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The stability of autonomous dynamical switched systems is analyzed by means of multiple Lyapunov functions. The stability
theorems given in this paper have finite number of conditions to check. It is shown that linear functions can be used as Lyapunov
functions. An example of an exponentially asymptotically stable switched system formed by four unstable systems is also given.

1. Introduction

Switched systems are present in different areas of science and
technology as aeronautical and automotive control, telecom-
munications, traffic control, chemical process, and so forth
[1–5].

The switched system is a special class of hybrid or variable
structure systems [1, 3, 6–10]. Similar to variable structure
systems, the dynamics of switched systems is described by
different differential equations in different space regions and
the change of dynamics occurs when the trajectories pass
through the boundaries between two regions. Variable struc-
ture systems may have special type of solutions, the so-called
sliding mode solutions.The theory and different applications
of sliding mode solutions in control are investigated in many
books and papers (see, e.g., [9]). In contrast to sliding mode
theory, the case when the variable structure system has no
sliding mode solution is not sufficiently studied. To separate
these two cases, we call variable structure systems without
sliding mode solutions as switched systems. In the theory of
hybrid systems the change of systems dynamics may occur
by action of automata or by other reasons. In this paper,
the stability of switched systems is studied. The problem of
stability of switched systems is not simple. First of all, we give
some examples illustrating different aspects of this problem
and showing that stability of all subsystems is not sufficient

to ensure the stability of the whole switched system. Namely,
in one example the whole switched system formed by stable
subsystems is unstable or asymptotically stable depending on
the structure of the switched systems, that is, depending on
the regions where these subsystems are acting. If some of
subsystems are unstable and others are asymptotically stable,
the switched systemmay be unstable or asymptotically stable
or it may have periodic solutions. Also, in some cases the
stability of the whole switched system depends neither on
the structure of the switched system nor on the order of the
switching.

The papers [11, 12] were dedicated essentially to the case
of linear systems. In paper [13] the stability of switched and
hybrid systems is investigated. However, for each trajectory,
the theorem on stability from [13] imposes certain conditions
on Lyapunov functions at the moment of passing through the
switching lines. These conditions are possible to check only
if the trajectory is known. Furthermore, typical trajectory of
switched systems has an infinite number of switchings and it
would be necessary to check an infinite number of conditions.
Our previous works [14, 15] investigate some stability prob-
lems in switched systems and also investigate possibilities of
appearance of chaotic solutions in such systems.

In present paper, some stability theorems using multiple
Lyapunov functions are established. In contrast to [13] our
conditions are imposed on values of Lyapunov functions
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in corresponding space regions and on switching lines,
allowing in this way obtaining different stability conditions
without knowing trajectories, while only a finite number of
conditions depending only on Lyapunov functions are veri-
fied. The Lyapunov functions used in these theorems may be
different from usual Lyapunov functions defined in the whole
space, which allows extending the class of functions used
as Lyapunov functions. For example, it is possible to use linear
Lyapunov functions to investigate the stability of switched
systems. The sum of quadratic and linear functions may be
used also as Lyapunov functions. Some examples of such
functions are also given. The using of unusual Lyapunov
functions simplifies the search for convenient Lyapunov func-
tion. We present also one example (Example 15) where all
subsystems are unstable by considering the whole space, but
the switched system formed by these subsystems is exponen-
tially asymptotically stable.

Our theorems which give conditions of asymptotic sta-
bility or instability of whole switched system in case when
all subsystems are only stable are especially interesting.These
results may be considered as a special type of parametric
excitation or parametric stabilization of stable systems.

2. Description of Autonomous
Two-Dimensional Switched Systems

Suppose the phase space R2, 𝑋 = (𝑥, 𝑦)
𝑇
∈ R2, with norm

‖𝑋‖, is divided into a finite number 𝑝 of open 1-connected
regions 𝑄

𝑖
, 1 ≤ 𝑖 ≤ 𝑝, with smooth boundaries such that

the origin {0} of rectangular coordinate systems pertains to
closure of any region 𝑄

𝑖
. The boundary between two regions

𝑄
𝑖
and 𝑄

𝑖+1
is noted by 𝐿

𝑖,𝑖+1
and is called switching line.

These switching lines are supposed to be smooth and let the
normal𝑁

𝑖,𝑖+1
(𝑋) to the switching lines existing in each point

𝑋 ∈ 𝐿
𝑖,𝑖+1

have direction from 𝑄
𝑖
to 𝑄
𝑖+1

. Suppose each
region𝑄

𝑖
has points𝑋with norms such that ‖𝑋‖ > 𝐻, where

𝐻 is any number.The topological properties of plane conduce
to the conclusion that each region𝑄

𝑖
has only two boundaries

which go from origin {0} to infinity without intersections.
In each region 𝑄

𝑖
the dynamics of switched systems is

described by a proper autonomous equation𝐸
𝑖
with Lipschitz

continuous function 𝑓
𝑖
(𝑋) = 𝑓

𝑖
(𝑥, 𝑦):

𝐸
𝑖
: �̇� = 𝑓

𝑖
(𝑋) , 𝑋 ∈ 𝑄

𝑖
, 1 ≤ 𝑖 ≤ 𝑝, (1)

with initial condition
𝑋(𝑡
0
) = 𝑋

0
. (2)

The trajectory of switched system (1)-(2) may pass from
region𝑄

𝑖
to region𝑄

𝑖+1
only crossing the switching line𝐿

𝑖,𝑖+1
.

Suppose also the nonexistence of sliding modes in switched
system (1)-(2). The sufficient condition for absence of sliding
modes is the following transversality condition: the normal
𝑁
𝑖,𝑖+1

(𝑋) which goes from 𝑄
𝑖
to 𝑄
𝑖+1

and the trajectory
velocities 𝑓

𝑖
(𝑋) and 𝑓

𝑖+1
(𝑋) from one to another side of

switching line form acute angles; that is,
sign (⟨𝑁

𝑖,𝑖+1
(𝑋) , 𝑓

𝑖
(𝑋)⟩)

= sign (⟨𝑁
𝑖,𝑖+1

(𝑋) , 𝑓
𝑖+1

(𝑋)⟩) = 1, 𝑋 ∈ 𝐿
𝑖,𝑖+1

,

(3)
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Figure 1: Autonomous two-dimensional switched system.

for every point on switching line 𝐿
𝑖,𝑖+1

and all lines 𝐿
𝑖,𝑖+1

, 𝑖 =
1, 2, 3, . . . , 𝑝 (Figure 1). Transversality condition (3) guaran-
tees the passage only from region 𝑄

𝑖
to 𝑄
𝑖+1

and not in
opposite direction.

If at instant 𝑡
𝑖,fin the trajectory of switched system arrives

from region 𝑄
𝑖
on the switching line 𝐿

𝑖,𝑖+1
, the trajectory

passes across the switching line 𝐿
𝑖,𝑖+1

and at the following
instants 𝑡 > 𝑡

𝑖,fin the system dynamic is described by equation
𝐸
𝑖+1

acting in region𝑄
𝑖+1

with initial condition𝑋
𝑡𝑖+1,init

for the
new equation𝐸

𝑖+1
coinciding with the final condition𝑋

𝑡𝑖,fin
of

the previous equation 𝐸
𝑖
on the switching line 𝐿

𝑖,𝑖+1
, for 𝑖 =

1, 2, 3, . . .; that is,𝑋
𝑡𝑖+1,init

= 𝑋
𝑡𝑖,fin

. Under this condition, all tra-
jectories of switched system will be continuous for all 𝑡 >

𝑡
0
. The regions 𝑄

𝑖
together with equations 𝐸

𝑖
completely

define the switched system. The set of regions 𝑄
𝑖
defines the

geometrical structure while the set of equations𝐸
𝑖
defines the

dynamical structure of switched system.
Any switched system for a chosen initial condition

𝑋(𝑡
0
) = 𝑋

0
generates a sequence of continuous dynamical

subsystems 𝑆
1(𝑋0)

, 𝑆
2(𝑋0)

, . . . , 𝑆
𝑖(𝑋0)

, . . . acting in regions
𝑄
1(𝑋0)

= 𝑄
𝑘
, 1 ≤ 𝑘 ≤ 𝑝, 𝑄

2(𝑋0)
= 𝑄
𝑘+1

, . . . , 𝑄
𝑖(𝑋0)

, . . . and
switching on lines 𝐿

1(𝑋0),2(𝑋0)
= 𝐿

𝑘,𝑘+1
, 𝐿
2(𝑋0),3(𝑋0)

, . . . ,

𝐿
𝑖(𝑋0),(𝑖+1)(𝑋0)

, . . .; that is,

SW (𝑋
0
) = {𝑆

1(𝑋0)
, 𝑆
2(𝑋0)

, . . . , 𝑆
𝑖(𝑋0)

, . . .} . (4)

The initial condition 𝑋
0
defines the first element in (4).

