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Recently, the Edgeworth expansion up to order 4 was used to represent the convolutional noise probability density function (pdf)
in the conditional expectation calculations where the source pdf was modeled with the maximum entropy density approximation
technique. However, the applied Lagrange multipliers were not the appropriate ones for the chosen model for the convolutional
noise pdf. In this paper we use the Edgeworth expansion up to order 4 and up to order 6 to model the convolutional noise pdf.
We derive the appropriate Lagrange multipliers, thus obtaining new closed-form approximated expressions for the conditional
expectation and mean square error (MSE) as a byproduct. Simulation results indicate hardly any equalization improvement with
Edgeworth expansion up to order 4 when using optimal Lagrange multipliers over a nonoptimal set. In addition, there is no
justification for using the Edgeworth expansion up to order 6 over the Edgeworth expansion up to order 4 for the 16QAM and
easy channel case. However, Edgeworth expansion up to order 6 leads to improved equalization performance compared to the
Edgeworth expansion up to order 4 for the 16QAM and hard channel case as well as for the case where the 64QAM is sent via an
easy channel.

1. Introduction

In this work, we deal with the convolutional noise arising
at the output from a blind deconvolutional process. A blind
deconvolution process arises in many applications such as
seismology, underwater acoustic, image restoration, and dig-
ital communication [1]. Consider the digital communication
case. During transmission, a source signal undergoes a con-
volutive distortion between its symbols and the channel
impulse response.This distortion is referred to as intersymbol
interference (ISI) [2]. Thus, a blind adaptive filter is used to
remove the convolutive effect of the system to produce the
source signal [2]. This process is called blind deconvolution.
Since the updated coefficients used in the blind adaptive filter
are not the ideal values, a noise named convolutional noise
occurs at the output of the deconvolution process in addition
to the source signal. Blind deconvolution algorithms based
on adaptive filtering techniques generate an estimate of the
desired response by applying a nonlinear transformation to
sequences involved in the adaptation process [1, 3]. The

Bussgang algorithm is one of the three important families of
blind equalization algorithms,where the nonlinearity is in the
output of the adaptive equalization filter [1, 3]. According to
[4, 5], we may find among the traditional Bussgang-type
methods the Sato’s [6], Godard’s [7], Benveniste et al. [8],
Besnveniste-Goursat’s [9], and the Stop-and-Go [10] algo-
rithm. For Bussgang-type methods, the nonlinearity is
designed to minimize a cost function based on high-order
statistics (HOS) according to one approach [6, 7], or calcu-
lated directly according to the Bayes rules [11–15]. According
to [1, 3], the main difference between the Bussgang type
algorithms lies in the choice of the memoryless nonlinearity.
Obviously, the performance of this kind of blind equalizer
depends substantially on the memoryless nonlinearity [1].
Chapter eight in [5] deals with the question whether the cho-
sen equalizer leads to perfect equalization performance from
the MSE point of view. From the work in [1] we know that
if the MSE tends to zero, then also the residual ISI tends to
zero (perfect equalization). Furthermore, chapter eight in [5]
distinguishes between the MSE obtained from the cost
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function approach and the MSE obtained from the Bayesian
approach. According to chapter eight in [5], the MSE related
to the Bayesian approach valid in the convergence state,
where the convolutional noise is very small, is approximately
given by the convolutional noise power (variance of the
convolutional noise) multiplied by a constant. To show this
outcome the approximated MSE obtained in [1] was recalled
in this chapter [5]. Also the approximated MSE obtained in
[16] could have been used for showing that theMSE related to
the Bayesian approach valid in the convergence state, where
the convolutional noise is very small, is approximately given
by the convolutional noise power multiplied by a constant.
The only difference between the approximated expression
for the MSE obtained in [16] and that in [1] is the value
of the constant multiplying the convolutional noise power.
In [1] this constant is approximately equal to one regardless
of the constellation input, while in [16] this constant is
constellation input dependent and is approximately equal to
two for the 16QAM input. This paper also adheres to the
Bayesian approach where the approximated MSE is devel-
oped as a byproduct. We will show in this paper that the
approximated MSE valid in the convergence state, where the
convolutional noise is very small, is approximately given by
the convolutional noise power multiplied by a constant. This
constant is constellation input independent, and is approxi-
mately equal to one in addition to higher order statistics of the
convolutional noise such as the kurtosis. For the case where
the convolutional noise pdf is assumed to be Gaussian, our
new approximated MSE tends to the expression obtained in
[1].

Next we turn to the approximatedMSE related to the cost
function approach where the derivation of the cost function
with respect to the equalized output signal is a polynomial
function of the equalized output signal as is in Godard’s case
[7], for example. For that case, the approximated MSE is
approximately equal to a constant in addition to another
constant multiplied with the convolutional noise power [5].
Since those constants are constellation input dependent, the
approximated MSE may not tend to zero when the convo-
lutional noise power tends to zero unlike in the Bayesian
approach. For example, let us consider the 16QAM input and
Godard’s [7] algorithm (cost function approach).The residual
MSE for that case is not zero even when the convolutional
noise power tends to zero while this is not the case for the
Bayesian approach [1].

In the literature, we find many blind adaptive algorithms
based on the cost function approach (e.g [7, 17–20]), while
only a few are based on Bayes rules.The reason may lie in the
fact that for the latter case (algorithm based on Bayes rules),
the conditional expectation (the expectation of the source
signal given the equalized output signal) has to be calculated.
But, this task might be difficult because: (i) the source pdf
might be non-Gaussian, and might not be known. In addi-
tion, the expression for the conditional expectation should
hold for a wide range of source pdfs and not only for a specific
source. (ii) No model is available for the convolutional noise
pdf that is valid for the whole deconvolution process. Thus,
without having the source and convolutional noise pdfs
the derivation of the conditional expectation seems to be

impossible. According to [1] the conditional expectation was
derived for non-Gaussian sources by Bellini [11, 12], Fiori [13,
14] and Haykin [15]. However, all the mentioned expressions
for the conditional expectation [11–15] are suitable only for
uniformly distributed source signals. Thus they cannot cope
with a source having a general pdf shape [1]. In addition, the
works in [11–15] modeled the convolutional noise pdf as
Gaussian. Recently ([1, 16]), two closed-form approximated
expressions were obtained for the conditional expectation
where the source pdf was approximated with the maximum
entropy density estimation technique and Edgeworth Expan-
sion series, respectively.Those expressions for the conditional
expectation ([1, 16]) do not impose any restrictions (except of
even symmetric) on the pdf of the unobserved input
sequence. Hence they are suitable for a wider range of
source pdf compared with Bellini’s [11, 12], Fiori’s [13, 14], or
Haykin’s [15] expression. In [1, 16], the Laplace integral
methodwas needed for approximating the integrals involving
in the conditional expectation calculations. In addition, in
both cases ([1, 16]), the convolutional noise pdf was assumed
to be Gaussian for the whole deconvolution process as was
assumed in [11–15]. But, according to Haykin [15], in the
early stages of the iterative deconvolution process, the ISI is
typically large with the result that the data sequence and
the convolutional noise are strongly correlated. Furthermore,
the convolutional noise sequence is more uniform than
Gaussian [21]. The maximum entropy algorithm [1], where
the conditional expectation was calculated with the maxi-
mumentropy density approximation technique andGaussian
model for the source signal and convolutional noise pdf,
respectively, has shown to have improved equalization per-
formance compared with the classical methods ([22] (RCA
algorithm), [7, 9, 13, 17, 18, 23, 24]). However, probably amore
appropriate model for the convolutional noise pdf than the
choice of the Gaussian one might lead to improved equal-
ization performance compared to the results presented in
[1]. The first attempt to characterize the convolutional noise
pdf different than the Gaussian model was introduced in [5].
Here the conditional expectationwas approximately obtained
by approximating the source and convolutional noise pdf
with themaximum entropy density approximation technique
and Edgeworth expansion series up to order four, respec-
tively. An unknown pdf may be approximated with three
types of orthogonal expansions using the Hermite polyno-
mials, namely, the Gram-Charlier of type A, Gauss-Hermite,
and Edgeworth expansions [4, 25]. According to [4, 25–
27], the Edgeworth expansion is much more useful in many
applications, since it is directly connected to themoments and
cumulants of a pdf (the property which is lost in the Gauss-
Hermite series). It is also a true asymptotic expansion, so
that the error of the approximation is controlled (a property
which is not found in the Gram-Charlier of type A) [4, 25].
Thus, Edgeworth expansion up to order 6 will describe the
unknown pdf better than Edgeworth Expansion up to order
four. The idea of approximating a non-Gaussian signal is
not new in the literature. As a matter of fact, we may find
several works [28–32] dealing with pdfs applicable for the
non-Gaussian case but encompass also the Gaussian model.
However, the idea of modeling the convolutional noise pdf,
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which is changing in time, different than the Gaussian pdf
is quite new and was introduced at the first time in [5].
Here the convolutional noise pdf was modeled with the
Edgeworth expansion series up to order four and the source
signal was approximated with the maximum entropy density
approximation technique.

