved, where uncertainty is manifested in the probability
constraint functions. Many works dealing with applications
of RBTO in structural design have appeared over the last
decades. One of pioneeringworks can be traced back toKhar-
manda et al. [8], where reliability analysis is decoupled from
optimization procedures and carried out at the beginning of
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the optimization loops, followed by equivalent DTO. Differ-
ent optimization strategies have been increasingly applied for
reliable designs in various mechanic andmultiphysical fields.
To cite a few, optimization algorithms via the density-based
method have been demonstrated formicroelectromechanical
systems (MEMS) [9], geometrically nonlinear structures [10],
and an automotive control arm [11]. Optimization problems
via the BESO have been reported for a vehicle’s hood rein-
forcement [12] and electrothermal-compliant mechanisms
[13]. Topology optimization of compliant mechanisms with
loads, material properties, and member geometries uncer-
tainties is demonstrated for the level set method [14].

Distinct from the abovementioned formulations con-
sidering the uncertainties in structural topology optimiza-
tion problems, robust topology optimization (RTO) has
recently emerged to optimize the objective performance
while simultaneously minimizing its sensitivity with respect
to uncertainties.When the uncertainty is assigned unknown-
but-bounded convex models, the worst case approach is
followed in general. De Gournay et al. [15] propose the
so-called worst case or robust optimal design problem for
minimal compliance based on the level set method. Amir
et al. [16] demonstrate a fair comparison of a worst case
formulation and a stochastic formulation in robust topology
optimization procedure. Guo et al. [17] present structural
topology optimization considering the uncertainty of bound-
ary variations via level set approach, where the objective
function is modeled by the compliance and fundamental
frequency of structure enduring the worst case perturbation.

In the context of uncertainty parameters defining prob-
ability distributions, the probabilistic description of the
performance function is usually characterized by its statistical
quantities such as mean value and standard deviation. In
this scenario, a fundamental issue associated with these RTO
procedures is to calculate the statistical moments accurately
and efficiently. The Monte Carlo simulations (MCS) are the
most widely used sampling-based methods in robust design
due to their accuracy and easy implementation. However, it
is time-consuming. Schevenels et al. [18] present a robust
topology optimization approach for the design of macro-,
micro-, or nanostructures, accounting for spatially varying
manufacturing errors, where the statistical moments and
their sensitivities are estimated by means of the MCS. Jansen
et al. [19] propose a robust approach to topology optimiza-
tion taking into account geometric imperfections, where a
sampling method (i.e., 100 Monte Carlo samples) is used to
estimate these statistics that are defined as a weighted sum
objective function. A new efficient and accurate approach
to robust structural topology optimization under loading
uncertainty is developed by Zhao andWang [20]. TheMonte
Carlo method and matrix decomposition are employed for
concentrated loads, and the Karhunen-Loeve expansion and
its orthogonal properties of random variables are used for
distributed loads. Alternatively, the stochastic collocation
method has been gaining more attention in robust design.
The idea is to calculate the statistical moments by direct
numerical integration. Chen et al. [21] employ the univariate
dimension-reduction (UDR) method combined with Gauss
type quadrature sampling for calculating statistical moments

with consideration of random field uncertainty in loading
and material properties. Lazarov et al. [22] introduce the
stochastic collocation methods in topology optimization for
mechanical systems with material and geometric uncer-
tainties. The robust designs are obtained by utilizing well-
developed deterministic solvers.

Efficient and accurate generation of statistic moments is
a central problem for robust design, especially for structural
topology optimization with infinite-dimensional property.
In this paper, we present a methodology for robust topol-
ogy optimization problems with the stochastic collocation
method to integrate the statistic moments considering load-
ing uncertainty. Then, the robust topology optimization
formulation is transformed into a weighted multiple load-
ing deterministic problem at the collocation points. For
the construction of the stochastic collocation method, the
collocation points with corresponding weights are generated
by full tensor product grid and Smolyak sparse grid, respec-
tively. Integrations based on full tensor product suffers from
the curse of dimensionality, while the sparse grid method
originating from the Smolyak algorithm will dramatically
reduce the number of collocation points without losingmuch
accuracy. In addition, existing commercial software packages
are capable of application in robust topology optimization in
these settings.