Depending on 𝑋
0
, the first subsystem 𝑆

1(𝑋0)
is acting from

initial time 𝑡
0
= 𝑡
1(𝑋0),init = 𝑡𝑘,init to the first switching instant

𝑡
1(𝑋0),fin = 𝑡𝑘,fin in region𝑄𝑘 such that𝑋(𝑡0) ∈ 𝑄𝑘.The second
subsystem 𝑆

2(𝑋0)
is acting in 𝑄

𝑘+1
from time 𝑡

2,init = 𝑡
1,fin to

the second switching instant 𝑡
2,fin = 𝑡3,init and so on. In other

words, each subsystem 𝑆
𝑖
is defined by three elements 𝑆

𝑖
=

(𝑄
𝑖
, 𝐸
𝑖
, 𝑋(𝑡
𝑖,init)):

(a) region 𝑄
𝑖
where this subsystem is acting,

(b) differential equation 𝐸
𝑖
acting in 𝑄

𝑖
,

(c) initial values 𝑡
𝑖,init and𝑋(𝑡𝑖,init).
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This definition is slightly different from definition given
in [1, 3, 13]. The sequence (4) may contain finite or infinite
number of dynamical subsystems 𝑆

𝑖
although the total num-

ber of different regions 𝑄
𝑖
is finite because trajectory can

return to region 𝑄
𝑖
after the whole rotation around origin,

and therefore 𝑄
𝑝+𝑖

= 𝑄
𝑖
for all 𝑖. If condition (3) holds for all

switching lines, then the sequence (4) may contain an infinite
number of subsystems 𝑆

1
, 𝑆
2
, . . . , 𝑆

𝑛
, . . .. In case of infinite

number of subsystems 𝑆
𝑖
, in sequence (4) each region 𝑄

𝑖
has

two boundary switching lines: by one of them the trajectories
enter from the precedent region 𝑄

𝑖−1
, and by the other, after

a finite time, the trajectories go out from region 𝑄
𝑖
to region

𝑄
𝑖+1

. After the whole rotation around origin the switched
system returns to initial region 𝑄

𝑖
and 𝐿

𝑝,𝑝+1
= 𝐿
𝑝,1
.

This property has, as a consequence, the following fun-
damental property of autonomous two-dimensional switched
systems: the order of terms in sequence (4) does not depend
on initial conditions.

In multidimensional phase space R𝑛, 𝑛 > 2, each region
may have more than two switching surfaces. For that reason,
there does not exist an analogy of announced fundamental
property in multidimensional space. So, in R𝑛 the order of
terms in (4) may depend on initial conditions. This com-
plicates the stability investigation of switched systems in
multidimensional space R𝑛, 𝑛 > 2.

The number of dynamical subsystems 𝑆
𝑖(𝑋0)

is finite, 1 ≤
𝑖 ≤ 𝑚, if the switched system stays in the final region 𝑄

𝑁
for

all time after last switching 𝑡
𝑚−1,fin, 𝑡 > 𝑡

𝑚−1,fin. The switched
system may have more than one final region and the final
region may depend on initial conditions 𝑋

0
. The sufficient

condition for finiteness of sequence (4) is the existence of at
least one line𝐿

𝑚,𝑚+1
such that fromone side of the line𝐿

𝑚,𝑚+1

the normal 𝑁
𝑚,𝑚+1

(𝑋) and the trajectory velocities 𝑓
𝑚
(𝑋)

and 𝑓
𝑚+1

(𝑋) form an obtuse and acute angle, respectively:

sign (⟨𝑁
𝑚,𝑚+1

(𝑋) , 𝑓
𝑚
(𝑋)⟩) = −1,

sign (⟨𝑁
𝑚,𝑚+1

(𝑋) , 𝑓
𝑚+1

(𝑋)⟩) = 1,

(5)

for𝑋 ∈ 𝐿
𝑚,𝑚+1

.
In this case, the subsystem 𝑆

𝑚
will be the last subsystem in

the sequence (4). If there exist more than one switching line
satisfying condition (5) then the switched system may have
more than one final region and the final region may depend
on initial conditions𝑋

0
. Let us consider two examples.

Example 1. Suppose the switched system is described by
two pendulum equations 𝐸

1
and 𝐸

2
with different natural

frequencies acting in regions 𝑄
1
and 𝑄

2
of phase plane R2:

𝐸
1
: �̇� = 𝑦,
̇𝑦 = −𝑥,

∀𝑋 ∈ 𝑄
1
= R
2
− 𝑄
2
,

(6)

while equation 𝐸
2
is

𝐸
2
: �̇� = 𝑦,

̇𝑦 = −𝜔
2
𝑥,

∀𝑋 ∈ 𝑄
2
= {𝑥 < 0, 𝑦 > 0} ,

(7)
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Figure 2: Switched system with infinite sequence (4) of subsystems
𝑆
𝑖
.

Every trajectory of switched system has an infinite num-
ber of switchings and it is represented by an infinite number
of continuous dynamical subsystems 𝑆

1
, 𝑆
2
, . . . , 𝑆

𝑖
, . . ..

The subsystems 𝑆
1
, 𝑆
3
, . . . , 𝑆

2𝑗+1
, . . . are described by the

same equation 𝐸
1
in the form of (6) acting in region 𝑄

1
and

the subsystems 𝑆
2
, 𝑆
4
, . . . , 𝑆

2𝑗
, . . . are described by equation

𝐸
2
in the form of (7) acting in region 𝑄

2
. But the initial

conditions for 𝑆
1
, 𝑆
3
, . . . , 𝑆

2𝑗+1
, . . . and 𝑆

2
, 𝑆
4
, . . . , 𝑆

2𝑗
, . . . are

different: 𝑋
1
for 𝑆
1
, 𝑋
3
for 𝑆
3
, and so on. Therefore all

subsystems 𝑆
1
, 𝑆
2
, . . . , 𝑆

𝑖
, . . . are different (see Figure 2).

Example 2. Consider now the switched systemwith𝐸
1
acting

in the region 𝑄
1
= {𝑥 < 0} ∩ {𝑦 > 0} ∩ {𝑦 < (−2 + √3)𝑥}, 𝐸

2

acting in the lower half-space 𝑄
2
= {𝑦 < 0}, and 𝐸

3
acting in

𝑄
3
= R2 − 𝑄

1
− 𝑄
2
with

𝐸
1
: �̈� + 4𝑥 + 𝑥 = 0, ∀𝑋 ∈ 𝑄

1
, (8)

𝐸
2
: �̈� + 𝜔2𝑥 = 0, ∀𝑋 ∈ 𝑄

2
, (9)

𝐸
3
: �̈� + 𝑥 = 0, ∀𝑋 ∈ 𝑄

3
. (10)

The equation 𝐸
1
is overdamped and its general solution is

𝑥 (𝑡) = 𝐴 ⋅ exp ((−2 + √3) 𝑡) + 𝐵

⋅ exp ((−2 − √3) 𝑡) , 𝐴, 𝐵 = const.
(11)

The trajectories of the whole switched system are pre-
sented in Figure 3 with 𝜔 = 3. The region denoted as 𝑄

1
in

Figure 3 is a final region of the switched system (8)–(10).
Depending on initial conditions, the trajectory may has two,
one, or zero commutations. If 𝑋

0
belongs to region 𝑄

3
then

the trajectory has two commutations, if𝑋
0
belongs to region

𝑄
2
then the trajectory has one commutation, and if 𝑋

0

belongs to region 𝑄
1
then the trajectory has no commuta-

tions.
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3. Stability of Switched Systems

Suppose

𝑓
𝑖
(0) = 0, 1 ≤ 𝑖 ≤ 𝑝. (12)

Under condition (12) switched system (1)-(2) or (4) has
the trivial solution𝑋(𝑡) ≡ 0.

In the following, the stability analysis of trivial solution
(or origin) of switched system (1)-(2) will be carried out.

Let us introduce some definitions of Lyapunov stability.

Definition 3. The trivial solution 𝑋(𝑡) ≡ 0 (or origin) of
switched system (1)-(2) is said to be stable if for any 𝜖 > 0 there
exists a 𝛿 = 𝛿(𝜖) such that the inequality ‖𝑋(𝑡, 𝑡

0
, 𝑋
0
)‖ < 𝜖 is

satisfied for any time 𝑡 > 𝑡
0
whenever ‖𝑋

0
‖ < 𝛿(𝜖).

Definition 4. The trivial solution 𝑋(𝑡) ≡ 0 (or origin) of sys-
tem (1)-(2) is said to be asymptotically stable if

(a) it is stable;

(b) there exists Δ > 0 such that ‖𝑋(𝑡, 𝑡
0
, 𝑋
0
)‖ → 0, 𝑡 →

∞ for ‖𝑋
0
‖ < Δ.

Clearly, the stability (asymptotic stability) is uniformwith
respect to 𝑡

0
because the switched system is a stationary

system with all elements independent of 𝑡.
Obviously, in case of finite sequence (4) the stability or

instability of the whole switched system origin depends only
on stability of instability of origin for final subsystem 𝑆

𝑚
.