The maximum entropy density approximation technique
involves Lagrange multipliers which have to be defined;
otherwise, this approximation is not applicable. However,
according to [1], finding the Lagrange multipliers is not an
easy task. In some cases, an analytical solution for the
Lagrange multipliers does not exist (please refer to [1] for
more details). In order to overcome the problem, the approx-
imated MSE was derived in [1] and the required Lagrange
multipliers were those Lagrange multipliers that lead the
approximated MSE to minimum. Note that those Lagrange
multipliers [1] were obtained assuming a Gaussian model
for the convolutional noise pdf, but were also applied in [5]
where the conditional expectation was calculated using the
Maximum entropy density approximation technique and
Edgeworth expansion series up to order four for the source
signal and convolutional noise pdf, respectively even though
those Lagrange multipliers are not the optimal set for that
case. Although those Lagrange multipliers were not the
appropriate set for [5], improved equalization performance
was obtained with the new approximated expression for the
conditional expectation introduced in [5] compared to the
conditional expectation obtained in [1]. Note that the only
difference between those expressions ([1, 5]) was the chosen
model for the convolutional noise pdf that was taken in the
conditional expectation calculations. Thus, it is probable that
even more improved equalization performance may be
obtained, if the appropriate Lagrange multipliers are applied
in [5] and the Edgeworth expansion series up to order six are
used instead of order four for the convolutional noise pdf. But
to apply the appropriate Lagrange multiplier in [5], we must
first derive the MSE related to the conditional expectation
that uses the maximum entropy density approximation tech-
nique for the source signal pdf and the Edgeworth expansion
series up to order four and six for the convolutional noise
pdf. Hitherto, this derivation has not been done. Further-
more, the approximated conditional expectation has not been
derived where the source signal and the convolutional noise
pdf are approximated with the maximum entropy density
approximation technique and Edgeworth expansion series up
to order six, respectively.

In this paper we derive the appropriate set of Lagrange
multipliers where the source signal and convolutional noise
pdf are approximated with the maximum entropy density
approximation technique and Edgeworth expansion series up
to order four and six, respectively. We derive new approxi-
mated expressions for the conditional expectation and MSE
where the source signal and convolutional noise pdf are
approximated with the maximum entropy density approx-
imation technique and Edgeworth expansion series up to
order six, respectively. In this paperwe test the effect of the use
of the optimal set of Lagrange multipliers to the equalization
performance. Furthermore, we examine whether increasing
the series order in the Edgeworth Expansion can supply
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Figure 1: System description.

even more improved equalization performance compared to
those already presented in [5] where we saw significant equal-
ization performance improvement compared to the max-
imum entropy algorithm [1]. We also assess whether the
increase in the series order is justified given the increase in the
complexity of the algorithm.

Thepaper is organized as follows. In Section 2we describe
the system under consideration, and in Section 3 we present
the new model for the convolutional noise pdf, closed-form
approximated expressions for the conditional expectation,
MSE, and Lagrange multipliers. Simulation results are given
in Section 4, and Section 5 is our conclusion.

2. System Description

The system is illustrated in Figure 1, where we make the same
assumptions as in [1]:

(1) the input sequence 𝑥[𝑛] has an even symmetric
probability distribution function with zero mean.
𝑥[𝑛]may be a real or a complex variables (where real
and imaginary parts of 𝑥[𝑛] are independent);

(2) the unknown channel ℎ[𝑛] can be a nonminimum
phase linear time-invariant filter with no deep zeros
(the zeros lie sufficiently far from the unit circle);

(3) 𝑐[𝑛] is a tap-delay equalizer;
(4) 𝑤[𝑛] is an additive Gaussian white noise;
(5) 𝑇[] is a memoryless nonlinear function.

The input sequence 𝑥[𝑛] is transmitted through the
channel ℎ[𝑛] and is corrupted with noise𝑤[𝑛]. Therefore, the
equalizer’s input sequence 𝑦[𝑛]may be written as

𝑦 [𝑛] = 𝑥 [𝑛] ∗ ℎ [𝑛] + 𝑤 [𝑛] , (1)

where “∗” denotes the convolution operation.
From [1], the equalized output signal may be defined as

𝑧 [𝑛] = 𝑥 [𝑛] + 𝑝 [𝑛] + 𝑤 [𝑛] , (2)

where 𝑝[𝑛] is the convolution noise arising from the differ-
ence between the ideal value of 𝑐[𝑛] and the initial guess of
𝑐[𝑛], 𝑐𝑔[𝑛] and𝑤[𝑛] represents the convolution between𝑤[𝑛]
and 𝑐𝑔[𝑛].
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The ISI is often used as a measure of performance in
equalizer applications, as defined by Pinchas and Bobrovsky
[1]:

ISI =
Σ𝑛
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where |𝑠|max is the maximum absolute value of the convolu-
tion between ℎ[𝑛] and 𝑐𝑔[𝑛] (𝑠𝑛 = 𝑐𝑔[𝑛] ∗ ℎ[𝑛]).

Next we consider the adaptationmechanism of the equal-
izer. According to Figure 1, we define 𝑑[𝑛] as an estimator of
𝑥[𝑛], which is produced by the function 𝑇[𝑧[𝑛]].

Thus the error signal is

𝑒 [𝑛] = 𝑇 [𝑧 [𝑛]] − 𝑧 [𝑛] . (4)

The adaptive mechanism uses this error to update the equal-
izers taps [33]:

𝑐eq [𝑛 + 1] = 𝑐eq [𝑛] + 𝜇 ⋅ 𝑒 [𝑛] 𝑦
∗
[𝑛] , (5)

where (⋅)∗ is the conjugate operation on (⋅), 𝜇 is the step-size
parameter, and 𝑐eq[𝑛] is the equalizer vector where the input
vector is 𝑦[𝑛] = [𝑦[𝑛] ⋅ ⋅ ⋅ 𝑦[𝑛 − 𝑁 + 1]]

𝑇 and𝑁 is the equal-
izer’s tap length. The operator (⋅)𝑇 denotes the transpose of
the function [⋅]. The conditional expectation [𝐸[𝑥[𝑛] | 𝑧[𝑛]],
where𝐸[⋅] stands for the expectation operation, is considered
as a good estimate of 𝑇[𝑧[𝑛]] [3]. In the following, 𝑇[𝑧[𝑛]] is
represented by the conditional expectation as was done in [1].

3. New Model for the Convolutional Noise pdf

In this section we describe the proposed model for the
convolutional noise pdf which is based on the Edgeworth
expansion. It differs from the Gaussian model but can turn
under some conditions back to the Gaussian model as
will be shown in this section. In Section 3.1 we derive the
conditional expectation based on the new proposed model
for the convolutional noise pdf. In Section 3.2 we present the
new Lagrange multipliers via the MSE expression. It should
be pointed out that we are not trying to find or propose a new
expression for the conditional expectation but rather trying
to show via the conditional expectation whether the new
proposed model for the convolutional noise pdf (Edgeworth
expansion of orders four and six) can lead to improved
equalization performance with optimal Lagrangemultipliers.
The convolutional noise pdf for the real valued case may be
defined as
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where ! represents factorial, the convolution noise 𝑝[𝑛] is
defined as𝑝, and𝜎2

𝑝
is the variance of the convolutional noise.

𝐻𝑟(𝑝/𝜎𝑝) are normalized Hermite Polynomials of order
𝑟 described in [34] and presented in Appendix A as
𝐻𝑟(𝜁). 𝐾𝑟(𝑝/𝜎𝑝) are the one-dimensional central cumulants

in terms of central moments described in [34, Table 3], and
are also presented in Appendix A.

Thus, (6) up to order 6 becomes
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where according to Appendices A and B we have
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So, with the help of (8), (7) becomes

𝑓𝑝 (𝑝) ≅

exp (−𝑝2/2𝜎2
𝑝
)

√2𝜋𝜎𝑝

×
[

[

1+ (

𝐸 [𝑝
4
] − 3(𝜎

2

𝑝
)

2

4!(𝜎
2
𝑝
)

2
)(

𝑝
4

(𝜎
2
𝑝
)

2
−

6𝑝
2

𝜎
2
𝑝

+ 3)

+(

𝐸 [𝑝
6
] − 15 (𝜎

2

𝑝
) 𝐸 [𝑝

4
] + 30(𝜎

2

𝑝
)

3

6!(𝜎
2
𝑝
)

3
)

×(

𝑝
6

(𝜎
2
𝑝
)

3
−

15𝑝
4

(𝜎
2
𝑝
)

2
+

45𝑝
2

(𝜎
2
𝑝
)

− 15)
]

]

.

(9)



Mathematical Problems in Engineering 5

According to (7) and (8) the convolutional noise pdf based
on the Edgeworth expansion of order 4 can be obtained (by
resetting the last product in (7)) as
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According to Haykin [15] a Gaussian convolutional noise
pdf model is only applicable in the latter stages of the
deconvolution process when the process is close to optimal.
This is reflected in our model (6) when the expressions in the
parentheses are close to one thus getting back to the expres-
sion that describes a Gaussian distribution:

𝑓𝑝 (𝑝) ≅

exp (−(𝑝)2/2𝜎2
𝑝
)

√2𝜋𝜎𝑝

. (11)

3.1. The Approximated Expression for the Conditional Expec-
tation. In this subsection we use our new model for the con-
volutional noise pdf to calculate the conditional expectation.

Theorem 1. For the following assumptions:

(1) the source signal 𝑥[𝑛] is an independent signal with
known variance and higher moments. In the following
we denote 𝑥[𝑛] as 𝑥,
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where

𝑧 = 𝑧1 + 𝑗𝑧2; 𝑥 = 𝑥1 + 𝑗𝑥2
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𝑘

𝑠
)

× [
1 +

𝐾4 (𝑝/𝜎𝑝)𝐻4 (𝑝/𝜎𝑝)

4!