The paper is organized as follows: A brief description of
the deterministic and robust topology optimization formu-
lation is presented in Section 2. In Section 3, the stochas-
tic collocation methods including tensor product grid and
sparse grid are demonstrated. The computational results
for deterministic and robust topology optimization together
with several numerical examples are illustrated in Section 4.
Conclusion and future works are discussed in Section 5.

2. Topology Optimization Formulation

2.1. Deterministic Topology Optimization Formulation. The
generalized topology optimization problem as shown in
Figure 1 is that the predetermined design domain Ω, with
respect to the given loads and boundary conditions, is
represented by the material distribution function so as to
optimize given objective function 𝑓 (e.g., compliance) under
limited volume constraint.

The structural topology optimization considering the
general elasticity problem is reformulated in the uniformcon-
text of the principle of virtual displacement.The optimization
problem for deterministic design can be written in a weak
form as

min 𝑙 (u) = ∫
Ω

𝜀
𝑇
(u)D (𝜌) 𝜀 (k) 𝑑Ω

s.t. 𝑎 (u, k) = 𝑙 (k) , ∀k ∈ K

∫
Ω

𝜌 𝑑Ω ≤ 𝑉
∗

𝜌min ≤ 𝜌 ≤ 𝜌max,

(1)

where K is the space of kinematically admissible displace-
ment fields. u is the equilibrium displacement field, and v is
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Figure 1: Generalized topology optimization problem.

the arbitrary virtual displacement in the space K. 𝑉∗ is the
prescribed volume constraint. The energy bilinear form and
the load linear form are defined as follows:

𝑎 (u, k) = ∫
Ω

𝜀
𝑇
(u)D (𝜌) 𝜀 (k) 𝑑Ω,

𝑙 (k) = ∫
Ω

F ⋅ k 𝑑Ω + ∫
Γ
𝑡

t ⋅ k 𝑑Γ,
(2)

where 𝜀 is the strain tensor. F and t are the body forces
and the boundary tractions on the boundary Γ

𝑡
, respectively.

Considering linear isotropic materials, Young’s modulus is
a function of design variables 𝜌 given by the density-based
method [6] as follows:

𝐸 = 𝐸 (𝜌) = 𝜌
𝑝
𝐸
0
, (3)

where 𝐸
0
is Young’s modulus of solid material and 𝑝 is the

penalization power to ensure solid-void solutions.
By using FEM discretization for the linear elasticity, the

optimization problem can be rewritten as follows:

min 𝑓 (𝜌) = FTU = UTKU =

𝑁
𝑒

∑

𝑒=1

𝐸
𝑒
(𝑥
𝑒
) u𝑇
𝑒
k
0
u
𝑒

s.t. 𝑉 = ∑

𝑒∈𝑁

𝜌
𝑒
V
𝑒
≤ 𝑉
∗

K (𝜌)U = F

𝜌min ≤ 𝜌 ≤ 𝜌max,

(4)

where 𝑓(𝜌) is the compliance of the continuum structure, U
is the displacement vector, and 𝑁 is a set of finite elements.
u
𝑒
and k

0
are the element displacement and the element

stiffness matrix with unit Young’s modulus, respectively, V
𝑒

is the element volume, and the density of each element
is represented by one density variable 𝜌

𝑒
. Therefore, the

standard FEM global stiffness matrix K is expressed as

K (𝜌) = ∑

𝑒∈𝑁

K
𝑒
(𝜌
𝑒
) = ∑

𝑒∈𝑁

∫
Ω
𝑒

B𝑇D (𝜌
𝑒
)B 𝑑Ω, (5)

f(𝜉)

𝜉
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Figure 2: The concept of robust design model.

where K
𝑒
(𝜌
𝑒
) is the element stiffness matrix, B is the strain-

displacement matrix of shape function derivatives, Ω
𝑒
is

element domain, andD(𝜌
𝑒
) is the element constitutivematrix,

defined in 2D as

D (𝜌
𝑒
) =

𝐸 (𝜌
𝑒
)

1 − ]2
[
[
[
[

[

1 ] 0

] 1 0

0 0
1 − ]
2

]
]
]
]

]

, (6)

where ] denotes Poisson’s ratio. In general, the optimal
solution obtained by direct implementation of the method
is prone to problems with checkerboards and mesh depen-
dency. A large number of restriction schemes have been pro-
posed to ensure manufacturability and mesh independency,
such as perimeter control method, mesh-independent fil-
tering methods, and Heaviside projection. A comprehensive
comparison of the existing restriction schemes is provided in
the paper of Sigmund [23].