In case of infinite sequence (4) the instability of one
equation 𝐸

𝑖
does not conduce automatically to the instability

of the whole switched system. Also, the stability of all
equations 𝐸

𝑖
is not sufficient to conclude that the whole

switched system is stable [15].
Let us give other corresponding examples.

Example 5. Consider the switched systemwith two equations
𝐸
1
and 𝐸

2
acting in two half-planes 𝑄

1
= {�̇� = 𝑦 > 0} and

𝑄
2
= {�̇� = 𝑦 < 0}, respectively, with

𝐸
1
: �̈� − 0.2�̇� + 1.01𝑥 = 0, (𝑥, �̇� = 𝑦) ∈ 𝑄

1
, (13)

𝐸
2
: �̈� + 0.4�̇� + 1.04𝑥 = 0, (𝑥, �̇� = 𝑦) ∈ 𝑄

2
. (14)

Switching lines 𝐿
1,2

and 𝐿
2,1

in this case are 𝐿
1,2

= {𝑥 >

0, 𝑦 = 0} and 𝐿
2,1

= {𝑥 < 0, 𝑦 = 0}. Equation 𝐸
1
is unstable

and 𝐸
2
is asymptotically stable. The asymptotic stability of

equation 𝐸
2
can be called stronger than the instability of 𝐸

1
.

It is easy to verify that for any 𝑋
1
= {𝑥
1
> 0, 𝑦

1
= 0} the

subsequent points,𝑋
2
= {𝑥
2
< 0, 𝑦

2
= 0}, 𝑋

3
= {𝑥
3
> 0, 𝑦

3
=

0}, . . ., of intersection with the axis 𝑥 are equal to

𝑥
2
= −𝑥
1
exp (−0.2𝜋) ,

𝑥
3
= −𝑥
2
exp (0.1𝜋) = 𝑥

1
exp (−0.1𝜋) < 𝑥

1
.

(15)

Therefore, the trivial solution of switched system (13)-(14)
is asymptotically stable.

Replace (14) in region 𝑄
2
by

𝐸
3
: �̈� + 0.2�̇� + 1.01𝑥 = 0, (𝑥, �̇� = 𝑦) ∈ 𝑄

2
. (16)

Now, the same calculations show that 𝑥
3
= 𝑥
1
for all 𝑥

1
.

Therefore all solutions of switched system formed by unstable
equation (13) and by asymptotically stable equation (16) are
periodic.

Example 6. Consider switched system of Example 1:

𝐸
1
: �̈� + 𝜔2𝑥 = 0, (𝑥, �̇� = 𝑦) ∈ 𝑄

1
= {𝑥 < 0, �̇� > 0} , (17)

𝐸
2
: �̈� + 𝑥 = 0, (𝑥, �̇� = 𝑦) ∈ 𝑄

2
= R
2
− 𝑄
1
. (18)

Both equations 𝐸
1
and 𝐸

2
are stable. Also, it is easy to

calculate for any 𝑋
1
= {𝑥
1
= 0, 𝑦

1
> 0} the values of 𝑋

2
=

{𝑥
2
= −𝑦
1
< 0, 𝑦

2
= 0},𝑋

3
= {𝑥
3
= 0, 𝑦

3
> 0} and that

𝑦
3
= 𝜔𝑦
1
. (19)

Therefore, if 𝜔 < 1 then the switched system origin is
asymptotically stable, but if 𝜔 > 1 the switched system origin
is unstable. Suppose now𝑄

1
coincides with the first quadrant;

that is,𝑄
1
= {𝑥 > 0, 𝑦 > 0}; then analogous calculations show

that the switched system origin is asymptotically stable if
𝜔 > 1, but if 𝜔 < 1 the switched system origin is unstable.

Remark 7. These two examples show that stability of switched
systems depends not only on the stability of equations 𝐸

𝑖

but also on all other elements which define the switched
system; that is, it depends also on the regions where different
equations 𝐸

𝑖
are acting and on the order of the switching.

Thus, the following definitions are justified.

Definition 8. The origin of switched system (4) formed by an
infinite sequence of subsystems 𝑆

1(𝑋0)
, 𝑆
2(𝑋0)

, . . . , 𝑆
𝑖(𝑋0)

, . . . is
stable (asymptotically stable) independently of geometrical
structure of switched system if the origin is stable (asymp-
totically stable) for any choice of equations 𝐸

1
, . . . , 𝐸

𝑝
acting

in arbitrary chosen regions 𝑄
1
, . . . , 𝑄

𝑝
.
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Definition 9. The origin of switched system (4) formed by a
sequence of subsystems 𝑆

1
, 𝑆
2
, . . . , 𝑆

𝑖
, . . . is stable (asymptot-

ically stable) for given geometrical and dynamical structure
of switched system if the origin is stable (asymptotically
stable) for a given choice of equations 𝐸

1
, . . . , 𝐸

𝑝
acting in

corresponding regions 𝑄
1
, . . . , 𝑄

𝑝
.

4. General Theorems

The previous examples show that the stability properties of
switched system origin need special investigation and they do
not follow directly from simple stability conditions imposed
on subsystems, but also they depend on how the switching
occurs within the whole system.

The only interesting case when sequence (4) which deter-
mines the switched system is infinite is considered below.

Suppose equations 𝐸
𝑖
are stable (asymptotically stable)

and also suppose the existence of some smooth positive
definite functions 𝑉

𝑖
(𝑋) defined for 𝑋 ∈ 𝑄

𝑖
. Each function

𝑉
𝑖
(𝑋) is called Lyapunov function in region 𝑄

𝑖
, if it is

continuously differentiable in 𝑄
𝑖
and fulfilling 𝑉

𝑖
(𝑋) > 0,

𝑋 ∈ 𝑄
𝑖
,𝑋 ̸= 0, and 𝑉

𝑖
(0) = 0 [16, 17].

Denote by 𝜔
𝑘
(𝑢) scalar continuous nondecreasing func-

tions (also called wedges) defined and positive for 𝑢 > 0 such
that 𝜔

𝑘
(0) = 0.

The symbols �̇�
𝑖
(𝑋(𝑡)) denote the derivatives of the func-

tions 𝑉
𝑖
(𝑋(𝑡)) along the trajectory of equation 𝐸

𝑖
:

�̇�
𝑖
(𝑋 (𝑡)) = ⟨∇ (𝑉 (𝑋)) , 𝑓

𝑖
(𝑋)⟩ , 𝑋 ∈ 𝑄

𝑖
. (20)

The existence of a common Lyapunov function for all
equations 𝐸

𝑖
simplifies the stability analysis of switched sys-

tem origin. For this reason, Theorem 10 has been explicitly
formulated but not proven, because this theorem is a direct
consequence of the more general Theorem 12.

Theorem 10. Suppose there exists a common Lyapunov func-
tion 𝑉(𝑋) defined in the whole space R2 satisfying the fol-
lowing:

(a) 𝜔
1
(‖𝑋‖) ≤ 𝑉(𝑋) ≤ 𝜔

2
(‖𝑋‖),𝑋 ∈ R2,

(b) for any equation𝐸
𝑖
the following conditions are fulfilled

�̇� (𝑋 (𝑡)) = ⟨∇ (𝑉 (𝑋)) , 𝑓
𝑖
(𝑋)⟩ ≤ 0,

(�̇�
𝑖
(𝑋) ≤ −𝜔

3
(‖𝑋‖) < 0) ,

(21)

for𝑋 ∈ 𝑄
𝑖
, 1 ≤ 𝑖 ≤ 𝑝.

Then, the trivial solution 𝑋(𝑡) ≡ 0 of switched system (1)-(2)
is stable (asymptotically stable) independently of geometrical
structure of switched system.

Example 11. Consider three equations:

𝐸
1
: �̈� + 𝑥 = 0,

𝐸
2
: �̈� + 𝑥 + 𝑥2�̇�3 = 0,

𝐸
3
: �̈� + sin (�̇�) + 𝑥 = 0.

(22)

As a common Lyapunov function 𝑉(𝑋) we can take the
function

𝑉 (𝑥, �̇�) = 𝑥
2
+ �̇�
2
. (23)

The derivatives of these functions along the trajectories of
equations 𝐸

1
, 𝐸
2
, and 𝐸

3
are not positive:

�̇�
(ec21) (𝑥, �̇�) = 2𝑥�̇� − 2𝑥�̇� = 0,

�̇�
(ec22) (𝑥, �̇�) = 2𝑥�̇� − 2�̇� (−𝑥 − 𝑥

2
�̇�
3
) = −2𝑥

2
�̇�
4
≤ 0,

𝑉
(ec23) (𝑥, �̇�) = 2𝑥�̇� − 2�̇� (−𝑥 − sin (�̇�)) = −2�̇� sin (�̇�)

≤ 0,

|�̇�| < 1.