+

𝐾6 (𝑝/𝜎𝑝)𝐻6 (𝑝/𝜎𝑝)

6!

]]}

𝑥
𝑠
=𝑧
𝑠

,

𝑔
󸀠󸀠󸀠󸀠
(𝑧𝑠) = {

𝑑
4

𝑑𝑥
4
𝑠

[ exp(
𝐾

∑

𝑘=0

𝜆𝑘𝑥
𝑘

𝑠
)

× [
1 +

𝐾4 (𝑝/𝜎𝑝)𝐻4 (𝑝/𝜎𝑝)

4!

+

𝐾6 (𝑝/𝜎𝑝)𝐻6 (𝑝/𝜎𝑝)

6!

]]}

𝑥
𝑠
=𝑧
𝑠

,

𝑔
󸀠󸀠

1
(𝑧𝑠) = {

𝑑
2

𝑑𝑥
2
𝑠

[𝑥𝑠 exp(
𝐾

∑

𝑘=0

𝜆𝑘𝑥
𝑘

𝑠
)

× [
1 +

𝐾4 (𝑝/𝜎𝑝)𝐻4 (𝑝/𝜎𝑝)

4!

+

𝐾6 (𝑝/𝜎𝑝)𝐻6 (𝑝/𝜎𝑝)

6!

]]}

𝑥
𝑠
=𝑧
𝑠

,
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𝑔
󸀠󸀠󸀠󸀠

1
(𝑧𝑠) = {

𝑑
4

𝑑𝑥
4
𝑠

[𝑥𝑠 exp(
𝐾

∑

𝑘=0

𝜆𝑘𝑥
𝑘

𝑠
)

× [
1 +

𝐾4 (𝑝/𝜎𝑝)𝐻4 (𝑝/𝜎𝑝)

4!

+

𝐾6 (𝑝/𝜎𝑝)𝐻6 (𝑝/𝜎𝑝)

6!

]]}

𝑥
𝑠
=𝑧
𝑠

,

(13)

where ()󸀠󸀠 and ()󸀠󸀠󸀠󸀠 denote the second and fourth derivative of
(), respectively, 𝑧 = 𝑧[𝑛], 𝑧1, and 𝑥1 are the real parts of 𝑧
and 𝑥, respectively. 𝑧2 and 𝑥2 are the imaginary parts of 𝑧
and 𝑥, respectively. 𝜎2

𝑥
1

, 𝜎2
𝑥
2

are the variances of the real and
imaginary parts of the source signal, respectively, and 𝜎2

𝑧
1

, 𝜎2
𝑧
2

are the variances of the real and imaginary parts of the
equalized output signal, respectively. The Lagrange multipliers
𝜆𝑘 are given in Section 3.2. For more details concerning 𝑔󸀠󸀠(𝑧),
𝑔
󸀠󸀠󸀠󸀠
(𝑧), 𝑔󸀠󸀠

1
(𝑧), and 𝑔

󸀠󸀠󸀠󸀠

1
(𝑧), please refer to Appendix B.

Comments. Please note that (12) is similar to the expression
for the conditional expectation derived in [1]. However, 𝑔(𝑧),
𝑔
󸀠󸀠
(𝑧), 𝑔󸀠󸀠󸀠󸀠(𝑧), 𝑔1(𝑧), 𝑔

󸀠󸀠

1
(𝑧), and 𝑔

󸀠󸀠󸀠󸀠

1
(𝑧) are very different

from those obtained in [1].

Proof. We start our derivation for the real valued case and
then we extend them to the two independent quadrature
carrier one. By using Bayes’ rule we obtain

𝐸 [𝑥 | 𝑧] =

∫

∞

−∞
𝑥𝑓𝑧/𝑥 (𝑧/𝑥) 𝑓𝑥 (𝑥) 𝑑𝑥

∫

∞

−∞
𝑓𝑧/𝑥 (𝑧/𝑥) 𝑓𝑥 (𝑥) 𝑑𝑥

, (14)

where in our case𝑓𝑧/𝑥(𝑧/𝑥) is the convolutional noise pdf and
the unknown source pdf, 𝑓𝑥(𝑥), will be estimated with the
maximum entropy density approximation technique as was
done in [1] and defined as ̂𝑓𝑥(𝑥)

̂
𝑓𝑥 (𝑥) ≅ exp(

𝐾

∑

𝑘=0

𝜆𝑘𝑥
𝑘
) , (15)

where 𝜆𝑘 (𝑘 = 0, 1, 2, . . . , 𝐾) are the Lagrange multipliers
given in Section 3.2.

Substituting (6) and (15) into (14) and by using (2) we
obtain

𝐸 [𝑥 | 𝑧] = (∫

∞

−∞

𝑥

1

√2𝜋𝜎𝑝

exp(−(𝑧 − 𝑥)
2

2𝜎
2
𝑝

)

× [1 +

𝐾4 ((𝑧 − 𝑥) /𝜎𝑝)𝐻4 ((𝑧 − 𝑥) /𝜎𝑝)

4!

+

𝐾6 ((𝑧 − 𝑥) /𝜎𝑝)𝐻6 ((𝑧 − 𝑥) /𝜎𝑝)

6!

]

⋅ exp(
𝐾

∑

𝑘=0

𝜆𝑘𝑥
𝑘
)𝑑𝑥)

× (∫

∞

−∞

1

√2𝜋𝜎𝑝

exp(−(𝑧 − 𝑥)
2

2𝜎
2
𝑝

)

× [1 +

𝐾4 ((𝑧 − 𝑥) /𝜎𝑝)𝐻4 ((𝑧 − 𝑥) /𝜎𝑝)

4!

+

𝐾6 ((𝑧 − 𝑥) /𝜎𝑝)𝐻6 ((𝑧 − 𝑥) /𝜎𝑝)

6!

]

⋅ exp(
𝐾

∑

𝑘=0

𝜆𝑘𝑥
𝑘
)𝑑𝑥)

−1

.

(16)

Next we define

𝑔 (𝑥) = exp(
𝐾

∑

𝑘=0

𝜆𝑘𝑥
𝑘
)

× [1 +

𝐾4 ((𝑧 − 𝑥) /𝜎𝑝)𝐻4 ((𝑧 − 𝑥) /𝜎𝑝)

4!

+

𝐾6 ((𝑧 − 𝑥) /𝜎𝑝)𝐻6 ((𝑧 − 𝑥) /𝜎𝑝)

6!

] ,

(17)

𝑔1 (𝑥) = 𝑥𝑔 (𝑥) , (18)

𝜌 = 2𝜎
2

𝑝
; 𝜓 (𝑥) = (𝑧 − 𝑥)

2
; 𝜎

2

𝑝
= 𝜎
2

𝑧
− 𝜎
2

𝑥
, (19)

so (16) becomes

𝐸 [𝑥 | 𝑧] =

∫

∞

−∞
𝑔1 (𝑥) ⋅ exp (−𝜓 (𝑥) /𝜌) 𝑑𝑥

∫

∞

−∞
𝑔 (𝑥) ⋅ exp (−𝜓 (𝑥) /𝜌) 𝑑𝑥

. (20)

This integral (20) may be approximated with the Laplace
integral method according to [1, 16, 35]. Thus, we may write

∫

∞

−∞

𝑔1 (𝑥) ⋅ exp(
−𝜓 (𝑥)

𝜌

) 𝑑𝑥

≅ exp(
−𝜓 (𝑥)

𝜌

)√

2𝜋𝜌

𝜓
󸀠󸀠
(𝑥0)

(𝑔1 (𝑥0) +

𝑔
󸀠󸀠

1
(𝑥0)

2

𝜌

𝜓
󸀠󸀠
(𝑥0)

+

𝑔
󸀠󸀠󸀠󸀠

1
(𝑥0)

8

(

𝜌

𝜓
󸀠󸀠
(𝑥0)

)

2

+𝑂(

𝜌

𝜓
󸀠󸀠
(𝑥0)

)

3

)
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∫

∞

−∞

𝑔 (𝑥) ⋅ exp(
−𝜓 (𝑥)

𝜌

) 𝑑𝑥

≅ exp(
−𝜓 (𝑥)

𝜌

)√

2𝜋𝜌

𝜓
󸀠󸀠
(𝑥0)

(𝑔 (𝑥0) +

𝑔
󸀠󸀠
(𝑥0)

2

𝜌

𝜓
󸀠󸀠
(𝑥0)

+

𝑔
󸀠󸀠󸀠󸀠
(𝑥0)

8

(

𝜌

𝜓
󸀠󸀠
(𝑥0)

)

2

+𝑂(

𝜌

𝜓
󸀠󸀠
(𝑥0)

)

3

) ,

(21)

where𝑂(𝑥) is defined as lim𝑥→0(𝑂(𝑥)/𝑥) = 𝑐, and 𝑐 is a con-
stant and

𝜓
󸀠
(𝑥) = −2 (𝑧 − 𝑥) ; 𝜓

󸀠󸀠
(𝑥) = 2;

𝜓
󸀠
(𝑥) = 0 󳨐⇒ 𝑥0 = 𝑧.

