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The experiment was planned to investigate the tractor mounted N-sensor (Make Yara International) to predict nitrogen (N) for
wheat crop under different nitrogen levels. It was observed that, for tractor mounted N-sensor, spectrometers can scan about 32%
of total area of crop under consideration. An algorithm was developed using a linear relationship between sensor sufficiency index
(Sliensor) and SIgpyp to calculate the N, as a function of Slgp,p. There was a strong correlation among sensor attributes (sensor
value, sensor biomass, and sensor NDVI) and different N-levels. It was concluded that tillering stage is most prominent stage to
predict crop yield as compared to the other stages by using sensor attributes. The algorithms developed for tillering and booting
stages are useful for the prediction of N-application rates for wheat crop. N-application rates predicted by algorithm developed and

sensor value were almost the same for plots with different levels of N applied.

1. Introduction

Precision agricultural practices have significantly contributed
to the improvement of crop productivity and profitability.
It enhances farm input use efficiency and reduces environ-
mental impacts [1]. Today, precision agricultural practices
are providing farmers with valuable information, enabling
them to make the right decisions with respect to management
of crop inputs such as fertilizer, seed, pesticides, and water.
Among all Precision Crop Management activities, nitro-
gen management, which determines the optimal amount
of nitrogen (N) for a specific location based on the yield
potential, is the most frequently practiced operation. Efficient
nitrogen fertilizer management can be defined as managing
N fertilizer, so the crop uses as much of the applied nitrogen
as possible each year [2].

Plants normally contain 1-5% nitrogen by weight. Nitro-
gen generally has more influence on crop growth, yield,
and quality than any other nutrient commonly provided as
fertilizer to crops. Many farmers often use uniform rates of N
fertilizers based on expected yields (yield goal) that could be

inconsistent from field-to-field and year-to-year depending
on factors that are difficult to predict prior to fertilizer appli-
cation. Also, farmers often apply fertilizer N in doses much
higher than the blanket recommendations to ensure higher
crop yields. Large temporal and field-to-field variability of
soil N supply restricts efficient use of N fertilizer when broad
based blanket recommendations are used [3, 4]. A mismatch
between N supply and crop requirement can potentially
hamper crop growth or harm the environment, resulting
in low N use efficiency and economic losses. Plant N can
be estimated from tissue sampling, chlorophyll meter mea-
surements [5-7], and remote sensing [8-11]. Tissue sampling
for nitrogen availability is well documented and requires
considerable effort for sample collection and processing.
In addition, results are not immediately available. Nitrogen
fertility management encompasses four major components:
source, placement, timing, and rate [12]. To accomplish this,
producers must be aware of the various sources of N available
to the crop other than fertilizer and how to minimize N loss.
The total amount of N required must be determined from
reasonable estimates of yield, residual soil nitrate-nitrogen,



and soil organic matter followed by an evaluation of N credit
from other sources such as irrigation water, legumes, and
manure. Making accurate N fertilizer recommendations can
improve fertilizer efficiency, reducing unnecessary input cost
to producers and environmental impact of N losses. But it
is very difficult for a farmer to have account of all these N-
sources and losses. Measurement of real time N-uptake in
plants may be a solution.

Recently, optical sensing of crop canopy spectral
reflectance from ground, aircraft, and satellite-based
platforms on Normalized Difference Vegetation Index
(NDVI) has been proposed to identifying the crop nitrogen
(N) deficient portions in the fields. These instruments has
the potential to provide a fast, inexpensive, and accurate
estimate of plant biomass production and grain yield prior
to harvest, which would be beneficial for crop breeders
[13, 14]. Martin et al. [15] found that NDVI increased with
maize growth stage during the crop life cycle and a linear
relationship with grain yield was best at the V7-V9 maize
growth stages. This study also found that NDVT increased
until the V10 growth stage when a plateau was reached and
NDVI began to decrease after the VT growth stage. Shaver et
al. [16] found that NDVT is highly related to leaf nitrogen (N)
content in maize (Zea mays L.). Remotely sensed NDVI can
provide valuable information regarding in-field N variability
and significant relationships between sensor NDVI and
maize grain yield have been reported.

Leaf color charts for proper N-management have been
recommended in many countries but there are certain issues
in their adoption by the farmers. Green seeker, Crop circle,
Crop spec, and N-sensor are on-the-go sensing devices to
achieve variable-rate application of N fertilizer according
to site-specific field conditions. In the present study, the
responses of N-sensor (Make Yara International) under
variable levels of N availability were investigated for wheat
crop.