(24)

Therefore, the trivial solution of the switched system
formed by equations 𝐸

1
, 𝐸
2
, and 𝐸

3
is stable independently

of geometrical structure of switched system determined by a
choice of arbitrary regions𝑄

1
,𝑄
2
, and𝑄

3
such that𝑄

1
∪𝑄
2
∪

𝑄
3
= R2.

Theorem 12. Suppose conditions (3) hold for all switching lines
𝐿
𝑖,𝑖+1

and suppose that for each equation 𝐸
𝑖
acting in 𝑄

𝑖
∈ R2

there exists a Lyapunov function𝑉
𝑖
(𝑋) defined in𝑄

𝑖
such that

(a) 𝜔
1,𝑖
(‖𝑋‖) ≤ 𝑉

𝑖
(𝑋) ≤ 𝜔

2,𝑖
(‖𝑋‖),𝑋 ∈ 𝑄

𝑖
, 𝑖 = 1, . . . , 𝑝,

(b) �̇�
𝑖
(𝑋(𝑡)) = ⟨∇(𝑉

𝑖
(𝑋)), 𝑓

𝑖
(𝑋)⟩ ≤ 0, (�̇�

𝑖
(𝑋(𝑡)) ≤

−𝜔
3,𝑖
(‖𝑋(𝑡)‖) < 0),𝑋 ∈ 𝑄

𝑖
, 𝑖 = 1, . . . , 𝑝,

(c) on all switching lines 𝐿
𝑖,𝑖+1

where trajectories pass
from region 𝑄

𝑖
to 𝑄
𝑖+1

, the following inequalities hold:
𝑉
𝑖
(𝑋) ≥ 𝑉

𝑖+1
(𝑋),𝑋 ∈ 𝐿

𝑖,𝑖+1
.

Then the trivial solution 𝑋(𝑡) ≡ 0 of switched system (4) is
stable (asymptotically stable) for given switched system.

Proof. Let us proof stability of trivial solution 𝑋(𝑡) ≡ 0.
Denote

𝜔
1
(𝑢) = min

𝑖

(𝜔
1,𝑖
(𝑢)) , 𝑢 > 0,

𝜔
2
(𝑢) = max

𝑖

(𝜔
2,𝑖
(𝑢)) , 𝑢 > 0,

𝜔
3
(𝑢) = min

𝑖

(𝜔
3,𝑖
(𝑢)) , 𝑢 > 0,

𝜔
1
(0) = 𝜔

2
(0) = 𝜔

3
(0) = 0.

(25)

The wedge functions 𝜔
𝑖
(𝑢), 𝑖 = 1, 2, 3, are scalar contin-

uous nondecreasing functions positive for 𝑢 > 0 and satisfy
(25). For a given 𝜖 > 0 we define a number 𝛿 = 𝛿(𝜖) such that
𝜔
2
(𝛿) ≤ 𝜔

1
(𝜖). Evidently, such 𝛿 does exist. Using conditions

(b) and (c) we obtain that the sequence of Lyapunov functions
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𝑉
𝑘
(𝑋(𝑡, 𝑡

0
, 𝑋
0
)) for arbitrary 𝑘 and 𝑡

𝑘,init < 𝑡 < 𝑡
𝑘,fin is nonin-

creasing on the trajectories of switched system:

𝜔
1
(
𝑋 (𝑡, 𝑡

0
, 𝑋
0
)
) ≤ 𝜔1,𝑘 (

𝑋 (𝑡, 𝑡
0
, 𝑋
0
)
)

≤ 𝑉
𝑘
(𝑋 (𝑡, 𝑡

0
, 𝑋
0
))

≤ 𝑉
𝑘
(𝑋 (𝑡
𝑘,init, 𝑡0, 𝑋0))

≤ 𝑉
𝑘−1

(𝑋 (𝑡
𝑘−1,fin, 𝑡0, 𝑋0))

≤ 𝑉
𝑘−1

(𝑋 (𝑡
𝑘−1,init, 𝑡0, 𝑋0)) ≤ ⋅ ⋅ ⋅

≤ 𝑉
1(𝑋0)

(𝑋
0
) .

(26)

Using now condition (a) of the theorem, we obtain for
arbitrary 𝑘 and 𝑡, 𝑡

𝑘,init < 𝑡 < 𝑡𝑘,fin the following inequalities:

𝜔
1
(
𝑋 (𝑡, 𝑡

0
, 𝑋
0
)
) ≤ 𝑉1(𝑋0)

(𝑋
0
) ≤ 𝜔
2,1
(
𝑋0

)

≤ 𝜔
2
(
𝑋0

) ≤ 𝜔2 (𝛿) ≤ 𝜔1 (𝜖) ,

(27)

Therefore,

𝑋 (𝑡, 𝑡
0
, 𝑋
0
)
 ≤ 𝜖, 𝑡 ≥ 𝑡

0
,
𝑋0

 ≤ 𝛿. (28)

Inequality (28) is equivalent to stability of trivial solution
of switched system (1)-(2).

To proof asymptotic stability it is necessary to demon-
strate that for any 𝛾 > 0 there exist numbers Δ > 0 and 𝑇(𝛾)
such that ‖𝑋(𝑡, 𝑡

0
, 𝑋
0
)‖ ≤ 𝛾 for 𝑡 ≥ 𝑡

0
+ 𝑇(𝛾) and ‖𝑋

0
‖ ≤ Δ.

Take any 𝛾 > 0 and determine 𝛿 > 0 which corresponds to 𝛾
in demonstration of stability; that is, 𝜔

2
(𝛿) ≤ 𝜔

1
(𝛾). Take also

𝑇(𝛾) = 2𝑤
2
(Δ)/𝜔

3
(𝛿) > 0.

Let us demonstrate that on the interval [𝑡
0
, 𝑡
0
+𝑇(𝛾)] there

exists an instant 𝑡
1
such that ‖𝑋(𝑡

1
, 𝑡
0
, 𝑋
0
)‖ ≤ 𝛿.

If this is not so, that is, ‖𝑋(𝑡, 𝑡
0
, 𝑋
0
)‖ > 𝛿 for all 𝑡 ∈ [𝑡

0
, 𝑡
0
+

𝑇(𝛾)], then using continuity of𝑋(𝑡, 𝑡
0
, 𝑋
0
) and conditions (b)

and (c) of Theorem 12 we have

𝑉
𝑘
(𝑋 (𝑡
0
+ 𝑇 (𝛾) , 𝑡

0
, 𝑋
0
))

≤ 𝑉
1(𝑋0)

(𝑋
0
) + ∫

𝑡1,fin

𝑡0

�̇�
1(𝑋0)

(𝑋 (𝑡, 𝑡
0
, 𝑋
0
)) 𝑑𝑡

+ ∫

𝑡2,fin

𝑡1,fin

�̇�
2(𝑋0)

(𝑋 (𝑡, 𝑡
0
, 𝑋
0
)) 𝑑𝑡 + ⋅ ⋅ ⋅

+ ∫

𝑡0+𝑇(𝛾)

𝑡𝑘,init

�̇�
𝑘
(𝑋 (𝑡, 𝑡

0
, 𝑋
0
)) 𝑑𝑡

≤ 𝑉
1(𝑋0)

(𝑋
0
) − ∫

𝑡1,fin

𝑡0

𝜔
3,1
(
𝑋 (𝑡, 𝑡

0
, 𝑋
0
)
) 𝑑𝑡

− ∫

𝑡2,fin

𝑡1,fin

𝜔
3,2
(
𝑋 (𝑡, 𝑡

0
, 𝑋
0
)
) 𝑑𝑡 − ⋅ ⋅ ⋅

− ∫

𝑡0+𝑇(𝛾)

𝑡𝑘,init

𝜔
3,𝑘
(
𝑋 (𝑡, 𝑡

0
, 𝑋
0
)
) 𝑑𝑡

≤ 𝑉
1(𝑋0)

(𝑋
0
) − ∫

𝑡0+𝑇(𝛾)

𝑡𝑘,init

𝜔
3
(
𝑋 (𝑡, 𝑡

0
, 𝑋
0
)
) 𝑑𝑡

≤ 𝑉
1(𝑋0)

(𝑋
0
) − 𝑇 (𝛾) 𝜔

3
(𝛿)

≤ 𝜔
2
(Δ) − 𝑇 (𝛾) 𝜔

3
(𝛿) = −𝜔

2
(Δ) < 0.

(29)

Inequality (29) contradicts the positiveness of Lyapunov
function𝑉

𝑘
.Therefore, there exists an instant𝑇(𝛾) and 𝑡

1
, 𝑡
0
≤

𝑡
1
≤ 𝑡
0
+ 𝑇(𝛾) such that ‖𝑋(𝑡

1
, 𝑡
0
, 𝑋
0
)‖ ≤ 𝛿 for ‖𝑋

0
‖ ≤ Δ.