(22)

By substituting (21) into (20) and dividing the numerator and
denominator by 𝑔(𝑥0), using (22), we obtain

𝐸 [𝑥 | 𝑧] ≅ (𝑧 +

𝑔
󸀠󸀠

1
(𝑧)

2𝑔 (𝑧)

(𝜎
2

𝑧
− 𝜎
2

𝑥
)

+

𝑔
󸀠󸀠󸀠󸀠

1
(𝑧)

8𝑔 (𝑧)

(𝜎
2

𝑧
− 𝜎
2

𝑥
)

2

)

× (1 +

𝑔
󸀠󸀠
(𝑧)

2𝑔 (𝑧)

(𝜎
2

𝑧
− 𝜎
2

𝑥
)

+

𝑔
󸀠󸀠󸀠󸀠
(𝑧)

8𝑔 (𝑧)

(𝜎
2

𝑧
− 𝜎
2

𝑥
)

2

)

−1

.

(23)

Note that (23) is very similar to the approximated expression
for the conditional expectation derived in [1]; however, 𝑔(𝑧)
and its derivatives are very different. According to [11], the
conditional mean estimate of the complex datum 𝑥 (𝑥 = 𝑥1+

𝑗𝑥2) given the complex observation 𝑧 (𝑧 = 𝑧1 + 𝑗𝑧2) can be
written as

𝐸 [𝑥 | 𝑧] = 𝐸 [𝑥1 | 𝑧1] + 𝑗𝐸 [𝑥2 | 𝑧2] . (24)

This completes our Proof.

3.2. MSE and Lagrange Multipliers. Since we deal with the
real valued or two independent quadrature carrier case, it is
enough to derive the MSE as well as the expression for the
Lagrange multipliers for the real valued case only. Thus, we
consider in the following only the real valued case.

In this section we search for those Lagrange multipliers
that bring the MSE to a minimum as was done in [1]:

𝑑

𝑑𝜆𝑘

(𝐸[𝑥 − 𝑥]
2
) = 0, (25)

where 𝑥 is the conditional expectation given in (23).

The approximated MSE according to [1] is given by

𝐸[𝑥 − 𝑥]
2
≅

𝜎
2

𝑝

(1 + 𝜎
2
𝑝
(𝐸 [𝑔
󸀠󸀠
(𝑥) /2𝑔 (𝑥)]))

2
, (26)

where 𝑥 is the conditional expectation given in [1].
Although 𝑔(𝑧), 𝑔󸀠󸀠(𝑧), 𝑔󸀠󸀠󸀠󸀠(𝑧), 𝑔1(𝑧), 𝑔

󸀠󸀠

1
(𝑧), and 𝑔󸀠󸀠󸀠󸀠

1
(𝑧)

are very different from those obtained in [1], (23) looks quite
similar to the approximated expression for the conditional
expectation derived in [1]. Thus, it make sense to use in this
paper the same technique for deriving theMSE as was carried
out in [1]. The convolutional noise pdf (9) is for 𝑝 = 0 the
pdf used in [1] (for 𝑝 = 0) multiplied by a constant parameter
(1+3𝐴−15𝐵), where𝐴 and𝐵 are given inAppendix B in (B.6)
and (B.7), respectively. Therefore, based on (94), (95), and
(96) in [1], the MSE for our case is the same MSE given in
(26) multiplied by (1 + 3𝐴 − 15𝐵) with our expression for
𝐸[(𝑔
󸀠󸀠
(𝑥)/2𝑔(𝑥))

𝑝=0
]. Thus, we obtain

𝐸[𝑥 − 𝑥]
2
≅

𝜎
2

𝑝
(1 + 3𝐴 − 15𝐵)

(1 + 𝜎
2
𝑝
(𝐸[𝑔
󸀠󸀠
(𝑥) /2𝑔 (𝑥)]

𝑝=0
))

2
. (27)

According to [36], for small values of 𝜎
2

𝑝
such that

|𝜎
2

𝑝
(𝐸[𝑔
󸀠󸀠
(𝑥)/2𝑔(𝑥)]

𝑝=0
)| < 1 we obtain

𝐸[𝑥 − 𝑥]
2
≅ (1 + 3𝐴 − 15𝐵)

×

𝜎
2

𝑝

(1 + 𝜎
2
𝑝
(𝐸[𝑔
󸀠󸀠
(𝑥) /2𝑔 (𝑥)]

𝑝=0
))

2

≅ (1 + 3𝐴 − 15𝐵)

×(𝜎
2

𝑝
(1 − 𝜎

2

𝑝
(2𝐸[

𝑔
󸀠󸀠
(𝑥)

2𝑔 (𝑥)

]

𝑝=0

))) .

(28)

Next weminimize (28) with respect to the Lagrangemultipli-
ers, 𝜆𝑘,

𝑑

𝑑𝜆𝑘

(1 + 3𝐴 − 15𝐵) 𝜎
2

𝑝
(1 − 𝜎

2

𝑝
(2𝐸[

𝑔
󸀠󸀠
(𝑥)

2𝑔(𝑥)

]

𝑝=0

)) = 0

󳨐⇒

𝑑

𝑑𝜆𝑘

(𝐸[

𝑔
󸀠󸀠
(𝑥)

2𝑔(𝑥)

]

𝑝=0

) = 0.

(29)

In Appendix E we derive (29) and obtain

𝑚𝑘−2𝑘 (𝑘 − 1) +

2

(1 + 3𝐴 − 15𝐵)

×

𝐾

∑

𝑙=2,𝑙 ̸= 𝑘

(𝜆𝑙𝑘𝑙𝑚𝑘+𝑙−2) +

2𝜆𝑘𝑘
2
𝑚2𝑘−2

1 + 3𝐴 − 15𝐵

= 0,

(30)

where𝑚𝑘 = 𝐸[𝑥
𝑘
].
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Please refer to Appendices C and D for explicit expres-
sions for the Lagrange multipliers valid for the 16QAM and
64QAM input constellation case, respectively. It should be
pointed out that (30) is the same expression obtained in [1]
for 𝐴 = 0 and 𝐵 = 0.

4. Simulation

In this section we test and compare the equalization per-
formance obtained for the 16QAM and 64QAM input case
with the convolutional noise pdf (6) to the case where the
convolutional noise pdf is modeled as Gaussian. In addition,
we examine whether the optimal Lagrange multipliers have
a significant effect on the quality of the equalization perfor-
mance and determine whether the transition from order four
to order six in the Edgeworth Expansion series is worthwhile
despite the increase in complexity in the algorithm.

According to [1], where the convolutional noise pdf was
modeled as a Gaussian pdf, the equalizer’s taps were updated
as

𝑐𝑙 [𝑛 + 1] = 𝑐𝑙 [𝑛] + 𝜇𝑊𝑦
∗
[𝑛 − 𝑙] with

𝑊 =
[

[

(𝐸 [𝑥1 | 𝑧1]
[

[

𝑧1 (𝑛) 𝐸 [𝑥1 | 𝑧1]

⟨(𝑧1)
2
⟩
𝑛

]

]

+ 𝑗𝐸 [𝑥2 | 𝑧2]

×
[

[

𝑧2 (𝑛) 𝐸 [𝑥2 | 𝑧2]

⟨(𝑧2)
2
⟩
𝑛

]

]

) − 𝑧 (𝑛)
]

]

(31)

with (12) and (30) for 𝐴 = 0, 𝐵 = 0, and

⟨𝑧
2

𝑠
⟩
𝑛
= (1 − 𝛽) ⟨𝑧

2

𝑠
⟩
𝑛−1

+ 𝛽(𝑧𝑠)
2

𝑛
, (32)

where ⟨⟩ stands for the estimated expectation operator, 𝛽 and
𝜇 are positive step-size parameters, ⟨𝑧2

𝑠
⟩
0
> 0, and 𝑙 stands

for 𝑙th tap of the equalizer and 𝑠 = 1, 2. In the following, this
equalizer [1] will be denoted as “MaxEnt.” To illustrate the
equalization performance with the convolutional noise pdf
(6) we used the equalizer’s update mechanism given in (31)
and (32) with the conditional expectation presented in (12)
for the following settings.

For𝐴 ̸= 0, 𝐵 = 0 the equalizer will be called “Edgeworth
order 4.”

For 𝐴 ̸= 0, 𝐵 ̸= 0 the equalizer will be called “Edgeworth
order 6.”

For “Edgeworth order 4” we need (B.6) and for “Edge-
worth order 6” we also need (B.7). In this work we used for
𝐸[𝑝
4
] and 𝐸[𝑝6] the following settings:

𝐸 [𝑝
4
] = 𝑎(𝜎

2

𝑝
)

2

, 𝐸 [𝑝
6
] = 𝑏(𝜎

2

𝑝
)

3

, (33)

where 𝑎 and 𝑏 were chosen for fast convergence speed and
low steady state ISI.

The parameters 𝑎 and 𝑏 are denoted in the following as
𝑎EE4 for “Edgeworth order 4” (𝑏 = 0 for “Edgeworth order 4”)
and 𝑎EE6 , 𝑏EE6 for “Edgeworth order 6.”