The tractor mounted N-sensor is one of the sensor
technologies which measures the level of light reflectance
by crop canopies using spectrometers. But, there is a need
to calibrate and develop an algorithm for N-application for
locally recommended varieties of wheat. It can measure crop
reflectance characteristics and calculate NDVI for develop-
ment of algorithms to calculate optimal N application rates.
In this paper, an algorithm is developed for converting sensor
measurement into N-application. The sensor algorithm is
based on a SPAD algorithm published by Varvel et al. [17] that
outlines the procedure for translating SPAD reading into N-
rate recommendation. The objectives of the present paper are

(1) to calibrate the tractor mounted N-sensor for estima-
tion of nitrogen and chlorophyll available in wheat
crop;

(2) to develop an algorithm for N-sensor based on SPAD
meter algorithm.

2. Material and Methods

2.1. Experimental Planning. Field experiments to investigate
the tractor mounted N-sensor for wheat crop under variable
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FIGURE 1: Field layout of the experiment.

nitrogen application rates were carried out at the Research
Farm of the Department of Farm Machinery and Power
Engineering, Punjab Agricultural University, Ludhiana. Soil
of experimental field was sandy loam in texture and normal
in pH, EC. For experiment, the university recommended
PBW550 wheat variety was selected. It was raised with 6
different nitrogen levels, that is, 0, 30, 60, 90, 120, and
150 kg N/ha. The crop was sown on 21 November 2012. The
experiment was carried out in randomized complete block
design with three replications (Figurel). The nitrogen in
form of urea (46% N) was applied in three doses as per
recommendation of the university (Table 1).

2.2. Description and Mounting of N-Sensor. The N-sensor
was mounted on the front of a multiutility vehicle (MUV)
developed in the department [18] at 1.6 m above the ground,
Figure 2. Data collection at all growth stages can be per-
formed by using MUV in crops due to having almost double
ground clearance compared to the normal tractor. It has also
narrow rear tyre width (20 cm), which causes lesser crop
damage. It has air conditioner cabin, providing the adequate
working temperature to the operator or sophisticated instru-
ments. Different sensors, like N-sensor, multispectral camera,
and so forth, can be mounted easily on this for collection
of real time data in standing field crops requiring a plant-
level spatial resolution. MUV can easily be lowered down to
operate as a normal tractor.

N-sensor consists of two diodes array spectrometers,
Figure 3. One spectrometer analyses crop light reflectance
received by four lenses with an oblique view on to the crop
(two on each side of the vehicle). The second spectrometer
is used to measure the irradiance of ambient light for
permanent correction of the reflectance signal to ensure
stable measurements with changing irradiance conditions.
Two strips can be scanned on both sides of the vehicle
during its movement in the crop. The N-sensor measures light
reflectance from the crop from four different angles. Mea-
surements are taken continuously with the system designed
to operate at normal working speeds. The N-sensor system
is connected to a GPS signal to allow location of sensor and
application information to be plotted enabling the production
of “biomass” and “nitrogen” application maps for the field.
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TABLE 1: Fertilizer in form of urea application timings and doses.
Treatments Dose (KgN/ha) Total (kgN/ha)
Basal (50%) At Ist irrigation (25%) At 2nd irrigation (25%)

N1 0 0 0 0

N2 15 7.5 7.5 30

N3 30 15 15 60

N4 45 22.5 22,5 90

N5 60 30 30 120

N6 75 375 375 150

(a)
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FIGURE 2: N-sensor (a) in wheat crop installed over the multiutility high clearance vehicle, (b) different parts with setup.
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FIGURE 3: Front geometry of N-sensor mounted over the vehicle.

One pass of the field scan was done for each plot in the
wheat fields. For each measurement, the field scan recorded
spectral information at all wavebands from 600 to 1100 nm
with 10 nm intervals. N-sensor scans were done at Tillering

(Growth stage: 55DAS or 28 for N-sensor), Booting (growth
stage: 85DAS or 36 for N-sensor) and ear emergence (growth
stage: 115DAS or 50 for N-sensor) stages of crop growth.

The nitrogen and biomass status of crop were also mapped
during scanning of crops at different growing period based on
spectral reflectance measurement.