From condition 𝑤
2
(𝛿) ≤ 𝜔

1
(𝛾) and the stability of the trivial

solution it follows that ‖𝑋(𝑡, 𝑡
0
, 𝑋
0
)‖ ≤ 𝛾 for all 𝑡 ≥ 𝑡

1
, 𝑡
1
≤

𝑡
0
+ 𝑇(𝛾). Therefore ‖𝑋(𝑡, 𝑡

0
, 𝑋
0
)‖ ≤ 𝛾 for all ‖𝑋

0
‖ ≤ Δ and

for all 𝑡 ≥ 𝑡
0
+ 𝑇(𝛾). The asymptotic stability of the origin is

proven.

Example 13. Consider once again first switched system of
Example 6 where 𝑄

1
coincides with second quadrant, 𝑄

1
=

{𝑥 < 0, 𝑦 > 0}. Lyapunov functions for equations 𝐸
1
, 𝐸
2
are

𝑉
1
(𝑥, 𝑦) = 𝜔

2
𝑥
2
+ 𝑦
2
,

𝑉
2
(𝑥, 𝑦) = 𝑥

2
+ 𝑦
2
,

(30)

respectively.
On switching line 𝐿

1,2
where 𝑥 = 0 and 𝑦 > 0, we have

𝑉
1
(𝑥, 𝑦) = 𝑦

2
= 𝑉
2
(𝑥, 𝑦). On switching line 𝐿

2,1
where 𝑦 = 0

we have𝑉
1
(𝑥, 𝑦) = 𝜔

2
𝑥
2 and𝑉

2
(𝑥, 𝑦) = 𝑥

2. Therefore, condi-
tion (c) ofTheorem 12 holds on both lines𝐿

1,2
and𝐿

2,1
if𝜔2 <

1. Under this condition, the origin of the switched system
described by (17)-(18) of Example 6 is stable.

Consider now the second switched system of Example 6,
where 𝑄

1
coincides with the first quadrant 𝑄

1
= {𝑥 ≥ 0, 𝑦 ≥

0}. In this case, on line 𝐿
2,1
, where 𝑥 = 0 we have 𝑉

1
(𝑥, 𝑦) =

𝑦
2
= 𝑉
2
(𝑥, 𝑦) and on line 𝐿

1,2
where 𝑦 = 0we have𝑉

1
(𝑥, 𝑦) =

𝜔
2
𝑥
2 and 𝑉

2
(𝑥, 𝑦) = 𝑥

2. Therefore condition (c) of
Theorem 12 holds if 𝜔2 > 1. In this case, the origin of the
second switched system of Example 6 is stable under this
situation.This conclusion coincides with results of Example 6
obtained by direct analytical computations. Analytical calcu-
lations show asymptotic stability of switched system origin
(17)-(18), while by using Theorem 12 we can only establish
stability but no asymptotic stability.

Replacing (18) in region 𝑄
2
by new equation

𝐸
2
: �̈� + 𝑥 + 𝑥2�̇�3 = 0, 𝑋 ∈ 𝑄

2
, (31)

and considering the same Lyapunov function 𝑉
2
(𝑥, 𝑦), we

can also establish stability of the trivial solution of this new
switched system (17), (31), but analytical calculations cannot
be used in this case.

Example 14. Consider the switched system with two equa-
tions 𝐸

1
and 𝐸

2
acting in two half-planes 𝑄

1
= {𝑦 > 0} and

𝑄
2
= {𝑦 < 0}:

𝐸
1
: �̇� = 𝑦 + 𝑥2,

̇𝑦 = −2𝑥𝑦 − 2𝑥
3
,

{𝑥, 𝑦} ∈ 𝑄
1
,
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𝐸
2
: �̇� = 𝑦,

̇𝑦 = −𝑥,

{𝑥, 𝑦} ∈ 𝑄
2
.

(32)

The switching lines are 𝐿
1,2

= {𝑥 > 0, 𝑦 = 0} and 𝐿
2,1

=

{𝑥 < 0, 𝑦 = 0}. Normal 𝑁
1,2

going from 𝑄
1
to 𝑄
2
is 𝑁
1,2

=

{
0

−1
}, and condition (3) on line 𝐿

1,2
has the form

⟨𝑁
1,2
, 𝑓
1
⟩ = 2𝑥

3
> 0,

⟨𝑁
1,2
, 𝑓
2
⟩ = 𝑥 > 0.

(33)

On the other hand, normal 𝑁
2,1

going from 𝑄
2
to 𝑄
1
is

𝑁
2,1

= {
0

1
}, and condition (3) on line 𝐿

2,1
has the form

⟨𝑁
2,1
, 𝑓
1
⟩ = −2𝑥

3
> 0,

⟨𝑁
2,1
, 𝑓
2
⟩ = −𝑥 > 0.

(34)

As Lyapunov functions for equations𝐸
1
and𝐸

2
in regions

𝑦 > 0 and 𝑦 < 0 take

𝑉
1
(𝑥, 𝑦) = 𝑥

2
+ 𝑦 > 0, 𝑦 > 0, (35)

𝑉
2
(𝑥, 𝑦) = 𝑥

2
+ 𝑦
2
, 𝑦 < 0. (36)

The strange function (35) satisfies condition (a) of
Theorem 12 for unusual norm in R2 of the form ‖𝑋‖ = 𝑥

2
+

|𝑦|. The switching lines are 𝐿
1,2

= {𝑦 = 0, 𝑥 > 0} and 𝐿
2,1

=

{𝑦 = 0, 𝑥 < 0} and on these switching lines 𝑉
1
(𝑥, 𝑦) = 𝑥

2
=

𝑉
2
(𝑥, 𝑦). The derivatives of functions (35) and (36) in regions

𝑦 > 0 and 𝑦 < 0 are equal to

�̇�
1
(𝑥, 𝑦) = 2𝑥�̇� + ̇𝑦 = 2𝑥 (𝑦 + 𝑥

2
) + (−2𝑥𝑦 − 2𝑥

3
)

= 0, 𝑦 > 0;

�̇�
2
(𝑥, 𝑦) = 2𝑥�̇� + 2𝑦 ̇𝑦 = 2𝑥𝑦 − 2𝑥𝑦 = 0, 𝑦 < 0.

(37)

All conditions of Theorem 12 hold and therefore, the
trivial solution of switched system (32) is stable.

Example 15. Consider a switched system with four equations
acting in four quadrants of the plane as shown in Figure 4:

𝐸
1
: �̇� = 3𝑥 + 2𝑦,

̇𝑦 = −4𝑥 − 3𝑦,

(𝑥, 𝑦) ∈ 𝑄
1
= {𝑥 > 0, 𝑦 > 0} ,

𝐸
2
: �̇� = −3𝑥 + 5𝑦,

̇𝑦 = −2𝑥 + 4𝑦,

(𝑥, 𝑦) ∈ 𝑄
2
= {𝑥 > 0, 𝑦 < 0} ,
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Figure 4: Trajectory of switched system (38).

𝐸
3
: �̇� = 3𝑥 + 𝑦,

̇𝑦 = −4𝑥 − 2𝑦,

(𝑥, 𝑦) ∈ 𝑄
3
= {𝑥 < 0, 𝑦 < 0} ,

𝐸
4
: �̇� = −4𝑥 + 3𝑦,

̇𝑦 = −2𝑥 + 2𝑦,

(𝑥, 𝑦) ∈ 𝑄
4
= {𝑥 < 0, 𝑦 > 0} ,

(38)

where 𝑄
1
∪ 𝑄
2
∪ 𝑄
3
∪ 𝑄
4
= R2.

It is easy to observe that equations 𝐸
1
, 𝐸
2
, 𝐸
3
, and 𝐸

4
are

unstable in the whole plane R2. To analyze the stability of
the switched system origin consider the following four linear
Lyapunov functions defined in corresponding regions:

𝑉
1
(𝑥, 𝑦) = 𝑥 + 𝑦,

𝑉
1
(𝑥, 𝑦) > 0, (𝑥, 𝑦) ∈ 𝑄

1
= {𝑥 > 0, 𝑦 > 0} ,

𝑉
2
(𝑥, 𝑦) = 𝑥 − 𝑦,

𝑉
2
(𝑥, 𝑦) > 0, (𝑥, 𝑦) ∈ 𝑄

2
= {𝑥 > 0, 𝑦 < 0} ,

𝑉
3
(𝑥, 𝑦) = −𝑥 − 𝑦,

𝑉
3
(𝑥, 𝑦) > 0, (𝑥, 𝑦) ∈ 𝑄

3
= {𝑥 < 0, 𝑦 < 0} ,

𝑉
4
(𝑥, 𝑦) = −𝑥 + 𝑦,

𝑉
4
(𝑥, 𝑦) > 0, (𝑥, 𝑦) ∈ 𝑄

4
= {𝑥 < 0, 𝑦 > 0} .

(39)

Clearly, functions (39) satisfy conditions (a) of
Theorem 12 if the norm in R2 is equal to ‖𝑋‖

1
= |𝑥| + |𝑦|.