Table 1

Method “Godard” “MaxEnt” “Edgeworth
order 4”

“Edgeworth
order 6”

Convolutional
noise pdf Gaussian According

to (10)
According
to (9)

The step-size parameter 𝜇 is denoted in the following as
𝜇MaxEnt, 𝜇EE4, and 𝜇EE6 for “MaxEnt,” “Edgeworth order 4,”
and “Edgeworth order 6,” respectively. In the following, the 𝛽
parameter is denoted as the 𝛽MaxEnt, 𝛽EE4, and 𝛽EE6 for “Max-
Ent,” “Edgeworth order 4,” and “Edgeworth order 6,” respec-
tively. According to [1] the denominator of (23) cannot be
zero. Therefore, during our simulations, the equalizer’s taps
were updated only if the denominator was greater than 𝜀 (𝜀 >
0). For the equalization performance comparison we also
used the algorithmdefinedbyGodard [7].The equalizer’s taps
for Godard’s algorithm [7] were updated according to

𝑐𝑙 [𝑛 + 1] = 𝑐𝑙 [𝑛] − 𝜇𝐺(|𝑧 [𝑛]|
2
−

𝐸 [|𝑥 [𝑛]|
4
]

𝐸 [|𝑥 [𝑛]|
2
]

)

× 𝑧 [𝑛] 𝑦
∗
[𝑛 − 𝑙] ,

(34)

where 𝜇𝐺 is the step-size and | | is the absolute operator.
Two different sources were considered:

16QAM and 64QAM sources (modulations using
±{1, 3}, ±{1, 3, 5, 7} levels respectively, for in-phase
and quadrature components).

Two different channels were considered:
channel case 1 (initial ISI = 0.44), where the channel
parameters were taken according to Shalvi andWein-
stein [17]: ℎ𝑛 = {0 for 𝑛 < 0; −0.4 for 𝑛 = 0; 0.84 ⋅

0.4
𝑛−1 for 𝑛 > 0},

channel case 2 (initial ISI = 1.402), where the channel
parameters were taken according to [18]: ℎ𝑛 =

{0.2258, 0.5161, 0.6452, 0.5161}.
For channel case 1 and channel case 2we used an equalizer

with 13 and 21 taps, respectively. The equalizers where
initialized by setting the center tap equal to one and all others
to zero.

The step-size parameters, 𝜇𝐺, 𝜇MaxEnt, 𝛽MaxEnt, 𝜇EE4, 𝛽EE4,
𝜇EE6, and 𝛽EE6 were chosen for fast convergence speed and
low steady state ISI.

Figures 2–4 show the simulated equalization perfor-
mance (ISI as a function of iteration number) of three equal-
ization methods: “Godard,” “MaxEnt,” “Edgeworth order 4,”
and “Edgeworth order 6” for channel case 1, 16QAM, and
SNR = 30 dB.

Table 1 lists the various equalization methods and the
corresponding model for the convolutional noise pdf used in
the algorithm.

Two cases were considered for “Edgeworth order 4”:

Case a.Nonoptimal Lagrangemultipliers (Lagrangemultipli-
ers similar to those used in “MaxEnt” [1]).

Case b. Optimal Lagrange multipliers (according to
Appendix C).
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Figure 2: Performance comparison between equalization algorithms simulated for a 16QAM input source going through channel case 1. The
averaged results were obtained in 100Monte Carlo trials for SNRof 30 dB.The step-size parameters were set to𝜇

𝐺
= 1×10

−4,𝜇MaxEnt = 4×10
−4,

𝛽MaxEnt = 2 × 10
−4. For Edgeworth order 4 with nonoptimal Lagrange multipliers we used 𝑎EE4 = 4.5, 𝜇EE4 = 4.3 × 10

−4, 𝛽EE4 = 4.5 × 10
−4,

and for Edgeworth order 4 with optimal Lagrange multipliers we used 𝑎EE4 = 4.5, 𝜇EE4 = 4.3 × 10
−4, and 𝛽EE4 = 4.5 × 10

−4. In addition we set
for MaxEnt and Edgeworth order 4 with nonoptimal Lagrange multipliers 𝜀 = 0. For Edgeworth order 4 with optimal Lagrange multipliers
we set 𝜀 = 0.5.

Based on the simulation results (Figures 2–4), “Edge-
worth order 4” and “Edgeworth order 6” achieve better
equalization performance in terms of convergence speed and
lower residual ISI compared to the other methods.

According to Figure 2, “Edgeworth order 4” with optimal
Lagrange multipliers has a slightly faster convergence speed
and a slightly lower residual ISI compared to the non-optimal
Lagrangemultipliers case. According to Figure 3, “Edgeworth
order 6” with optimal Lagrange multipliers leads to a faster
convergence speed compared with “Edgeworth order 4” with
nonoptimal Lagrange multipliers but leads the system to a
slightly higher residual ISI. Figure 4 shows that “Edgeworth
order 4” and “Edgeworth order 6” with optimal Lagrange
multipliers have both approximately the same convergence
speed while “Edgeworth order 4” leads the system to a lower
residual ISI compared to “Edgeworth order 6”. Figures 2–4
indicate that there is no justification using “Edgeworth order
6” over “Edgeworth order 4” and “Edgeworth order 4” with
optimal Lagrange multipliers over “Edgeworth order 4” with
nonoptimal Lagrange multipliers for channel case 1.

Figures 5, 6, and 7 indicate that our previously made
conclusion based on Figures 2–4 also holds when the SNR
is decreased.

Figures 8–10 show the simulated equalization perfor-
mance (ISI as a function of iteration number) of four equal-
ization methods: “Godard,” “MaxEnt,” “Edgeworth order 4,”
and “Edgeworth order 6” for channel case 2, 16QAM, and
SNR = 30 dB. Based on Figures 8–10, “Edgeworth order 4”
and “Edgeworth order 6” have better equalization perfor-
mance in terms of convergence speed compared to “MaxEnt”

but lead the system to a slightly higher residual ISI compared
to the “MaxEnt” method.

Figure 8 indicates that “Edgeworth order 4” with optimal
Lagrange multipliers leads to a slightly faster convergence
speed compared to the nonoptimal Lagrange multipliers
case while leaving the system with approximately the same
residual ISI.

Figures 9 and 10 show that “Edgeworth order 6” with
optimal Lagrange multipliers leads to a much faster con-
vergence speed compared to the optimal and nonoptimal
Lagrange multiplier case with “Edgeworth order 4,” while
having approximately the same residual ISI for both cases.

Figure 11 shows the simulated equalization performance
(ISI as a function of iteration number) of three equalization
methods: “MaxEnt,” “Edgeworth order 4,” and “Edgeworth
order 6” for channel case 1, 64QAM constellation input and
for the noiseless case.

Three optimal Lagrange multipliers were used for “Edge-
worth order 4” and for “Edgeworth order 6” (please refer to
Appendix D).

Based on the simulation results (Figure 11), a much
faster convergence speed is obtained by using “Edgeworth
order 6” with optimal Lagrange multipliers compared to
the case where “Edgeworth order 4” with optimal Lagrange
multipliers or the “MaxEnt” method is used.

5. Conclusion

In this paper we used the Edgeworth expansion up to order
4 and up to order 6 to model the convolutional noise pdf
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Figure 3: Performance comparison between equalization algorithms simulated for a 16QAM input source going through channel case 1.
The averaged results were obtained in 100 Monte Carlo trials for SNR of 30 dB. The step-size parameters were set to: 𝜇

𝐺
= 1 × 10

−4, 𝜇MaxEnt =

4× 10
−4, 𝛽MaxEnt = 2× 10

−4. For Edgeworth order 4 with non-optimal Lagrange multipliers we used 𝑎EE4 = 4.5, 𝜇EE4 = 4.3 × 10
−4, 𝛽EE4 = 4.5 ×

10
−4, and for Edgeworth order 6 with optimal Lagrange multipliers we used 𝑎EE6 = 4.5, 𝑏EE6 = 38, 𝜇EE6 = 5.2 × 10

−4, and 𝛽EE6 = 4.5 × 10
−4.

In addition we set for MaxEnt and Edgeworth order 4 with non-optimal Lagrange multipliers 𝜀 = 0. For Edgeworth order 6 with optimal
Lagrange multipliers we set 𝜀 = 0.5.
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Figure 4: Performance comparison between equalization algorithms simulated for a 16QAM input source going through channel case 1. The
averaged results were obtained in 100MonteCarlo trials for SNRof 30 dB.The step-size parameterswere set to:𝜇

𝐺
= 1×10

−4,𝜇MaxEnt = 4×10
−4,

𝛽MaxEnt = 2 × 10
−4. For Edgeworth order 4 with optimal Lagrange multipliers we used 𝑎EE4 = 4.5, 𝜇EE4 = 4.3 × 10

−4, and 𝛽EE4 = 4.5 × 10
−4 and

for Edgeworth order 6 with optimal Lagrange multipliers we used 𝑎EE6 = 4.5, 𝑏EE6 = 38, 𝜇EE6 = 5.2 × 10
−4, and 𝛽EE6 = 4.5 × 10

−4. In addition
we set for MaxEnt 𝜀 = 0, and for Edgeworth order 4 and order 6 𝜀 = 0.5.
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Figure 5: Performance comparison between equalization algorithms simulated for a 16QAM input source going through channel case 1. The
averaged results were obtained in 100MonteCarlo trials for SNRof 26 dB.The step-size parameterswere set to:𝜇

𝐺
= 1×10

−4,𝜇MaxEnt = 4×10
−4,

𝛽MaxEnt = 2 × 10
−4. For Edgeworth order 4 with non-optimal Lagrange multipliers we used 𝑎EE4 = 4.5, 𝜇EE4 = 3.7 × 10

−4, and 𝛽EE4 = 4 × 10
−4

and for Edgeworth order 4 with optimal Lagrange multipliers we used 𝑎EE6 = 4.5, 𝑏EE6 = 32,𝜇EE6 = 3.7×10
−4, and 𝛽EE6 = 4×10