2.3. Geometry of N-Sensor. The area scanned by the N-sensor
depends on the height of mounting over the tractor. In
present case, N-sensor was mounted at 1.6 m height from the
ground. Equations (1) [19] can be obtained through which
area sensed by the N-sensor can be calculated as follows
(Figure 3):

B é htan 58°

= 0.5d + 1.13h,
175 + )7 +

o n o
= 2 T 544 194,

2 @Y

where d is length of the sensor rig (2.0 m), his height of sensor
rig, X, is inner point of sensed area, X, is outer point of
sensed area, y is width of sensed area, m (X, — X,), and h
is height of sensor mounting, 1.6 m.
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TABLE 2: Pearson correlation coefficients among different sensor attributes and Lab N at different growing stages of crop.

Relationship between Tillering Booting Ear emergence Overall

Sensor value and Lab N 0.85 0.63 0-64 0.68
<0.001 <0.001 <0.001

Sensor biomass and Lab N 0.87 0.610 0.57 0.58
<0.001 0.0067 0.0132

Sensor NDVI and Lab N 0.90 0.49 0-41 0.34
<0.001 0.0364 0.0872

TABLE 3: Pearson correlation coefficients among different sensor attributes and Lab Chl at different growing stages of crop.

Relationship between Tillering Booting Ear emergence Overall

Sensor value and Lab Chl 082 081 0.67 0.63
<0.001 <0.001 <0.001

Sensor biomass and Lab Chl 0.79 079 072 0.65
<0.001 <0.001 <0.001

Sensor NDVI and Lab Chl 07> 0.67 0.6l 0.58
<0.001 <0.001 <0.001

From (1), X; =2.831mand X, =4.143m,y = X,- X, =
1.32 m, total width on both sides of tractor = 8.28 m, and total
width of scan by spectrometers = 2.64 m.

When sensor was mounted at height (h) of 1.6 m, it is
scanning width of (y) 1.32m or 2.64m on both sides of a
tractor covering total width 8.28 m. It means spectrometers
can scan about 32% of total area of crop under consideration.

2.4. N-Sensor Calibration. Tractor mounted N-sensor was
calibrated at three important crop growth stages, that is,
tillering, booting, and ear emergence. Tractor mounted with
N-sensor was operated in plots having different N treatments,
that is, 0, 30, 60, 90, 120, and 150 kg N/ha. Different sensor
attributes like sensor SN values, biomass data, and most
common Normalized Difference Vegetation Index (NDVI)
were determined from the N-sensor spectral data collected
in the range of 400-1050 nm measured during the field
calibration.

2.5. Agronomic Data Collection. The data for various param-
eters like total chlorophyll and nitrogen content were mea-
sured in laboratory at different growth stages like tiller-
ing, booting, and ear emergence of crop and at the same
time N-sensor data was also recorded. The chlorophyll
content was estimated according to the method of Hiscox
and Israelstam [20] using dimethyl sulphoxide (DMSO)
chemical in laboratory conditions. Nitrogen present in the
plant leaves was calculated by using titration method in
laboratory.

2.6. Development of Sensor Algorithm. By establishing a
reference strip, sensor readings can be collected under near
perfect conditions (in terms of crop health). These readings
are considered the optimum sensor reflectance value, a value
at which no additional N is required. From these sensor

readings a “Sufficiency Index” (SI) can be calculated using the
following equation:

SI = Target Reflectance @)

" Reference Reflectance’

The SI value is a measure of N sufficiency. An SI value of 1
means the crop is N sufficient and no N is needed, and an SI
value of less than 1 means the crop is deficient and additional
N is required (more N needed as the SI value decreases). For
example, if the reference strip reflectance value is more target
area reflectance value is low. When SI value is calculated it
will be small, meaning the target area is N deficient and more
N will be required.

The procedures for development of sensor algorithm
for translating sensor readings into N applications (3) are
outlined as follows:

. _ NDVI
sensor NDVI — NDVIN eference .

(©)
Normalizing sensor data to a well fertilized reference plot
allows the estimation of the crop’s ability to respond to
applied N and serves to normalize data to a particular
environment. This algorithm was to be developed on the
SPAD based framework [17]; the generalized and specific
equations form of the quadratic (second order polynomial)
response functions are

2
SISPAD =dy t+ap * Nrate ta, * (Nrate) . (4)

For (4), the ay, a,, a, coeflicients represent the intercept,
linear, and quadratic terms, respectively, and the response
portion of the equation can be solved for N rate as follows:

0~ (\/“12 — 4a, (a, - SISPAD)) (5)
Niate (SIspap) = 20 :
2
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TABLE 4: Pearson correlation coefficients among sensor attributes at different growth stages and crop yield.