2.2. Robust Topology Optimization Formulation. The topol-
ogy optimization of linear elastic structures subject to loading
uncertainties is considered in this paper. Due to the variation
of uncertain parameters 𝜉, the performance function 𝑓(𝜌, 𝜉)
has probability distribution description.Thus, the robustness
of the design objective can be achieved by optimizing the
mean performance and minimizing the standard deviation
of the performance simultaneously, as shown in Figure 2.
In Figure 2, point 𝐴 denotes the deterministic optimum not
considering the uncertainty, while point 𝐵 denotes the robust
optimum. The performance of deterministic optimum is
better than that of the robust optimum.However, its variation
is wider than the robust optimum.

Therefore, a main challenge in performing RTO for real-
istic problems is the implementation of an algorithm, which
inherently represents a multiobjective optimization problem.
One efficient way is to combine all objective functions into
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a single weighted function. In mathematical terms, a general
robust topology optimization task can be stated as

find: 𝜌

min: 𝜇
𝑓
(𝜌, 𝜉) + 𝜅𝜎

𝑓
(𝜌,𝜉)

s.t.:
𝑉 (𝜌)

𝑉∗
− 1 ≤ 0

𝜌min ≤ 𝜌 ≤ 𝜌max,

(7)

where 𝜅 is the weight to be determined by the designer
that satisfies 𝜅 ⩾ 0. Note that the weights have to be set a
priori, which make a trade-off decision between an optimal
mean performance and minimization of standard deviation
of the performance to obtain a compromise solution. 𝜇

𝑓

and 𝜎
𝑓
are the mean value and the standard deviation of

the performance function, respectively. 𝑉∗ is the material
resource constraint. The design variables 𝜌 are bounded by
their lower and upper bounds 𝜌min and 𝜌max, respectively. In
a probabilistic setting, the mean value 𝜇

𝑓
and the standard

deviation 𝜎
𝑓
can be expressed as

𝜇
𝑓
(𝜌, 𝜉) = E [𝑓 (𝜌, 𝜉)] = ∫

Ω

𝑓 (𝜉) 𝑝 (𝜉) 𝑑𝜉,

𝜎
𝑓
(𝜌, 𝜉) = √E {[𝑓 (𝜌, 𝜉) − 𝜇

𝑓
(𝜌, 𝜉)]

2

}

= {∫
Ω

[𝑓 (𝜉) − 𝜇𝑓]
2

𝑝 (𝜉) 𝑑𝜉}

1/2

,

(8)

where E is the expectation operator and 𝑝(𝜉) is the joint
probability density function (PDF) of the random variables.
In practice, it is very difficult and even impossible to calculate
themean value and the variation of the performance function
through the multidimensional integration in (8). Such diffi-
culties have motivated the development of various numerical
methods such as simulation-basedmethods, local expansion-
based methods, and the stochastic collocation methods. The
reader is referred to Lee and Chen [24] for a more detailed
review.

3. Stochastic Collocation Method

The main idea of stochastic collocation method is to sample
the quantity of interest at specific collocation points in the
random space, where the sample points are deterministic and
are associated with quadrature formula for the evaluation
of integral statistics such as mean and standard deviation.
Examples of such quadrature rules include the Newton-
Cotes (midpoint, rectangle, and trapezoidal) rule, the Gauss
quadrature (Legendre, Chebyshev, Laguerre, Hermite, Jacobi,
Kronrod, and Patterson) rule, and the Clenshaw-Curtis rule
[25–27]. In the case of a one-dimensional random space,
these points are quadrature abscissas selected according to
the probability measure of the random variable. Tensor
product grid and sparse grid constructions are then utilized
to generate the multidimensional abscissas.