The derivatives of functions (39) are

�̇�
1
(𝑥, 𝑦) = �̇� + ̇𝑦 = 3𝑥 + 2𝑦 − 4𝑥 − 3𝑦 = −𝑥 − 𝑦

= −𝑉
1
, (𝑥, 𝑦) ∈ 𝑄

1
,
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�̇�
2
(𝑥, 𝑦) = �̇� − ̇𝑦 = −3𝑥 + 5𝑦 + 2𝑥 − 4𝑦 = −𝑥 + 𝑦

= −𝑉
2
, (𝑥, 𝑦) ∈ 𝑄

2
,

�̇�
3
(𝑥, 𝑦) = −�̇� − ̇𝑦 = −3𝑥 − 𝑦 + 4𝑥 + 2𝑦 = 𝑥 + 𝑦

= −𝑉
3
, (𝑥, 𝑦) ∈ 𝑄

3
,

�̇�
4
(𝑥, 𝑦) = −�̇� + ̇𝑦 = 4𝑥 − 3𝑦 − 2𝑥 + 2𝑦 = 2𝑥 − 𝑦

< −𝑉
4
, (𝑥, 𝑦) ∈ 𝑄

4
.

(40)

The derivatives of Lyapunov functions 𝑉
1
, 𝑉
2
, 𝑉
3
, and 𝑉

4

are negative definite with respect to norm ‖𝑋‖
1
in the cor-

responding regions 𝑄
𝑖
.

On switching lines 𝐿
1,2
, . . . , 𝐿

4,1
, where 𝑥 = 0 or 𝑦 = 0,

the corresponding Lyapunov functions are

𝐿
1,2
: 𝑉
1
(𝑥, 𝑦) = 𝑉

2
(𝑥, 𝑦) = 𝑥,

𝑁
1,2

= [

0

−1
] ,

⟨𝑁
1,2
, 𝑓
1
⟩ = 4𝑥 > 0,

⟨𝑁
1,2
, 𝑓
2
⟩ = 2𝑥 > 0,

𝑦 = 0,

𝐿
2,3
: 𝑉
2
(𝑥, 𝑦) = 𝑉

3
(𝑥, 𝑦) = −𝑦,

𝑁
2,3

= [

−1

0
] ,

⟨𝑁
2,3
, 𝑓
2
⟩ = −5𝑦 > 0,

⟨𝑁
2,3
, 𝑓
3
⟩ = −𝑦 > 0,

𝑥 = 0,

𝐿
3,4
: 𝑉
3
(𝑥, 𝑦) = 𝑉

4
(𝑥, 𝑦) = −𝑥,

𝑁
3,4

= [

0

1
] ,

⟨𝑁
3,4
, 𝑓
3
⟩ = −4𝑥 > 0,

⟨𝑁
3,4
, 𝑓
4
⟩ = −2𝑥 > 0,

𝑦 = 0,

𝐿
4,1
: 𝑉
4
(𝑥, 𝑦) = 𝑉

1
(𝑥, 𝑦) = 𝑦,

𝑁
4,1

= [

1

0
] ,

⟨𝑁
4,1
, 𝑓
1
⟩ = 3𝑦 > 0,

⟨𝑁
4,1
, 𝑓
1
⟩ = 2𝑦 > 0,

𝑥 = 0.

(41)

Furthermore, all conditions of Theorem 12 are fulfilled;
therefore, the trivial solution of the switched system is
asymptotically stable (Figure 4). Moreover, as �̇�

𝑖
≤ −𝑉
𝑖
the

trivial solution is exponentially asymptotically stable.

Example 16. Consider now the switched systems formed by
the following nonlinear subsystems:

𝐸
1
: �̇� = 3𝑥 + 2𝑦 − 𝑥𝑦,

̇𝑦 = −4𝑥 − 3𝑦 − 𝑥
2
𝑦
2
,

(𝑥, 𝑦) ∈ 𝑄
1
,

𝐸
2
: �̇� = −3𝑥 + 5𝑦 + 𝑥𝑦,

̇𝑦 = −2𝑥 + 4𝑦 + 𝑥
2
𝑦,

(𝑥, 𝑦) ∈ 𝑄
2
,

𝐸
3
: �̇� = 3𝑥 + 𝑦,

̇𝑦 = −4𝑥 − 2𝑦 + 𝑥𝑦,

(𝑥, 𝑦) ∈ 𝑄
3
,

𝐸
4
: �̇� = −4𝑥 + 3𝑦 − 𝑥𝑦,

̇𝑦 = −2𝑥 + 2𝑦 + 𝑥
3
𝑦,

(𝑥, 𝑦) ∈ 𝑄
4
,

(42)

with𝑄
1
,𝑄
2
,𝑄
3
, and𝑄

4
as in Example 15. As before, functions

(39) fulfill conditions ofTheorem 12 if the norm inR2 is equal
to ‖𝑋‖

1
= |𝑥| + |𝑦|. The derivatives of functions (39) are

�̇�
1
(𝑥, 𝑦) = �̇� + ̇𝑦 = −𝑥 − 𝑦 − 𝑥𝑦 − 𝑥

2
𝑦 ≤ −𝑉

1
(𝑥, 𝑦)

< 0, (𝑥, 𝑦) ∈ 𝑄
1
,

�̇�
2
(𝑥, 𝑦) = �̇� − ̇𝑦 = −𝑥 + 𝑦 + 𝑥𝑦 − 𝑥

2
𝑦 ≤ −𝑉

2
(𝑥, 𝑦)

< 0, (𝑥, 𝑦) ∈ 𝑄
2
,

�̇�
3
(𝑥, 𝑦) = −�̇� − ̇𝑦 = 𝑥 + 𝑦 − 𝑥𝑦 ≤ −𝑉

3
(𝑥, 𝑦) < 0,

(𝑥, 𝑦) ∈ 𝑄
3
,

�̇�
4
(𝑥, 𝑦) = −�̇� + ̇𝑦 = 2𝑥 − 𝑦 + 𝑥𝑦 + 𝑥

3
𝑦 ≤ −𝑉

4
(𝑥, 𝑦)

< 0, (𝑥, 𝑦) ∈ 𝑄
4
.

(43)

The derivatives of Lyapunov functions 𝑉
1
, 𝑉
2
, 𝑉
3
, and 𝑉

4

are negative definite with respect to norm ‖𝑋‖
1
in the cor-

responding regions 𝑄
𝑖
, and on switching lines 𝐿

1,2
, . . . , 𝐿

4,1
,

where 𝑥 = 0 or 𝑦 = 0, the corresponding Lyapunov
functions coincide with (41). Therefore, the trivial solution
of the switched system (42) is exponentially asymptotically
stable. The simulation results are shown in Figure 5.

Theorem 17. Suppose that sequence (4) is infinite and that for
each equation 𝐸

𝑖
, 𝑖 = 1, . . . , 𝑝, there exists a Lyapunov function

𝑉
𝑖
(𝑋) such that
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Figure 5: Trajectory of switched system (42).

(a) 𝜔
1,𝑖
(‖𝑋‖) < 𝑉

𝑖
(𝑋) < 𝜔

2,𝑖
(‖𝑋‖),𝑋 ∈ 𝑄

𝑖
, 𝑖 = 1, . . . , 𝑝,

(b) �̇�
𝑖
(𝑋(𝑡)) = ⟨∇(𝑉

𝑖
), 𝑓
𝑖
(𝑋)⟩ ≤ 0,𝑋 ∈ 𝑄

𝑖
, 𝑖 = 1, . . . , 𝑝,

(c) on all switched lines 𝐿
𝑖,𝑖+1

, 1 < 𝑖 < 𝑝, where the traject-
ories pass from region𝑄

𝑖
to𝑄
𝑖+1

, the following inequal-
ities hold:

𝑉
𝑖
(𝑋) ≥ 𝑉

𝑖+1
(𝑋) , 𝑋 ∈ 𝐿

𝑖,𝑖+1
, 1 < 𝑖 < 𝑝. (44)

Furthermore, there exists at least one line 𝐿
𝑘,𝑘+1

, 1 <

𝑘 < 𝑝 such that

𝑉
𝑘
(𝑋) ≥ 𝑉

𝑘+1
(𝑋) + 𝜔

3,𝑘
(‖𝑋‖) , 𝑋 ∈ 𝐿

𝑘,𝑘+1
. (45)

Then, the trivial solution𝑋(𝑡) ≡ 0 of the switched system (1)-(2)
or (4) is asymptotically stable for a given switched system.

Proof. The trivial solution is stable because conditions of
Theorem 12 are satisfied. Itmeans that any Lyapunov function
𝑉
𝑘
(𝑋(𝑡)) in region 𝑄

𝑘
as function of 𝑡 does not increase.