Relationship between Tillering Booting Ear emergence
Sensor value and yield 0-94 0-85 085
<0.001 <0.001 <0.001
Sensor biomass and yield 0-94 0-85 085
<0.001 <0.001 <0.001
Sensor NDVT and yield 0.92 087 072
<0.001 <0.001 0.0006
In this case, yield maximizing N.,,. can be found as 1.2
Ipap) = — !
Niare (max Slgpyp) = a0 (6)
a;
. 0.8
For (6), the N, that corresponded to the maximum SIgp,
measurement is 150kgNha™' (Figure 4). An appropriate 2 06
nitrogen application rate (N,y,,) for any Slgp,, measurement =
below maximum (max SIgpypp) can then be found as follows: 0.4
Napp = Nrate (max SISPAD) - Nrate (SISPAD) . (7) 02
Next, the method for converting sufficiency indices that are 0
. 0 30 60 90 120 150
based on the canopy sensor measurements (Sl or Npv1) IO
SIgpap measurements for input into the SPAD algorithm is N rate (kg N/ha)
illustrated. Solari et al. [21] demonstrated a linear association — Tillering y = —0.00013x> + 0.2649x — 0.047
between Slgpapy and Sl ., illustrating its general form as R* = 0.997
—— Booting y = ~0.0006x7 + 0.003x + 0.542
SISPAD = b() + bl * SIsensor' (8) 87 R? = 0.995

For (8), by, by coeflicients represent the y intercept and linear
terms, respectively. Using the same data set, the following
specific equation was determined for Slypy;. Equation (8)
was used in development of the sensor algorithm, which
hereafter is referrred to as Sl After substituting (5),
(6), and (8) into (7), the following generalized parametric
function can be derived:

Napp =R \/ SIR - SIsensor’ (9)

where R and SI terms can be solved for using the following
equations:

(10)

Quadratic response model from regression analyses of rela-
tive chlorophyll meter readings (SIgpsp) and N fertilizer rate
at tillering and booting stages of wheat crop are shown in
Figure 4. Relationships between relative variations in sensor
determined vegetation indices (SIypy;) and variation in
relative chlorophyll meter (SIgp,p) readings for data collected
at tillering and booting stages are given in Figure 5.

For Tillering Stage. From Figures 4 and 5,

SIgpap = —0.047 + 0.2649N,.,, — 0.00013 (N, )’

rate
(11)
SIspap = —0.0056 + 1.0461 * SI.. .. NDVI-

FIGURE 4: Quadratic response model from regression analyses of
relative chlorophyll meter readings (SIgpsp) and N fertilizer rate at
tillering and booting stages.

Substitution of coefficients from (11) into (9) results in the
sensor algorithm taking the following specific form:

N,y = 87.171/1.35 = ST - (12)

For Booting Stage. Again from Figures 4 and 5,

Slipap = 0.542 + 0.003Npue = 00006 (Npwe)*
SIgpap = —0.608 + 1.616 * SI...... NDVI-

Substitution of coefficients from (13) into (9) results in the
sensor algorithm taking the following specific form:

N,pp = 51.894/1.33 = SL_ - (14)

2.7. N-Recommendation. N-recommendation at tillering and
booting stages of crop growth was given in two ways, first
on the basis of sensor value (SN) values measured during
the calibration of N-sensor and second on the basis of
algorithm developed in Section 2.6. In algorithm developed,
N,,p (N-application) rate can be determined through input
of Sl sor Values into the simplified equations (12) and (14) for
tillering and booting stages, respectively, which represents the
algorithm for translating sensor reading into N-application
rates based on crop N sufficiency.
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2.8. Statistical Analysis. Various data sets were statistically
analyzed by general linear model (GLM) procedure by using
SAS software 9.3. All possible pairs of treatment means were
compared at 5% level of significance. Pearson’s correlation
coeflicients (r) among variables were determined by the
CORR procedure in the SAS system (SAS Institute, Cary, NC,
USA).