3.1. Tensor Product Grid. Without loss of generality, consider
the class of function 𝑓(𝜉) over the 𝑑-dimensional unit hyper-
cubeΩ := [−1, 1]

𝑑 with numerical integration representation

𝐼
𝑑
(𝑓) = ∫

Ω

𝑓 (𝜉) 𝑑𝜉. (9)

In the one-dimensional case, a sequence of univariate quadra-
ture operators by 𝑚1

𝑙
-point quadrature formulas with level

𝑙 ∈ 𝑁 is

𝑄
1

𝑙
(𝑓) =

𝑚
1

𝑙

∑

𝑖=1

𝑓 (𝜉
𝑖

𝑙
)𝑤
𝑖

𝑙
, (10)

where 𝜉
𝑖

𝑙
and 𝑤

𝑖

𝑙
are the collocation points and weights,

respectively. To obtain a quadrature formula for the multi-
variate case 𝑑 > 1, the full tensor product formula is defined
as

(𝑄
1

𝑙
1

⊗ ⋅ ⋅ ⋅ ⊗ 𝑄
1

𝑙
𝑑

) (𝑓)

=

𝑚
1

𝑙1

∑

𝑙
1
=1

⋅ ⋅ ⋅

𝑚
1

𝑙
𝑑

∑

𝑙
𝑑
=1

𝑓 (𝜉
𝑖
1

𝑙
1

, . . . , 𝜉
𝑖
𝑑

𝑙
𝑑

) ⋅ (𝑤
𝑖
1

𝑙
1

⊗ ⋅ ⋅ ⋅ ⊗ 𝑤
𝑖
𝑑

𝑙
𝑑

) .

(11)

Then, the mean and standard deviation of the objective
performance are derived from the following equations:

𝜇
𝑓
= E [𝑓] = ∫

Ω

𝑓 (𝜉) 𝑝 (𝜉) 𝑑𝜉

=

𝑚
1

𝑙1

∑

𝑙
1
=1

𝑤
𝑖
1

𝑙
1

⋅ ⋅ ⋅

𝑚
1

𝑙
𝑑

∑

𝑙
𝑑
=1

𝑤
𝑖
𝑑

𝑙
𝑑

𝑓 (𝜉
𝑖
1

𝑙
1

, . . . , 𝜉
𝑖
𝑑

𝑙
𝑑

) ,

𝜎
𝑓
= √E {[𝑓 − E (𝑓)]

2
}

= {∫
Ω

[𝑓 (𝜉) − 𝜇𝑓]
2

𝑝 (𝜉) 𝑑𝜉}

1/2

=

{{

{{

{

𝑚
1

𝑙1

∑

𝑙
1
=1

𝑤
𝑖
1

𝑙
1

⋅ ⋅ ⋅

𝑚
1

𝑙
𝑑

∑

𝑙
𝑑
=1

𝑤
𝑖
𝑑

𝑙
𝑑

[𝑓 (𝜉
𝑖
1

𝑙
1

, . . . , 𝜉
𝑖
𝑑

𝑙
𝑑

) − 𝜇
𝑓
]
2
}}

}}

}

1/2

.

(12)

Clearly, the tensor product grid requires 𝑀 = (𝑚
1

𝑙
1

, . . . , 𝑚
1

𝑙
𝑑

)

collocation points, which are sampled on the full grid.
Assuming the same level accuracy in each dimension—that
is, 𝑚1
𝑙
1

= ⋅ ⋅ ⋅ = 𝑚
1

𝑙
𝑑

= 𝑚—the total number of points is𝑀 =

𝑚
𝑑. Thus, the computational burden increases significantly

with the dimension 𝑑. This is often referred to as the curse of
dimensionality [28].

3.2. Sparse Grid. The sparse grid method is a special dis-
cretization technique, which can be traced back to the
Smolyak algorithm [29]. It is based on hierarchical basis, a
representation of a discrete function space which is equiv-
alent to the conventional nodal basis, and a sparse tensor
product construction [30, 31]. The readers are referred to
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the review paper by Xiong et al. [32] and the references
therein for more information. The one-dimensional differ-
ence quadrature formula is defined as

Δ
1

𝑘
(𝑓) = (𝑄

1

𝑘
− 𝑄
1

𝑘−1
) (𝑓) , with 𝑄

1

0
(𝑓) = 0. (13)

Then the Smolyak quadrature formula for 𝑑-dimensional
functions 𝑓 with level 𝑙 ∈ 𝑁 is given by

𝑄
𝑑

𝑙
(𝑓) = ∑

|k|≤𝑙+𝑑
(Δ
1

𝑘
1

⊗ ⋅ ⋅ ⋅ ⊗ Δ
1

𝑘
𝑑

) (𝑓) . (14)

Note that |k| denotes the summation of the multi-indices
(|k| = 𝑘

1
+ ⋅ ⋅ ⋅ + 𝑘

𝑑
). Alternatively, the above formula can

be written as

𝑄
𝑑

𝑙
(𝑓) = ∑

𝑙+1≤|k|≤𝑙+𝑑
(−1)
𝑙+𝑑−|k|

⋅ (

𝑑 − 1

𝑙 + 𝑑 − |k|
)

⋅ (𝑄
1

𝑘
1

⊗ ⋅ ⋅ ⋅ ⊗ 𝑄
1

𝑘
𝑑

) (𝑓) .