−4. In addition
we set for MaxEnt and Edgeworth order 4 with optimal and nonoptimal Lagrange multipliers 𝜀 = 0.5.
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Figure 6: Performance comparison between equalization algorithms simulated for a 16QAM input source going through channel case 1. The
averaged results were obtained in 100MonteCarlo trials for SNRof 26 dB.The step-size parameterswere set to:𝜇

𝐺
= 1×10

−4,𝜇MaxEnt = 4×10
−4,

𝛽MaxEnt = 2 × 10
−4. For Edgeworth order 4 with non-optimal Lagrange multipliers we used 𝑎EE4 = 4.5, 𝜇EE4 = 3.7 × 10

−4, and 𝛽EE4 = 4 × 10
−4

and for Edgeworth order 6 with optimal Lagrange multipliers we used 𝑎EE6 = 4.5, 𝑏EE4 = 32, 𝜇EE6 = 3.7×10
−4, and 𝛽EE6 = 4×10

−4. In addition
we set for MaxEnt, Edgeworth order 4, and Edgeworth order 6 𝜀 = 0.5.
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Figure 7: Performance comparison between equalization algorithms simulated for a 16QAM input source going through channel case 1. The
averaged results were obtained in 100MonteCarlo trials for SNRof 26 dB.The step-size parameterswere set to:𝜇

𝐺
= 1×10

−5,𝜇MaxEnt = 4×10
−4,

𝛽MaxEnt = 2 × 10
−6. For Edgeworth order 4 with non-optimal Lagrange multipliers we used 𝑎EE4 = 4.5, 𝜇EE4 = 3.7 × 10

−4, and 𝛽EE4 = 4 × 10
−4

and for Edgeworth order 6 with optimal Lagrange multipliers we used 𝑎EE6 = 4.5, 𝑏EE6 = 32, 𝜇EE6 = 3.7×10
−4, and 𝛽EE6 = 4×10

−4. In addition
we set for MaxEnt, Edgeworth order 4, and Edgeworth order 6 𝜀 = 0.5.
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Figure 8: Performance comparison between equalization algorithms simulated for a 16QAM input source going through channel case 2.The
averaged results were obtained in 100Monte Carlo trials for SNRof 30 dB.The step-size parameters were set to𝜇

𝐺
= 1×10

−5,𝜇MaxEnt = 2×10
−4,

and 𝛽MaxEnt = 2 × 10
−6. For Edgeworth order 4 with nonoptimal Lagrange multipliers we used 𝑎EE4 = 5, 𝜇EE4 = 3 × 10

−4, and 𝛽EE4 = 2 × 10
−6

and for Edgeworth order 4 with optimal Lagrange multipliers we used 𝑎EE4 = 4, 𝜇EE4 = 3 × 10
−4, and 𝛽EE4 = 2 × 10

−6. In addition we set for
MaxEnt, Edgeworth order 4 with optimal and nonoptimal Lagrange multipliers 𝜀 = 0.5.
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Figure 9: Performance comparison between equalization algorithms simulated for a 16QAM input source going through channel case 2.The
averaged results were obtained in 100Monte Carlo trials for SNRof 30 dB.The step-size parameters were set to𝜇

𝐺
= 1×10

−5,𝜇MaxEnt = 2×10
−4,

and 𝛽MaxEnt = 2 × 10
−6. For Edgeworth order 4 with nonoptimal Lagrange multipliers we used 𝑎EE4 = 5, 𝜇EE4 = 3 × 10

−4, and 𝛽EE4 = 2 × 10
−6

and for Edgeworth order 6 with optimal Lagrange multipliers we used 𝑎EE6 = 4.1, 𝑏EE6 = 25, 𝜇EE6 = 3.3 × 10
−4, and 𝛽EE6 = 2.1 × 10

−6. In
addition we set for MaxEnt, Edgeworth order 4, and Edgeworth order 6 𝜀 = 0.5.
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Figure 10: Performance comparison between equalization algorithms simulated for a 16QAM input source going through channel case 2.The
averaged results were obtained in 100Monte Carlo trials for SNRof 30 dB.The step-size parameters were set to𝜇

𝐺
= 1×10

−5,𝜇MaxEnt = 2×10
−4,

and 𝛽MaxEnt = 2 × 10
−6. For Edgeworth order 4 with optimal Lagrange multipliers we used 𝑎EE4 = 4, 𝜇EE4 = 3 × 10

−4, and 𝛽EE4 = 2 × 10
−6 and

for Edgeworth order 6 with optimal Lagrange multipliers we used 𝑎EE6 = 4.1, 𝑏EE6 = 25, 𝜇EE6 = 3.3 × 10
−4, and 𝛽EE6 = 2.1 × 10

−6. In addition
we set for Edgeworth orders 4 and 6 𝜀 = 0.5.
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Figure 11: Performance comparison between equalization algorithms simulated for a 64QAM input source going through channel case 1.
The averaged results were obtained in 100 Monte Carlo trials for the noiseless case. The step-size parameters were set to: 𝜇MaxEnt = 5.5 × 10

−5,
𝛽MaxEnt = 6 × 10

−5. For Edgeworth order 4 with optimal Lagrange multipliers we used 𝑎EE4 = 2.4, 𝜇EE4 = 6.2 × 10
−5, and 𝛽EE4 = 6 × 10

−5 and
for Edgeworth order 6 with optimal Lagrange multipliers we used 𝑎EE6 = 2.4, 𝑏EE6 = 4, 𝜇EE6 = 6.2 × 10

−5, and 𝛽EE6 = 6 × 10
−5. In addition we

set for all methods 𝜀 = 0.7.

in the conditional expectation calculations where the source
pdf was approximated according to the maximum entropy
density approximation technique. We derived new Lagrange
multipliers and obtained new closed-form approximated
expressions for the conditional expectation and MSE as
byproducts. According to simulation results for the 16QAM
constellation input, there is no justification for using “Edge-
worth order 4”with optimal Lagrangemultipliers over “Edge-
worth order 4” with nonoptimal Lagrange multipliers when
dealing with easy or hard channels. In addition, hardly any
equalization performance improvement was observed with
“Edgeworth order 6” (with optimal Lagrange multipliers)
compared to “Edgeworth order 4” with optimal and nonop-
timal Lagrange multipliers for the easy channel case (channel
case 1). However, a much faster convergence speed was
observed with “Edgeworth order 6” with optimal Lagrange
multipliers for the hard channel case (channel case 2) com-
pared to “Edgeworth order 4” with optimal and nonoptimal
Lagrange multipliers. Furthermore, a much faster conver-
gence speed was obtained for the 64QAM input and easy
channel case with “Edgeworth order 6” compared to “Edge-
worth order 4” both with optimal Lagrange multipliers.

Appendices

A. Hermite Polynomials and the One
Dimensional Central Cumulants

A closed-form expression for the Hermite Polynomials can
be defined as in [37]

𝐻𝑟 (𝜁) =

𝑟/2

∑

𝑘=0

(−1)
𝑘
𝑟!

𝑘! (𝑟 − 2𝑘)

(2𝜁)
𝑟−2𝑘

. (A.1)

Specifically, the first Hermite Polynomials up to order 6
are

𝐻0 (𝜁) = 1,

𝐻1 (𝜁) = 2𝜁,

𝐻2 (𝜁) = 4𝜁
2
− 2,

𝐻3 (𝜁) = 𝜁
3
− 3𝜁,

𝐻4 (𝜁) = 𝜁
4
− 6𝜁
2
+ 3,

𝐻5 (𝜁) = 𝜁
5
− 10𝜁
3
+ 15𝜁,

𝐻6 (𝜁) = 𝜁
6
− 15𝜁
4
+ 45𝜁
2
− 15.

(A.2)

According to [34, Table 3], the one-dimensional central
cumulants in terms of central moments are

𝐾3 (𝜁) = 𝐸 [𝜁
3
] ,

𝐾4 (𝜁) = 𝐸 [𝜁
4
] − 3(𝐸 [𝜁

2
])

2

,

𝐾5 (𝜁) = 𝐸 [𝜁
5
] − 10𝐸 [𝜁

2
] 𝐸 [𝜁
3
] ,

𝐾6 (𝜁) = 𝐸 [𝜁
6
] − 15𝐸 [𝜁

2
] 𝐸 [𝜁
4
]

+ 30(𝐸 [𝜁
2
])

3

− 10(𝐸 [𝜁
3
])

2

.

(A.3)
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B. Expressions for 𝑔󸀠󸀠(𝑧), 𝑔󸀠󸀠󸀠󸀠(𝑧), 𝑔󸀠󸀠
1
(𝑧),

𝑔
󸀠󸀠󸀠󸀠

1
(𝑧), 𝐴, 𝐵, 𝐾

4
(𝑝/𝜎
𝑝
), 𝐾
6
(𝑝/𝜎
𝑝
), 𝐻
4
(𝑝/𝜎
𝑝
),

and 𝐻
6
(𝑝/𝜎
𝑝
)

In order to facilitate the derivation process of (17) and (18) we
divide (17) into two parts:

𝑔 (𝑥) = ℎ (𝑥) 𝑡 (𝑥) , (B.1)

where

𝑡 (𝑥) = exp(
𝐾

∑

𝑘=0

𝜆𝑘𝑥
𝑘
) , (B.2)

and

ℎ (𝑥) = (1 +

𝐾4 (𝑝/𝜎𝑝)𝐻4 (𝑝/𝜎𝑝)

4!

+

𝐾6 (𝑝/𝜎𝑝)𝐻6 (𝑝/𝜎𝑝)

6!