3. Results and Discussion

Tractor mounted N-sensor was calibrated for the determi-
nation of N and chlorophyll content available in wheat crop
at different growth stages, that is, tillering, booting, and
ear emergence. The relationships among different sensor
attributes like sensor values (SN), biomass data of the crop,
and NDVI calculated from the sensor spectral data were
established with N and chlorophyll content in the leaves of
crop. Results are discussed regarding the N-recommendation
for wheat crop on the basis of sensor values and algorithm
developed in the study.

3.1. Relationship among N-Sensor Attributes with Different
N-Application Rate. Figure 6 shows the sensor values (SN)
obtained with different nitrogen treatments in wheat crop at
its different growth stages. Increasing sensor value from date
to date at a given N rate and more distinct differences between
N rates at the different growth stages reflect the growth and
N uptake pattern of the crop. There was a strong polynomial
relationship between sensor value (SN) and N-treatments
with coeflicients of determination ranging from 0.90 to 0.96
(P < 0.001).

The relationships between sensor biomass values across
N application rates at different growth stages are shown in
Figure 7. There was also a strong polynomial relationship
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FIGURE 6: Sensor values for different N-treatments at different crop
growth stages.
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FIGURE 7: Biomass values for different N-treatments at different crop
growth stages.
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FIGURE 9: Correlations between NDVT calculated from N-sensor
data and Lab N at different crop growth stages.

between sensor biomass values and N-treatments with coef-
ficients of determination ranging from 0.94 to 0.98 (P <
0.001).

The NDVI calculated from sensor spectral data across
N application rates at different growth stages are shown in
Figure 8. However, it was determined that coefficients of
determination of NDVI with applied N rate would be the
best indicator of sensor performance, and thus comparisons
were based on this analysis. At all wheat growth stages, sensor
showed increasing NDVI values for different N-levels. There
was also strong polynomial relationship between NDVI and
N rates with coefficients of determination ranging from 0.98

—_
(=}

Sensor biomass
[ R [ 38} w > 192 BN N e - BN

0 0.5 1 1.5 2 25 3
Lab N (%)
o T y=08535x+0.3423x + 1.0434
R? = 0.7665
o B y=14284x% —2.2928x +4.2113
R? = 0.6195
EE ¥y =12775x% = 2.736x + 6.7531
R? = 0.7054

FiGURE 10: Correlations between sensor biomass and Lab N at
different crop growth stages.

t0 0.99 (P < 0.001). This is in accordance with many studies
conducted to recommend N on the basis of NDVI calculated
from crop reflectance data.

3.2. Relationship among N-Sensor Attributes and Different
Crop Growth Parameters. The correlation coeflicients cor-
responding to the relationships between NDVI calculated
from N-sensor data, biomass value given by sensor, sensor
value (SN) with plant N concentration, chlorophyll content
of leaves at three growth stages, and yield were obtained from
experiments. These relationships have been discussed in the
following subheads.

3.2.1. Relationship among N-Sensor Attributes and Lab N.
Pearson correlation coefficients (PCC) between Lab N and N-
sensor attributes were more at tillering stage as compared to
the values at booting and ear emergence stages of crop growth
(Table 2). The Pearson correlation coefficients between sensor
biomass with Lab N were higher for tillering stage, that is,
0.87. Similarly, the correlation coeflicient between NDVI of
sensor and Lab N was higher for tillering stage, that is, 0.90.
The correlation coefficient between sensor value and Lab N
was higher for first stage, that is, 0.85. There were also good
polynomial relationships between sensor attributes and Lab
N (Figures 9, 10, and 11) especially at tillering stage. Sensor
attributes are well correlated with Lab N at tillering stage as
compared to the booting and ear emergence stages of the crop
growth. Correlation among N-sensor attributes and Lab N
for complete crop growth is also shown in Figure 12. Overall
sensor value is a good indicator for the Lab N prediction at
all growth stages of the crop.