(15)

To compute 𝑄𝑑
𝑙
(𝑓), a specific tensor product rule of sparse

grid is needed, defined as

𝑈
𝑑

𝑙
= ⋃

𝑙+1≤|k|≤𝑙+𝑑
(𝑈
1

𝑘
1

⊗ ⋅ ⋅ ⋅ ⊗ 𝑈
1

𝑘
𝑑

) , (16)

where 𝑈
1

𝑘
1

denotes the set of collocation points for one-
dimensional 𝑙-level accuracy. With the Smolyak algorithm,
the weight 𝑤

𝑖
corresponding to the 𝑖th collocation point 𝜉

𝑖

is defined as

𝑤
𝑖
= (−1)

𝑙+𝑑−|k|
(

𝑑 − 1

𝑙 + 𝑑 − |k|
) (𝑤
𝑖
1

𝑘
1

⊗ ⋅ ⋅ ⋅ ⊗ 𝑤
𝑖
𝑑

𝑘
𝑑

) . (17)

Then, the mean and standard deviation of the objective per-
formance by sparse grid method can be computed by

𝜇
𝑓
= E [𝑓] =

𝑛
𝑑

𝑙

∑

𝑖=1

𝑤
𝑘
𝑓 (𝜉
𝑘
) ,

𝜎
𝑓
= √E {[𝑓 − E (𝑓)]

2
}

=
{

{

{

𝑛
𝑑

𝑙

∑

𝑖=1

𝑤
𝑘
[𝑓 (𝜉
𝑘
) − 𝜇
𝑓
]
2}

}

}

1/2

,

(18)

where 𝑚𝑑
𝑙
is the total number of points in sparse grid that is

determined as

𝑚
𝑑

𝑙
= ⋃

𝑙+1≤|k|≤𝑙+𝑑
(𝑚
1

𝑘
1

⊗ ⋅ ⋅ ⋅ ⊗ 𝑚
1

𝑘
𝑑

) . (19)

Suppose that the same quadrature rule is chosen under
the dimension 𝑑 with same level in each dimension, and
𝑚 represents the collocation points in each dimension and
the tensor-product grid scales as 𝑚𝑑, whereas the sparse
grid scales as 𝑚

log 𝑑, significantly mitigating the curse of
dimensionality. Accurate quadrature can be created by using
higher values of the level 𝑙; however, this also leads to more
sampling points.

The sparse grid method discretizes the stochastic space
in hierarchical structure based on nested collocation nodes,
such as the Chebyshev nodes or Gauss-Patterson nodes,
leading to Clenshaw-Curtis rule or Gauss-Patterson rule,
respectively. Here, the Clenshaw-Curtis type sparse grid
design 𝐻CC, with nonequidistant nodes, is constructed [33–
35]. The collocation points 𝜉𝑖

𝑘
are defined as

𝜉
𝑖

𝑘

=
{

{

{

− cos(𝜋 𝑖 − 1

𝑚
𝑘
− 1

) , for 𝑖 = 1, . . . , 𝑚
𝑘
, if 𝑚

𝑘
> 1,

0, if 𝑚
𝑘
= 1.

(20)

The sequence𝑚
𝑘
is chosen as

𝑚
𝑘
=
{

{

{

1, if 𝑘 = 1,

2
𝑘−1

+ 1, if 𝑘 > 1

(21)

and the corresponding weights are given by

𝑤
𝑖

𝑘
=

{{{{{{{{

{{{{{{{{

{

1

𝑚
𝑘
(𝑚
𝑘
− 2)

, for 𝑖 = 1,𝑚
𝑘
, if 𝑚

𝑘
> 1,

2

(𝑚
𝑘
− 1)

(1 −
cos𝜋 (𝑖 − 1)
𝑚
𝑘
(𝑚
𝑘
− 2)

− 2

(𝑚
𝑘
−3)/2

∑

𝑗=1

1

4𝑗2 − 1
⋅ cos

2𝜋𝑗 (𝑖 − 1)

𝑚
𝑘
− 1

) , for 𝑖 = 2, . . . , 𝑚
𝑘
− 1, if 𝑚

𝑘
> 1,

2, if 𝑚
𝑘
= 1.