)

= (1 +

𝐾4 ((𝑧 − 𝑥) /𝜎𝑝)𝐻4 ((𝑧 − 𝑥) /𝜎𝑝)

4!

+

𝐾6 ((𝑧 − 𝑥) /𝜎𝑝)𝐻6 ((𝑧 − 𝑥) /𝜎𝑝)

6!

) .

(B.3)

According to (A.3), the values for𝐻4(𝑝/𝜎𝑝) and𝐻6(𝑝/𝜎𝑝)
are

𝐻4 (

𝑝

𝜎𝑝

) = (

(𝑧 − 𝑥)
4

(𝜎
2
𝑝
)

2
−

6(𝑧 − 𝑥)
2

𝜎
2
𝑝

+ 3) ;

[𝐻4 (

𝑝

𝜎𝑝

)]

𝑥=𝑧

= 3,

𝐻6 (

𝑝

𝜎𝑝

) = (

(𝑧 − 𝑥)
6

(𝜎
2
𝑝
)

3
−

15(𝑧 − 𝑥)
4

(𝜎
2
𝑝
)

2
+

45(𝑧 − 𝑥)
2

(𝜎
2
𝑝
)

− 15) ;

[𝐻6 (

𝑝

𝜎𝑝

)]

𝑥=𝑧

= −15.

(B.4)

Their derivatives may be expressed as

[

𝑑
2

𝑑𝑥
2
(𝐻4 (

𝑝

𝜎𝑝

))]

𝑥=𝑧

= −

12

𝜎
2
𝑝

;

[

𝑑
4

𝑑𝑥
4
(𝐻4 (

𝑝

𝜎𝑝

))]

𝑥=𝑧

=

24

𝜎
4
𝑝

[

𝑑
2

𝑑𝑥
2
(𝐻6 (

𝑝

𝜎𝑝

))]

𝑥=𝑧

=

90

𝜎
2
𝑝

;

[

𝑑
4

𝑑𝑥
4
(𝐻6 (

𝑝

𝜎𝑝

))]

𝑥=𝑧

=

−360

𝜎
4
𝑝

.

(B.5)

For 𝐾4(𝑝/𝜎𝑝) and 𝐾6(𝑝/𝜎𝑝) as described in (A.3) we
define the following constants (results after normalization):

𝐴 =

𝐾4 (𝑝/𝜎𝑝)

4!

=

𝐸 [𝑝
4
] − 3(𝜎

2

𝑝
)

2

4!(𝜎
2
𝑝
)

2
, (B.6)

𝐵 =

𝐾6 (𝑝/𝜎𝑝)

6!

=

𝐸 [𝑝
6
] − 15 (𝜎

2

𝑝
) 𝐸 [𝑝

4
] + 30(𝜎

2

𝑝
)

3

6!(𝜎
2
𝑝
)

3
.

(B.7)

We set 𝑔(𝑧) as follows:

𝑔 (𝑧) = [𝑔 (𝑥)]
𝑥=𝑧

= exp(
𝐾

∑

𝑘=0

𝜆𝑘𝑧
𝑘
) (1 + 3𝐴 − 15𝐵) . (B.8)

The second and fourth derivatives of 𝑔(𝑧) are as follows:

𝑔
󸀠󸀠
(𝑧) = [ℎ

󸀠󸀠
(𝑝) 𝑡 (𝑥) + 2ℎ

󸀠
(𝑝) 𝑡
󸀠
(𝑥) + ℎ (𝑝) 𝑡

󸀠󸀠
(𝑥)]
𝑥=𝑧

,

𝑔
󸀠󸀠󸀠󸀠
(𝑧) = [ℎ

󸀠󸀠󸀠󸀠
(𝑝) 𝑡 (𝑥) + 4ℎ

󸀠󸀠󸀠
(𝑝) 𝑡
󸀠
(𝑥) + 6ℎ

󸀠󸀠
(𝑝) 𝑡
󸀠󸀠
(𝑥)

+4ℎ
󸀠
(𝑝)𝑡
󸀠󸀠󸀠
(𝑥) + ℎ(𝑝)𝑡

󸀠󸀠󸀠󸀠
(𝑥)]
𝑥=𝑧

= [ℎ
󸀠󸀠󸀠󸀠
(𝑝) 𝑡 (𝑥) + 4ℎ

󸀠󸀠󸀠
(𝑝) 𝑡
󸀠
(𝑥) + 6ℎ

󸀠󸀠
(𝑝) 𝑡
󸀠󸀠
(𝑥)

+4ℎ
󸀠
(𝑝) 𝑡
󸀠󸀠󸀠
(𝑥) + ℎ (𝑝) 𝑡

󸀠󸀠󸀠󸀠
(𝑥)]
𝑥=𝑧

.

(B.9)

The definitions for 𝑔1(𝑥) and its derivatives are

𝑔1 (𝑥) = 𝑥𝑔 (𝑥) 󳨐⇒ 𝑔1 (𝑧) = 𝑧𝑔 (𝑧) ,

𝑔
󸀠󸀠

1
(𝑧) = 2𝑔

󸀠
(𝑧) + 𝑧𝑔

󸀠󸀠
(𝑧) ,

𝑔
󸀠󸀠󸀠󸀠

1
(𝑧) = 4𝑔

󸀠󸀠󸀠
(𝑧) + 𝑧𝑔

󸀠󸀠󸀠󸀠
(𝑧) .

(B.10)

By substituting (B.9), (B.10) in (23) the closed-form
approximated expression for the conditional expectation is
obtained.

C. Lagrange Multipliers Equations for 16QAM

For the 16QAMcasewe use two Lagrangemultipliers (𝜆2, 𝜆4);
thus, we have𝐾 = 4.

In order to get the required Lagrangemultipliers we recall
(30)

𝑚𝑘−2 (𝑘 − 1) 𝑘 +

2

(1 + 3𝐴 − 15𝐵)

×

𝐾

∑

𝑙=2,𝑙 ̸= 𝑘

(𝜆𝑙𝑘𝑙𝑚𝑘+𝑙−2) +

2𝜆𝑘𝑘
2
𝑚2𝑘−2

1 + 3𝐴 − 15𝐵

= 0,

(C.1)
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where we use 𝐴 and 𝐵 from (B.6) and (B.7), respectively. For
𝜆2 we have 𝑘 = 2; thus, when substituting 𝑘 = 2 and 𝐾 = 4

into (30) we get

𝑚0 (2 − 1) 2 +

2𝜆2𝑚4−22
2

1 + 3𝐴 − 15𝐵

+

2𝜆4𝑚2+4−2 ⋅ 2 ⋅ 4

1 + 3𝐴 − 15𝐵

= 0

⇓

2 + 8𝜆2

𝑚2

1 + 3𝐴 − 15𝐵

+ 16𝜆4

𝑚4

1 + 3𝐴 − 15𝐵

= 0.

(C.2)

For 𝜆4 we have 𝑘 = 4; thus, when substituting 𝑘 = 4 and
𝐾 = 4 into (30) we get

𝑚4−2 (4 − 1) 4 +

2𝜆4𝑚64
2

1 + 3𝐴 − 15𝐵

+

2𝜆2𝑚4+2−2 ⋅ 4 ⋅ 2

1 + 3𝐴 − 15𝐵

= 0

⇓

2𝑚2 + 32𝜆4

𝑚6

1 + 3𝐴 − 15𝐵

+ 16𝜆2

𝑚4

1 + 3𝐴 − 15𝐵

= 0.

(C.3)

From (C.2) and (C.3) we get a linear system with two
equations:

8𝜆2

𝑚2

1 + 3𝐴 − 15𝐵

+ 16𝜆4

𝑚4

1 + 3𝐴 − 15𝐵

+ 2 = 0,

16𝜆2

𝑚4

1 + 3𝐴 − 15𝐵

+ 32𝜆4

𝑚6

1 + 3𝐴 − 15𝐵

+ 12𝑚2 = 0,

(C.4)
which can be written by

(

8

𝑚2

1 + 3𝐴 − 15𝐵

16

𝑚4

1 + 3𝐴 − 15𝐵

16

𝑚4

1 + 3𝐴 − 15𝐵

32

𝑚6

1 + 3𝐴 − 15𝐵

)(

𝜆2

𝜆4

)

= (

−2

−12𝑚2

) ,

(C.5)

where the solution is

(

−

1

4

−15𝑚6𝐵 − 3𝑚4𝑚2 − 9𝑚4𝑚2𝐴 + 45𝑚4𝑚2𝐵 + 𝑚6 + 3𝑚6𝐴

𝑚2𝑚6 − 𝑚
2

4

1

8

−15𝑚4𝐵 − 3𝑚
2

2
− 9𝑚
2

2
𝐴 + 45𝑚

2

2
𝐵 + 𝑚4 + 3𝑚4𝐴

𝑚2𝑚6 − 𝑚
2

4

). (C.6)

Next, we substitute the known moments 𝑚2 = 5, 𝑚4 = 41,
and𝑚6 = 365 into (C.5) and obtain

(

𝜆2

𝜆4

) =(

−

1

4

−15𝑚6𝐵 − 3𝑚4𝑚2 − 9𝑚4𝑚2𝐴 + 45𝑚4𝑚2𝐵 + 𝑚6 + 3𝑚6𝐴

𝑚2𝑚6 − 𝑚
2

4

1

8

−15𝑚4𝐵 − 3𝑚
2

2
− 9𝑚
2

2
𝐴 + 45𝑚

2

2
𝐵 + 𝑚4 + 3𝑚4𝐴

𝑚2𝑚6 − 𝑚
2

4

)

=(

−

625

96

𝐵 +

125

288

+

125

96

𝐴

85

192

𝐵 −

17

576

−

17

192

𝐴

)

(C.7)

which can be written as:

𝜆2 = −

625

96

𝐵 +

125

288

+

125

96

𝐴,

𝜆4 =

85

192

𝐵 −

17

576

−

17

192

𝐴.