3.2.2. Relationship among N-Sensor Attributes and Lab Chl.
Pearson correlation coeflicients between N-sensor attributes
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FIGURE 12: Correlations between different N-sensor attributes and Lab N for complete crop growth.

and Lab Chl were ranging from 0.61 to 0.82 at all growth
stages of crop. The Pearson correlation coefficient between
sensor value and Lab Chl was higher for both tillering and
booting stage, that is, 0.82 and 0.81. The correlation between
sensor biomass and Lab Chl decreased with the growth stages.
The coeflicient values were 0.79, 0.79, and 0.72 for tillering,

booting, and ear emergence stages, respectively. The sensor
NDVI value correlation with Lab Chl was having values of
PCC 0.75, 0.67, and 0.61 at tillering, booting, and ear emer-
gence stages, respectively (Table 3). Polynomial relationships
between sensor attributes and Lab Chl are shown in Figures
13, 14, and 15. Figures indicate that the relationships among
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different sensor attributes are poorly correlated with Lab Chl
data as compared with Lab N data. Correlation among N-
sensor attributes and Lab Chl or complete crop growth is also
shown in Figure 16. Overall sensor value is a good indicator
for prediction of Lab Chl at all growth stages of the crop.

3.2.3. Relationship among N-Sensor Attributes and Crop Yield.
Correlation between yield and sensor attributes at different

9
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FIGURE 15: Correlations between NDVI calculated from N-sensor
data and Lab Chl at different crop growth stages.

growth stages of crop is shown in Table 4. Table indicates
that there is a good correlation between sensor attributes and
yield at all growth stages of the crop. But tillering stage is
most prominent stage to predict crop yield as compared to
the other stages by using sensor attributes.

3.3. Nitrogen Application/Recommendation

3.3.1. Based upon Sensor Algorithm. N-application (N,
rate) as a function of different N-treatments using N-sensor
algorithm developed for tillering and booting stages is shown
in Figure 17. It is clearly indicated that algorithm developed
for tillering and booting stages is useful for the prediction of
N-application rates for wheat crop. Figure shows that during
tillering stage 95 kg N/ha should be applied to the plot having
0 kg N/ha and 42 kg N/ha should be applied to the plot with
150 kg N/ha. Similarly at booting stage 42kgN/ha is to be
applied in plot with 0kgN/ha and 25kgN/ha should be
applied in plot already having 150 kg N/ha.

3.3.2. Based upon Sensor Value. N-application (N,,,) rates on
the basis of N-sensor values (SN) during tillering and booting
stages of wheat crop are shown in Figure 18. Figure shows that
with the increase in sensor values N-applied rate decreases.
During tillering stage, 75 kg N/ha should be applied in the
plot having 0kgN/ha corresponding to the sensor values
ranging from 7 to 11 as compared to 45kgN/ha which
should be applied in the plot with 150 kg N/ha corresponding
to the sensor values ranging from 33.1 to 37 Similarly at
booting stage, 40kgN/ha is to be applied in plot with
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FIGURE 16: Correlations between different sensor attributes and Lab Chl for complete crop growth.
100 4. Conclusions
90
30 (i) For tractor mounted N-sensor, spectrometers can
= 70 scan about 32% of total area of crop under considera-
§ 60 tion.
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reatments (iv) Study indicates that the relationship among different
—— Tillering stage sensor attributes is poorly correlated with Lab Chl
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FIGURE 17: N-application (N, rate) as a function of different N-
treatments using N-sensor algorithm during tillering and booting
stages.

0kgN/ha corresponding to SN values ranging from 17 to 24
as compared to 25 kg N/ha which should be applied in plot
already having 150 kg N/ha with SN values 76.1-84.

It is clear that N-application rates based upon algorithm
and sensor value methods were in consonance. Both of the
methods predicted almost the same application rates for plots
with different levels of N applied.

(v) It was concluded that there is a good correlation
between sensor attributes and yield at all growth
stages of the crop. But tillering stage is most promi-
nent stage to predict crop yield as compared to the
other stages by using sensor attributes.

(vi) The algorithms developed for tillering and booting
stages are useful for the prediction of N application
rates for wheat crop.

(vii) N-application rates predicted by algorithm developed
and sensor value were almost the same for plots with
different levels of N applied.
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FIGURE 18: N-application (N

Abbreviations
CCI:

app

) rate on the basis of N-sensor values (SN) during tillering and booting stages of wheat crop.

(2]

Chlorophyll Concentration Index

Lab N: Nitrogen in leaves of wheat determined in

laboratory 3]
CC:  Chlorophyll content in leaves of wheat

determined in laboratory
PC:  Pearson’s coefficient
RCBD: Randomized completely block design (4]
N: Nitrogen
T Tillering stage
B: Booting stage 5]
EE: Ear emergence stage.
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