(22)
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Table 1: Comparison of robust and deterministic topology optimization design results.

Tests Number of points Mean 𝜇
𝑓

Standard deviation 𝜎
𝑓

𝑉/𝑉
∗ Iterations Time

Deterministic 1 22.36 12.03 0.25 54 35 s
Monte Carlo simulation 1000 21.37 11.13 0.25 55 302 s
Robust

Tensor product grid (𝑙 = 1) 9 22.26 11.85 0.25 51 59 s
Tensor product grid (𝑙 = 2) 25 21.87 11.66 0.25 54 90 s
Tensor product grid (𝑙 = 3) 81 21.77 11.34 0.25 54 147 s
Sparse grid (𝑙 = 1) 5 22.23 11.84 0.25 53 59 s
Sparse grid (𝑙 = 2) 13 21.92 11.70 0.25 54 68 s
Sparse grid (𝑙 = 3) 29 21.52 11.27 0.25 54 71 s

Examples of two-dimensional collocation points of full
tensor product grid and Smolyak sparse grid based on
Clenshaw-Curtis rule with level 𝑙 = 3 are shown in Figure 3.
It is clearly observed that, compared with full tensor product
grid, the sparse grid dramatically reduces the number of
collocation points, while preserving a high level of accuracy.

4. RTO Algorithm and Numerical Examples

4.1. Optimization Algorithm. The implementation of opti-
mization algorithm for RTO is based on the commercial
software package Optistruct 11.0 of Altair Hyperworks, where
the solid isotropic material with penalization is employed
as material interpolation model and convex programming
method as optimization solver. In addition, the coordinates
and corresponding weights of the collocation points for
random variables are evaluated in an external environment
of Optistruct for auxiliary conditions. The optimization
algorithm can be summarized as follows:

(1) State problem discretization and initialization,
including initial design domainΩ and boundary con-
ditions D.

(2) Identify the random loading uncertainty 𝜉 as well as
the related loading angle and magnitude probability
distributions.

(3) Compute collocation points 𝜉𝑖
𝑘
and the corresponding

weights 𝑤𝑖
𝑘
by tensor product gird and sparse grid,

according to the dimension 𝑑 and level 𝑙 information.
(4) Define multiple loading cases through mapping the

loading uncertainty with the collocation points.
(5) Establish the mean 𝜇

𝑓
and standard deviation 𝜎

𝑓

of the performance function through specifying the
user-defined equations, according to the prescribed
format.

(6) Implement the weighted function by combining the
mean and standard deviation functions with pre-
defined weight 𝜅, and choose the function as the
objective function to be minimized.

(7) Define the manufacturing restriction schemes, opti-
mization strategy, and volume fraction constraint.

(8) Run the optimization loop until the convergence
criterion is satisfied.

4.2. Numerical Examples. In this section, we will illustrate
the proposed RTO approach using two numerical example
problems—a 2D simple supported beam and a 3D L-shaped
structure—to demonstrate the effectiveness and efficiency
for tensor product grid and sparse grid. A simple Monte-
Carlo simulation is also performed to verify the accuracy of
the statistical moment calculated by the proposed approach.
The procedure of topology optimization is conducted on a
Windows 7 workstation (Intel Xeon (R) E5440, 2.83GHz,
4.00GBRAM, 8 cores).

4.2.1. A 2D Simply Supported Beam. As the first example,
the design domain, the boundary, and loading conditions of
the simply supported beam are illustrated in Figure 4. The
dimensions of the beam are 𝐿 = 90mm and𝐻 = 30mm and
the thickness is 𝑇 = 1mm.The isotropic material is assumed
to have Young’s modulus 𝐸

0
of 1MPa and Poisson’s ratio ] of

0.30. A single random load case is considered with which the
angle and magnitude are characterized by two independent
random variables. The angle is assumed to follow a uniform
distribution with the interval of [−3𝜋/4, −𝜋/4]. The mag-
nitude follows a Gaussian distribution with mean of 1 and
standard deviation of 0.3. In robust design, the optimization
problem is to minimize the weighted summation of the
mean 𝜇

𝑓
and standard deviation 𝜎

𝑓
of the compliance of the

structure under the volume constraint, where the weight 𝜅 is
set to be 1.The design domain is discretized by 2700 (90 × 30)
four-node quadrilateral elements.