Moreover, the sequence of successive Lyapunov functions
as function of 𝑡 does not increase either. More exactly, for
any numbers 𝑗, 𝑘 and any instants 𝑡

𝑗
, 𝑡
𝑘
such that 𝑋(𝑡

𝑗
) ∈

𝑄
𝑗
, 𝑋(𝑡
𝑘
) ∈ 𝑄

𝑘
, 𝑡
𝑗
< 𝑡
𝑘
, the following inequality holds:

𝑉
𝑘
(𝑋(𝑡
𝑘
)) ≤ 𝑉

𝑗
(𝑋(𝑡
𝑗
)).

Suppose the trivial solution 𝑋(𝑡) ≡ 0 of switched system
(4) is not asymptotically stable. It means that there exists the
solution 𝑋(𝑡, 𝑡

0
, 𝑋
0
) with sufficiently small 𝑋

0
, ‖𝑋
0
‖ < 𝛿,

such that it is bounded ‖𝑋(𝑡, 𝑡
0
, 𝑋
0
)‖ < 𝐻 and does not tend

to zero as 𝑡 → ∞. In this case there exists 𝛾 > 0 and a
sequence 𝑡

𝑗
→ ∞ such that ‖𝑋(𝑡

𝑗
, 𝑡
0
, 𝑋
0
)‖ > 𝛾, 𝛾 < 𝐻.

The solution𝑋(𝑡, 𝑡
0
, 𝑋
0
)must satisfy condition

𝑋 (𝑡, 𝑡
0
, 𝑋
0
)
 ≥ 𝜇, 𝑡 ≥ 𝑡

1
, (46)

where 𝜇 is a number corresponding to 𝛾 in definition of
stability for solution 𝑋(𝑡) ≡ 0; that is, 𝜔

2
(𝜇) ≤ 𝜔

1
(𝛾). If (46)

does not hold then there exists an instant 𝑇 > 𝑡
1
such that

𝑋 (𝑇, 𝑡
0
, 𝑋
0
)
 < 𝜇. (47)

Taking now 𝑇 as a new initial moment and using stability
of 𝑋(𝑡, 𝑡

0
, 𝑋
0
) = 𝑋(𝑡, 𝑇,𝑋(𝑇, 𝑡

0
, 𝑋
0
)) this solution must sat-

isfy condition

𝑋 (𝑡, 𝑡
0
, 𝑋
0
)
 < 𝛾, 𝑡 > 𝑇. (48)

Condition (48) contradicts condition (46) and thismeans
that condition (46) holds. It follows from (46) that for an
infinite number of moments 𝑡

𝑖(𝑘)
> 𝑇, 𝑖(𝑘) → ∞, when solu-

tion 𝑋(𝑡, 𝑡
0
, 𝑋
0
) crosses line 𝐿

𝑘,𝑘+1
we have 𝐻 > ‖𝑋(𝑡

𝑖(𝑘)
, 𝑡
0
,

𝑋
0
)‖ ≥ 𝜇 > 0, 𝜔

3,𝑘
(‖𝑋(𝑡
𝑖(𝑘)
, 𝑡
0
, 𝑋
0
)‖) ≥ 𝜔

3,𝑘
(𝜇) > 0, and

𝜔
2
(𝐻) ≥ 𝑉

𝑘
(𝑋 (𝑡
𝑖(𝑘)
, 𝑡
0
, 𝑋
0
))

≥ 𝑉
𝑘+1

(𝑋 (𝑡
𝑖(𝑘)
, 𝑡
0
, 𝑋
0
))

+ 𝜔
3,𝑘
(
𝑋 (𝑡
𝑖(𝑘)
, 𝑡
0
, 𝑋
0
)
)

≥ 𝑉
𝑘
(𝑋 (𝑡
𝑖(𝑘)−1

, 𝑡
0
, 𝑋
0
))

+ 𝜔
3,𝑘
(
𝑋 (𝑡
𝑖(𝑘)−1

, 𝑡
0
, 𝑋
0
)
)

+ 𝜔
3,𝑘
(
𝑋 (𝑡
𝑖(𝑘)
, 𝑡
0
, 𝑋
0
)
)

≥ 𝑉
𝑘+1

(𝑋 (𝑡
𝑖(𝑘)−1

, 𝑡
0
, 𝑋
0
))

+ 𝜔
3,𝑘
(
𝑋 (𝑡
𝑖(𝑘)−1

, 𝑡
0
, 𝑋
0
)
)

+ 𝜔
3,𝑘
(
𝑋 (𝑡
𝑖(𝑘)
, 𝑡
0
, 𝑋
0
)
) ≥ ⋅ ⋅ ⋅

≥ 𝑉
𝑘+1

(𝑋 (𝑡
1
, 𝑡
0
, 𝑋
0
))

+ 𝜔
3,𝑘
(
𝑋 (𝑡
1
, 𝑡
0
, 𝑋
0
)
) + ⋅ ⋅ ⋅

+ 𝜔
3,𝑘
(
𝑋 (𝑡
𝑖(𝑘)−1

, 𝑡
0
, 𝑋
0
)
)

+ 𝜔
3,𝑘
(
𝑋 (𝑡
𝑖(𝑘)
, 𝑡
0
, 𝑋
0
)
) ≥ 𝑖 (𝑘) 𝜔3,𝑘 (𝜇)

→ ∞, 𝑖 (𝑘) → ∞.

(49)

Inequality (49) contradicts condition𝜔
2
(𝐻) < ∞ and our

supposition that 𝑋(𝑡, 𝑡
0
, 𝑋
0
) does not tend to zero conducts

to a contradiction. Furthermore, the asymptotic stability of
trivial solution𝑋(𝑡) ≡ 0 of switched system (4) is proven.

Theorem 18. Suppose that sequence (4) is infinite and that for
all switching lines 𝐿

𝑖,𝑖+1
and that for each 𝐸

𝑖
, 𝑖 = 1, . . . , 𝑝, there

exists a Lyapunov function 𝑉
𝑖
(𝑋) such that

(a) 𝜔
1,𝑖
(‖𝑋‖) < 𝑉

𝑖
(𝑋) < 𝜔

2,𝑖
(‖𝑋‖),𝑋 ∈ 𝑄

𝑖
, 𝑖 = 1, . . . , 𝑝,

(b) �̇�
𝑖
(𝑋(𝑡)) = ⟨∇(𝑉

𝑖
), 𝑓
𝑖
(𝑋)⟩ ≥ 0,𝑋 ∈ 𝑄

𝑖
, 𝑖 = 1, . . . , 𝑝,

(c) on all switched lines 𝐿
𝑖,𝑖+1

, 1 ≤ 𝑖 < 𝑝, where the
trajectories pass from region 𝑄

𝑖
to 𝑄
𝑖+1

, the following
inequalities hold:

𝑉
𝑖
(𝑋) ≤ 𝑉

𝑖+1
(𝑋) , 𝑋 ∈ 𝐿

𝑖,𝑖+1
, 1 ≤ 𝑖 < 𝑝, (50)

furthermore, there exists at least one line 𝐿
𝑘,𝑘+1

, 1 ≤

𝑘 < 𝑝, such that

𝑉
𝑘
(𝑋) ≤ 𝑉

𝑘+1
(𝑋) + 𝜔

3,𝑘
(‖𝑋‖) , 𝑋 ∈ 𝐿

𝑘,𝑘+1
. (51)
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Then, the trivial solution𝑋(𝑡) ≡ 0 of the switched system (4) is
unstable for a given switched system.

Proof. Theorem 18 is a clear modification of Theorem 17.
Therefore its proof is omitted.

Example 19. Consider the switched system formed by two
nonlinear pendulums:

𝐸
1
: �̈� + sin𝑥 = 0,

(𝑥, �̇� = 𝑦) ∈ 𝑄
1
= {𝑥 < 0, 𝑦 > 0} ,

𝐸
2
: �̈� + 𝜔2 sin𝑥 = 0, (𝑥, �̇� = 𝑦) ∈ R

2
− 𝑄
1
.

(52)

Take as Lyapunov functions for (52) the following func-
tions:

𝑉
1
(𝑥, 𝑦) = (1 − cos𝑥) + 1

2
𝑦
2
,

(𝑥, �̇� = 𝑦) ∈ 𝑄
1
= {𝑥 < 0, 𝑦 > 0} ,

𝑉
2
(𝑥, 𝑦) = 𝜔

2
(1 − cos𝑥) + 1

2
𝑦
2
,

(𝑥, �̇� = 𝑦) ∈ R
2
− 𝑄
1
.

(53)

The derivatives of functions (53) along the trajectories of
(52) are equal to zero: �̇�

1
= �̇�
2
= 0. On switching line 𝐿

1,2

where𝑥 = 0,𝑦 > 0wehave𝑉
1
(𝑥, 𝑦) = (1/2)𝑦

2
= 𝑉
2
(𝑥, 𝑦). On

switching line 𝐿
2,1

where 𝑥 < 0 and 𝑦 = 0 we have 𝑉
1
(𝑥, 𝑦) =

(1 − cos𝑥) and𝑉
2
(𝑥, 𝑦) = 𝜔

2
(1 − cos𝑥). Therefore, condition

(c) of Theorem 18 holds on both lines 𝐿
1,2

and 𝐿
2,1

if

𝜔
2
< 1. (54)

Condition (54) is a condition of instability of the trivial
solution of switched system (52). Also, this condition may
be considered as a condition of parametric discontinuous
excitations for the nonlinear pendulum.