(C.8)

By substituting 𝐴 = 0 and 𝐵 = 0 into (C.8), we get the
Lagrange multipliers for the 16QAM input as appeared in [1].

D. Lagrange Multipliers Equations for 64QAM

For the 64QAM case we use three Lagrange multipliers
(𝜆2, 𝜆4, 𝜆6); thus, we have𝐾 = 6.

In order to get the required Lagrangemultipliers we recall
(30)

𝑚𝑘−2 (𝑘 − 1) 𝑘 +

2

(1 + 3𝐴 − 15𝐵)

×

𝐾

∑

𝑙=2,𝑙 ̸=𝑘

(𝜆𝑙𝑘𝑙𝑚𝑘+𝑙−2) +

2𝜆𝑘𝑘
2
𝑚2𝑘−2

1 + 3𝐴 − 15𝐵

= 0,

(D.1)

where we use 𝐴 and 𝐵 from (B.6) and (B.7), respectively.
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For 𝜆2 we have 𝑘 = 2; thus, when substituting 𝑘 = 2 and
𝐾 = 6 into (30) we get

𝑚0 (2 − 1) 2 +

2𝜆2𝑚4−22
2

1 + 3𝐴 − 15𝐵

+

2𝜆4𝑚2+4−2 ⋅ 2 ⋅ 4

1 + 3𝐴 − 15𝐵

+

2𝜆6𝑚2+6−2 ⋅ 2 ⋅ 6

1 + 3𝐴 − 15𝐵

= 0

⇓

2𝑚0 + 8𝜆2

𝑚2

1 + 3𝐴 − 15𝐵

+ 16𝜆4

𝑚4

1 + 3𝐴 − 15𝐵

+ 24𝜆6

𝑚6

1 + 3𝐴 − 15𝐵

= 0.

(D.2)

For 𝜆4 we have 𝑘 = 4; thus, when substituting 𝑘 = 4 and
𝐾 = 6 into (30) we get

𝑚4−2 (4 − 1) 2 +

2𝜆4𝑚8−24
2

1 + 3𝐴 − 15𝐵

+

2𝜆2𝑚4+2−2 ⋅ 4 ⋅ 2

1 + 3𝐴 − 15𝐵

+

2𝜆6𝑚4+6−2 ⋅ 4 ⋅ 6

1 + 3𝐴 − 15𝐵

= 0

⇓

6𝑚2 + 32𝜆4

𝑚6

1 + 3𝐴 − 15𝐵

+ 16𝜆2

𝑚4

1 + 3𝐴 − 15𝐵

+ 48𝜆6

𝑚8

1 + 3𝐴 − 15𝐵

= 0.

(D.3)

For 𝜆6 we have 𝑘 = 6; thus, when substituting 𝑘 = 6 and
𝐾 = 6 into (30) we get

𝑚6−2 (6 − 1) 6 +

2𝜆6𝑚2⋅6−26
2

1 + 3𝐴 − 15𝐵

+

2𝜆2𝑚6+2−2 ⋅ 6 ⋅ 2

1 + 3𝐴 − 15𝐵

+

2𝜆4𝑚6+4−2 ⋅ 6 ⋅ 4

1 + 3𝐴 − 15𝐵

= 0

⇓

30𝑚4 + 72𝜆6

𝑚10

1 + 3𝐴 − 15𝐵

+ 24𝜆2

𝑚6

1 + 3𝐴 − 15𝐵

+ 48𝜆4

𝑚8

1 + 3𝐴 − 15𝐵

= 0.

(D.4)

From (D.2), (D.3), and (D.4) we get a linear system with
three equations:

8𝜆2

𝑚2

1 + 3𝐴 − 15𝐵

+ 16𝜆4

𝑚4

1 + 3𝐴 − 15𝐵

+ 24𝜆6

𝑚6

1 + 3𝐴 − 15𝐵

= −2𝑚0,

16𝜆2

𝑚4

1 + 3𝐴 − 15𝐵

+ 32𝜆6

𝑚6

1 + 3𝐴 − 15𝐵

+ 48𝜆8

𝑚8

1 + 3𝐴 − 15𝐵

= 6𝑚2,

24𝜆2

𝑚6

1 + 3𝐴 − 15𝐵

+ 48𝜆4

𝑚8

1 + 3𝐴 − 15𝐵

+ 72𝜆6

𝑚10

1 + 3𝐴 − 15𝐵

= 30𝑚4.

(D.5)

By substituting the known moments,

𝑚2 = 21, 𝑚4 = 777, 𝑚6 = 33501,

𝑚8 = 1540497, 𝑚10 = 73074981,

(D.6)

into (D.5) we obtain

𝜆2 = −

1417409

2745600

𝐴 −

1417409

8236800

+

1417409

549120

𝐵,

𝜆4 =

13573

1647 360

+

13573

549120

𝐴 −

13573

109824

𝐵,

𝜆6 = −

211

2246400

−

211

748800

𝐴 +

211

149760

𝐵.

(D.7)

E. Derivation of (𝑑/𝑑𝜆
𝑘
)𝐸[(𝑔

󸀠󸀠
(𝑥)/2𝑔(𝑥))

𝑝= 0
] = 0

By using (B.8) and (B.9) we can write

𝐸[(

𝑔
󸀠󸀠
(𝑥)

2𝑔 (𝑥)

)

𝑝=0

]

= 𝐸
[

[

(−12 (𝐴/𝜎
2

𝑝
) − 90 (𝐵/𝜎

2

𝑝
)) exp (∑𝐾

𝑘=0
𝜆𝑘𝑥
𝑘
)

2 (1 + 3𝐴 − 15𝐵) exp (∑𝐾
𝑘=0

𝜆𝑘𝑥
𝑘
)

]

]
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+ 𝐸
[

[

[1 + 3𝐴 − 15𝐵]

×((

𝐾

∑

𝑘=0

(𝜆𝑘𝑥
𝑘−2
𝑘
2
− 𝜆𝑘𝑥

𝑘−2
𝑘))exp(

𝐾

∑

𝑘=0

𝜆𝑘𝑥
𝑘
))

×(2(1 + 3𝐴 − 15𝐵) exp(
𝐾

∑

𝑘=0

𝜆𝑘𝑥
𝑘
))

−1

]

]

+ 𝐸
[

[

(∑
𝐾

𝑘=0
𝜆𝑘𝑥
𝑘−1
𝑘)

2

exp (∑𝐾
𝑘=0

𝜆𝑘𝑥
𝑘
)

2 (1 + 3𝐴 − 15𝐵) exp (∑𝐾
𝑘=0

𝜆𝑘𝑥
𝑘
)

]

]

= 𝐸
[

[

(−12 (𝐴/𝜎
2

𝑝
) − 90 (𝐵/𝜎

2

𝑝
))

2 (1 + 3𝐴 − 15𝐵)

]

]

+ 𝐸[

(∑
𝐾

𝑘=0
(𝜆𝑘𝑥
𝑘−2
𝑘
2
− 𝜆𝑘𝑥

𝑘−2
𝑘))

2

]

+ 𝐸
[

[

(∑
𝐾

𝑘=0
𝜆𝑘𝑥
𝑘−1
𝑘)

2

2 (1 + 3𝐴 − 15𝐵)

]

]

.

(E.1)

Thus we have

𝑑

𝑑𝜆𝑘

𝐸[(

𝑔
󸀠󸀠
(𝑥)

2𝑔 (𝑥)

)

𝑝=0

]

=

𝑑

𝑑𝜆𝑘

[𝐸[

(∑
𝐾

𝑘=0
(𝜆𝑘𝑥
𝑘−2
𝑘
2
− 𝜆𝑘𝑥

𝑘−2
𝑘))

2

]]

+

𝑑

𝑑𝜆𝑘

[

[

𝐸
[

[

(∑
𝐾

𝑘=0
𝜆𝑘𝑥
𝑘−1
𝑘)

2

2 (1 + 3𝐴 − 15𝐵)

]

]

]

]

.

(E.2)

Next we set (E.2) to zero and obtain

𝑚𝑘−2𝑘 (𝑘 − 1)

2

+

1

2 (1 + 3𝐴 − 15𝐵)

𝐾

∑

𝑙=2,𝑙 ̸= 𝑘

(𝜆𝑙𝑘𝑙𝑚𝑘+𝑙−2)

+

𝜆𝑘𝑘
2
𝑚2𝑘−2

2 (1 + 3𝐴 − 15𝐵)

= 0 ,

(E.3)

or

𝑚𝑘−2𝑘 (𝑘 − 1) +

2

(1 + 3𝐴 − 15𝐵)

×

𝐾

∑

𝑙=2,𝑙 ̸= 𝑘

(𝜆𝑙𝑘𝑙𝑚𝑘+𝑙−2) +

2𝜆𝑘𝑘
2
𝑚2𝑘−2

1 + 3𝐴 − 15𝐵

= 0.

(E.4)
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