The optimal topologies obtained by deterministic and
the proposed robust topology optimization approaches are
presented in Figures 5 and 6, and the corresponding results
are compared in Table 1, including the required number of
points, statistical information of the performance function,
volume fraction constraint, iterations, and computing time.
Here, full tensor product grid and sparse grid under level
𝑙 = 1, 2, and 3 are investigated in this section. Extensive
1000 Monte Carlo simulations are also performed to verify
the accuracy of the proposed robust approach.

For comparison purposes, the deterministic design
is performed using the mean values of the load and
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Table 2: Comparison of robust and deterministic topology optimization design results.

Tests Number of points Mean 𝜇
𝑓

Standard deviation 𝜎
𝑓

𝑉/𝑉
∗ Iterations Time

Deterministic 1 241.08 131.42 0.06 44 7min 14 s
Monte Carlo simulation 1000 182.20 111.34 0.06 51 28min 27 s
Robust

Tensor product formula (𝑙 = 1) 9 183.95 121.71 0.06 46 8min 19 s
Tensor product formula (𝑙 = 2) 25 182.62 119.30 0.06 49 9min 44 s
Tensor product formula (𝑙 = 3) 81 182.91 113.72 0.06 49 17min 26 s
Sparse grid method (𝑙 = 1) 5 183.20 122.66 0.06 47 8min 18 s
Sparse grid method (𝑙 = 2) 13 182.71 119.24 0.06 50 8min 47 s
Sparse grid method (𝑙 = 3) 29 182.93 114.02 0.06 50 10min 25 s

F

H

L

Figure 4: Design domain, boundary conditions, and loading conditions of a 2D simply supported beam.
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Figure 5: Optimal designs of the simply supported beam.

the robust design is conducted with multiple load cases due
to randomness of load angle and amplitude. The DTO and
RTO resulted in significantly different topologies, as shown in
Figure 5. The remarkable difference lies in the robust design
exhibiting an asymmetric layout compared with the deter-
ministic design characterized by symmetric configuration. It
can be attributed to the fact that the deterministic design
suffers from symmetric vertical constraints at the lower
left and the lower right corner. However, in robust design,
the structure possesses an asymmetrical degree of freedom
constraint in horizontal direction under the condition of
horizontal component of load.

As the results listed in Table 1 show, the robust designs
present more robust topologies than the deterministic

approach, according to the results summary of the statistical
information. This emphasizes the importance of considering
the uncertainties in load for structure design. It is also noted
that the corresponding computation cost for robust designs
is larger than for the deterministic design since multiple load
cases are required for calculating the mean and deviation
values of the performance function. The results of Monte
Carlo simulations in Table 1 show that the proposed robust
approach possesses improved efficiency without losing much
accuracy.

From the comparison of the results, with the improve-
ment of level 𝑙 accuracy, the number of collocation points in
tensor product grid and sparse grid corresponding increases.
As the results listed in Table 1 show, the mean and standard
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Figure 6: Robust designs of the simple supported beam.

deviation of the compliance for sparse grid and tensor
product grid are gradually close to those for Monte Carlo
simulation under the increase of level 𝑙. This indicates that
more robust designs are clearly obtained under higher level
𝑙. Meanwhile, the higher computation cost is required due
to the increase in the number of evaluations of performance
function responses. This means robustness enhancement is
inevitably accompanied with the sacrifice of convergence
time. It can also be seen from the results listed in Table 1
that, under the same level 𝑙, sparse grid uses fewer collocation
points than those of tensor product grid to produce similar
even more robust results. At the same time, compared with
sparse grid, the computation burden for the exponential
dependent calculation of tensor product grid can be over-
come to a certain extent.Thismeans sparse grid, in amanner,

performs better than the tensor product grid in compromise
between robustness and cost in robust design.