5. Autonomous Multidimensional
Switched Systems

Consider multidimensional switched system acting in R𝑛

which is divided into a finite number 𝑝 of open 1-connected
regions 𝑄

𝑘
, 1 ≤ 𝑘 ≤ 𝑝, 𝑄

1
+ 𝑄
2
+ ⋅ ⋅ ⋅ + 𝑄

𝑝
= R𝑛, such that

the origin {0} of rectangular coordinates systems pertains to
closure of any region 𝑄

𝑘
. The boundaries of all regions 𝑄

𝑘

are supposed to be smooth. Suppose, also, that each region
𝑄
𝑙
has points 𝑋 fulfilling condition ‖𝑋‖ > 𝐻, where 𝐻

is any number. An equation 𝐸
𝑘
is defined in each region

𝑄
𝑘
satisfying conditions of existence and uniqueness of

solutions. Inmultidimensional case, the switched systemmay
have much more complicated behavior because region 𝑄

𝑘

may have more than two boundaries separating it from other
regions. To eliminate topological complications, consider
only the case when all boundaries (switching surfaces) 𝐵

𝑘,𝑘+𝑙

separating regions𝑄
𝑘
and𝑄

𝑘+𝑙
are planes inR𝑛. Suppose the

trajectories of switched system pass through the boundary
𝐵
𝑘,𝑘+𝑙

in all points only in direction from 𝑄
𝑘
to 𝑄
𝑘+𝑙

and on
all lines 𝐿

𝑘,𝑘+𝑙
where 𝑄

𝑘
touches other regions all trajectories

pass from 𝑄
𝑘
only to one determined region 𝑄

𝑘+𝑗
. Suppose

also the existence of some Lyapunov functions 𝑉
𝑘
(𝑋) for all

equation 𝐸
𝑘
, 1 ≤ 𝑘 ≤ 𝑝. In this case theorems similar to

Theorems 10, 12, 17, and 18may be established.The definitions
of stability for switched systems inR𝑛 are the same as for the
two-dimensional case. Now, consider the case of a switched
system with infinite number of switchings. Let us formulate
one of the theorems on stability.

Theorem20. Suppose that for each equation𝐸
𝑘
acting in𝑄

𝑘
∈

R𝑛 there exists a Lyapunov function 𝑉
𝑘
(𝑋) defined in 𝑄

𝑘
such

that

(a) 𝜔
1,𝑘
(‖𝑋‖) < 𝑉

𝑘
(𝑋) < 𝜔

2,𝑘
(‖𝑋‖),𝑋 ∈ 𝑄

𝑘
, 𝑘 = 1, . . . , 𝑝,

(b) �̇�
𝑘
(𝑋(𝑡)) = ⟨∇(𝑉

𝑘
), 𝑓
𝑘
(𝑋)⟩ < 0,𝑋 ∈ 𝑄

𝑘
, 𝑘 = 1, . . . , 𝑝,

(c) on all switched surfaces𝐵
𝑘,𝑘+𝑗

and lines𝐿
𝑘,𝑘+𝑗

where the
trajectories pass from region 𝑄

𝑘
to 𝑄
𝑘+𝑗

, the following
inequalities hold:

𝑉
𝑘
(𝑋) > 𝑉

𝑘+𝑗
(𝑋) , 𝑋 ∈ 𝐵

𝑘,𝑘+𝑗
,

𝑉
𝑘
(𝑋) > 𝑉

𝑘+𝑙
(𝑋) , 𝑋 ∈ 𝐿

𝑘,𝑘+𝑙
.

(55)

Then, the trivial solution𝑋(𝑡) ≡ 0 of the switched system acting
in R𝑛 is stable (asymptotically stable) for a given switched
structure.

Proof. The demonstration of this theorem is similar to proof
of Theorem 12. Therefore it is omitted.

Example 21. In space R3 consider two regions 𝑄
1
= {𝑧 > 0}

and 𝑄
2
= {𝑧 < 0}. Suppose equations 𝐸

1
and 𝐸

2
are defined

in 𝑄
1
and 𝑄

2
:

𝐸
1
: �̇� = −𝑥 + 𝑦 + 𝑦2,

̇𝑦 = −𝑥 − 𝑦,

�̇� = −2𝑧 − 𝑧𝑥
2
− 2𝑦
2
𝑥,

(𝑥, 𝑦, 𝑧) ∈ 𝑄
1
,

𝐸
2
: �̇� = −𝑥 + 𝑦 − 𝑦2,

̇𝑦 = −𝑥 − 𝑦 − 𝑥𝑦,

�̇� = −2𝑧 − 4𝑦
2
𝑥,

(𝑥, 𝑦, 𝑧) ∈ 𝑄
2
.

(56)
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Normals𝑁
1,2

and𝑁
2,1

to the surface𝐵 = 𝑧 = 0 separating
𝑄
1
and 𝑄

2
are𝑁𝑇
1,2

= [0, 0, −1]
𝑇 and𝑁𝑇

2,1
= [0, 0, 1]

𝑇. There-
fore, condition (3) holds on surface 𝐵 = 𝑧 = 0:

⟨𝑁
1,2
, 𝑓
𝐸1
⟩ = 2𝑦

2
𝑥 > 0,

⟨𝑁
1,2
, 𝑓
𝐸2
⟩ = 4𝑦

2
𝑥 > 0,

𝑥 > 0,

⟨𝑁
2,1
, 𝑓
𝐸1
⟩ = −2𝑦

2
𝑥 > 0,

⟨𝑁
2,1
, 𝑓
𝐸2
⟩ = −4𝑦

2
𝑥 > 0,

𝑥 < 0.

(57)

Therefore, surfaces 𝐵
1,2

and 𝐵
2,1

where the trajectories
pass from 𝐸

1
to 𝐸
2
or vice versa are 𝐵

1,2
= {𝑧 = 0, 𝑥 > 0, 𝑦 =

arbitrary} and 𝐵
2,1

= {𝑧 = 0, 𝑥 < 0, 𝑦 = arbitrary}. On line
{𝑧 = 0, 𝑥 = 0, 𝑦 = arbitrary} the derivatives �̇� from one and
another side of this line are positive: �̇� = 𝑦

2
> 0. Therefore,

the trajectory which arrives on this line passes throughout it
and then enters into the region 𝑄

2
. Consider two Lyapunov

functions 𝑉
1
and 𝑉

2
defined in 𝑄

1
and 𝑄

2
, respectively:

𝑉
1
(𝑥, 𝑦, 𝑧) = 𝑥

2
+ 𝑦
2
+ 𝑧, (𝑥, 𝑦, 𝑧) ∈ 𝑄

1
,

𝑉
2
(𝑥, 𝑦, 𝑧) = 𝑥

2
+ 𝑦
2
− 𝑧, (𝑥, 𝑦, 𝑧) ∈ 𝑄

2
.

(58)

Derivatives �̇�
1,𝐸1

and �̇�
2,𝐸2

computed on the trajectories
of equations 𝐸

1
and 𝐸

2
, respectively, are

�̇�
1,𝐸1

= 2𝑥�̇� + 2𝑦 ̇𝑦 + �̇�

= 2𝑥 (−𝑥 + 𝑦 + 𝑦
2
) + 2𝑦 (−𝑥 − 𝑦)

+ (−2𝑧 − 𝑧𝑥
2
− 2𝑦
2
𝑥)

= −2𝑥
2
− 2𝑦
2
− 2𝑧 − 𝑧𝑥

2
< −2𝑉

1
,

(𝑥, 𝑦, 𝑧) ∈ 𝑄
1
,

�̇�
2,𝐸2

= 2𝑥�̇� + 2𝑦 ̇𝑦 − �̇�

= 2𝑥 (−𝑥 + 𝑦 − 𝑦
2
) + 2𝑦 (−𝑥 − 𝑦 − 𝑥𝑦)

+ (−2𝑧 − 4𝑦
2
𝑥) = −2𝑥

2
− 2𝑦
2
+ 2𝑧 = −2𝑉

2
,

(𝑥, 𝑦, 𝑧) ∈ 𝑄
2
.

(59)

All conditions of Theorem 20 are fulfilled and therefore
the considered switching system (56) is asymptotically sta-
ble and, moreover, exponentially asymptotically stable (see
Figure 6).

6. Conclusions

The stability of autonomous switched systems is investi-
gated. Some theorems giving sufficient conditions of stability,
asymptotic stability, or instability of switched systems are
established. Some results are similar to conditions of para-
metric stabilization or excitation of stable systems.
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Figure 6: Trajectory of switched system (56).
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