4.2.2. A 3D L-Shaped Structure. The design domain and
loading conditions of this example are illustrated in Figure 7.
The geometrical dimensions of the structure are 𝐿 = 120mm
and 𝑇 = 30mm. Young’s modulus and Poisson’s ratio of the
fully solid material are 2.1 × 105MPa and 0.30, respectively.
Two concentrated forces, 𝐹

𝑌
and 𝐹

𝑍
, are applied at central

point of right bottom surface simultaneously.Themagnitudes
of the forces are characterized by two uncorrelated random
variables, which follow Gaussian distributions with mean
of 1000N and 30% variance from the mean values. The
optimization problem is still to minimize the weighted
summation of the mean 𝜇

𝑓
and standard deviation 𝜎

𝑓
of
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(b) Monte Carlo simulation design

Figure 8: Optimal topologies of the L-shaped structure.

the compliance of the structure under the volume constraint.
The design domain is divided into 1.2 × 104 eight-node
hexahedron elements.

The optimal topologies obtained by deterministic, Monte
Carlo simulation and the robust approaches with density
value above 0.3 thresholds are presented in Figures 8 and
9, respectively. The corresponding optimization results are
summarized in Table 2, including the required number of
points, statisticalmoments, volume constraint, iterations, and
computing time. Meanwhile, full tensor product grid and
sparse grid are investigated under level 𝑙 = 1, 2, and 3.

Comparing the deterministic design with the proposed
robust designs, obvious distinctions can be clearly observed
in optimal topologies as shown in Figures 8 and 9. From
the viewpoint of geometry, the robust designs represent
more rational material layouts, which lead to more robust
structural configuration. According to Table 2, the final
statistical moments of the robust designs are superior to
that of deterministic design. This indicates that the robust

design is less sensitive to the variations of load magnitude.
It can also be seen from the results listed in Table 2 that as
the level 𝑙 is increasing, the mean and standard deviation of
the structure compliance for tensor product grid and sparse
grid are closer to those for Monte Carlo simulation in which
more robust designs are obtained, but it is also revealed that
the corresponding computing time is increasing. This means
robustness and cost are conflicting criteria in robust topology
optimization design. For comparison of the results of tensor
product grid and sparse grid, these indicate that sparse grid,
in a manner, performs better than the tensor product grid
comprehensively considering the accuracy and efficiency.

5. Conclusion

This paper integrates the stochastic collocation methods
into structural topology optimization for solving the RTO
problem with random loading uncertainty. Specially, tensor
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(a) Tensor product grid (𝑙 = 1)
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(b) Sparse grid (𝑙 = 1)
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(c) Tensor product grid (𝑙 = 2)
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(d) Sparse grid (𝑙 = 2)

Contour plot
Element densities (density) 

1.0e + 00

8.9e − 01

7.8e − 01

6.7e − 01

5.6e − 01

4.5e − 01

3.4e − 01

2.3e − 01

1.2e − 01

1.0e − 02

Max = 1.000E + 00
3D 49394

Min = 1.000E − 02
3D 47433

No resultY

XZ

(e) Tensor product grid (𝑙 = 3)
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(f) Sparse grid (𝑙 = 3)

Figure 9: Optimal designs of the L-shaped structure by robust topology optimization.
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product grid and sparse grid are employed to transform
the RTO into a simplified weighted multiple loading deter-
ministic problem at the collocation points. The proposed
robust approaches are implemented, discussed, and tested
on two numerical examples by implementation in existing
commercial topology optimization software package. An
extensive Monte Carlo simulation is also performed to
verify the accuracy and validation of the proposed approach.
From the comparison of the results, the following conclusions
are summarized:

(1) The proposed RTO approach possesses more robust
topologies thanDTOandmay exhibitmanifest distinct topol-
ogy configuration. It is revealed that robust topology opti-
mization is essential when involving the uncertainty param-
eters in optimization design. The stochastic collocation
methods are compatible with RTO for calculating statistical
moments of the objective performance response and are
readily implemented in existing commercial topology opti-
mization software package.

(2) For tensor product grid and sparse grid, more robust
results are clearly obtained under higher level setting. Mean-
while, the required computation cost is more expensive.
This indicates that robustness enhancement is inevitably
accompanied with the sacrifice of computational expense.
Sparse grid demands fewer collocation points than tensor
product grid to generate similar even more robust results
under the same level. At the same time, the computation
burden for tensor product grid can be overcome to a certain
extent. It is demonstrated that sparse grid, in a manner,
performs better than the tensor product grid in compromise
between robustness and computation cost.

(3) It is important to notice that, compared to deter-
ministic topology optimization, the application of robust
topology optimization to practical structural engineering is
still a challenge task because of the high RTO computation
cost. Future research is still recommended to implement the
proposed RTO approach for optimization problems subject
to non-Gaussian type random loading uncertainty.
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