
Virtual Synchronization for Fast Distributed Cosimulation
of Dataflow Task Graphs

Dohyung Kim Chan-Eun Rhee Youngmin Yi
Sungchan Kim Hyunguk Jung Soonhoi Ha

CAP Laboratory
Computer Engineering Dept.

Seoul National Univ., Seoul, Korea
+82 2 8807292

{dhkim, chaeni, ymyi, ynwie, noirsens, sha}@iris.snu.ac.kr

ABSTRACT
Fast distributed cosimulation is a challenging problem for the
embedded system design. The main theme of this paper is to
increase simulation speed by reducing the frequency of inter-
simulator communications, reducing the active duration of
simulators and utilizing the parallelism of component simulators,
which is accomplished by combining event-driven and data-
driven simulation methods. The proposed technique is applicable
when the simulated tasks follow dataflow execution semantics.
Experimental results show that the proposed technique can boost
the cosimulation speed significantly compared with the previous
conservative approaches.

Categories and Subject Descriptors
B.7.2 [Design Aids]: Simulation and Verification

General Terms: Performance, Verification

Keywords
Cosimulation, distributed simulation, time accurate simulation,
virtual synchronization.

1. INTRODUCTION
A complex embedded system usually consists of software modules
and hardware modules that are mapped to heterogeneous
components such as programmable processors, customized ASIC,
and IPs. Though several efforts are invested to model all modules
in a single simulation platform, a current practice of system-level
simulation is likely to involve communication and
synchronization between component simulators, sometime
geographically distributed, to make it a distributed cosimulation.
For time-accurate simulation, component simulators are basically
event-driven or time-driven that the simulator processes events in
the chronological order [1].

As system complexity increases and fast design turn-around time
is required, increasing the simulation performance becomes more
important specially because the simulation complexity is a super-
linear function of design size. The performance bottleneck of
distributed event-driven simulation comes from the huge overhead
of time synchronization and data communications.

A typical technique to minimize data communication overhead is
to group data samples and send them all at once. Minimizing time
synchronization overhead is more difficult. A naive but expensive
solution is to let the main simulator marshal the local clock
advancement of each component simulator by paying extra
communication overhead and waiting delay. Better solutions
allow the component simulators to advance their clocks
asynchronously and to exchange clock information as few times
as possible. They are classified into optimistic [2] and
conservative [3] approaches. In this paper, we focus on
conservative distributed approaches to accommodate existent
component simulators without rollback capability.

Another performance bottleneck is the simulator performance
because time accurate simulation for software or hardware is very
slow. Compiled co-simulations make it faster but sacrifice
accuracy [4][5]. In-circuit emulators boost the speed [6] but they
require special hardware components.

The main theme of this paper is to increase the simulation speed
by reducing the frequency of inter-simulator communications,
reducing the active duration of simulators, and utilizing the
parallelism of component simulators, without modifying the
component simulators. Though the proposed technique is based
on the assumption that the simulated tasks follow dataflow
execution semantics, it is applicable to more general cases where
task execution results do not depend on the arrival times of input
data but their arrival order.

 First, we propose a new distributed event driven simulation
technique of component simulators. Our approach uses a
cosimulation backplane as the master process in the distributed
event driven (DED) cosimulation. Furthermore, we present a
novel technique to reduce the time synchronization and
communication overheads significantly by combining event-
driven and data-driven simulation methods. Previous distributed
event-driven simulation techniques do not assume any special
execution semantics of the simulated tasks. Execution semantics
allows us to minimize the communication overhead, while not
violating the causality condition of the event driven simulation.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ISSS'02, October 2-4, 2002, Kyoto, Japan.
Copyright 2002 ACM 1-58113-562-9/02/0010…$5.00.

174

In the next section, we explain the execution model of task graphs
and the environment assumed in this paper. Section 3 explains the
proposed distributed event driven (DED) cosimulation technique
and compares it with the existent techniques. Section 4 discusses
the main theme of this paper: how to use data-driven scheduling
information for the DED cosimulation. Experimental results and
conclusions will follow in section 5 and 6 respectively.

2. COSIMULATION ENVIRONMENT
In our proposed environment, we specify control and function
modules separately on the codesign/cosimulation backplane using
FSM model for control modules and synchronous dataflow (SDF)
model for function modules. In a SDF graph, a block represents a
function that transforms input data streams into output streams.
An arc represents a channel that carries a stream of data samples
from the source block to the destination block. The number of
samples produced (or consumed) per block firing is predefined.
An SDF model has a restriction that a block becomes runnable
only after all input ports have the predefined number of input
samples.

Figure 1(a) shows an example system specification which is
hierarchical and compositional. We assume that blocks A1 and A2
generate simulation vectors and block E displays the result. Figure
1(b) shows a corresponding architecture template. We assume that
hierarchical blocks B and D are mapped to the DSP and the ASIC
component respectively while block C is to the IP component and
the control module to the micro-controller. After mapping
between function modules and architecture components is
determined, we establish a distributed cosimulation environment
as illustrated in Figure 1(c). All component simulators establish
their outside connections only to the backplane. The backplane is
basically an event-driven simulator and a centralized backbone for
communication between component simulators [7][8].

Figure 1. (a) An example system specification in the pro-posed
methodology. (b) An example architecture template. (c)
Cosimulation environment that consists of the cosimulation
backplane and component simulators.

3. DISTRIBUTED EVENT DRIVEN
COSIMULATION
In this section, we propose a new distributed event driven
cosimulation technique which enhances parallelism between
component simulators. The main difficulty to speed up the
distributed event driven simulation is to synchronize the
simulators so that no simulator violates causality condition of
event processing. Several techniques for accelerating distributed
discrete event simulations have been proposed since late 1970's
and largely classified into two approaches: optimistic [2] and
conservative [3].

In the optimistic approach, a component simulator may advance
its local time optimistically assuming that no past event will arrive.
If that assumption fails, it rolls back its local time to the event
arrival time or the earlier checkpoint time, and cancels all
processing results after the adjusted time, paying huge over-head
[9].

To accommodate component simulators without rollback
capability [10], we take the conservative approach where a
component simulator advances its local time and processes events
only after it is guaranteed that no event will arrive earlier
[11][12][13]. There are two schemes to satisfy this causality
condition: centralized approach and distributed approach.

In the centralized approach, the central controller manages the
component simulators with the information how far the local
clock of the simulator can advance. The centralized approach
serializes all communication activities between simulators in the
global queue although there is no dependency between them. It is
the main cause of low performance.

In the distributed approach, there is no need of a central controller.
Instead, each simulator should wait until it receives input events
from all input ports and process the event of the smallest time-
stamp. The main difficulty of the distributed approach is deadlock
possibility. If there is a cycle among simulators, no simulator can
receive events from all input ports.

One solution is to use null messages that carry the lower bound
information of the time-stamp value of the next event [14]. On the
other hand, Chandy and Misra [3] allow deadlock situation. When
deadlock situation occurs, a central controller initiates the
recovery phase in which each simulator exchanges time
information with other simulators and updates the time until when
it can safely advance its local clock. Since the overhead of
deadlock detection and recovery is significant, the simulation
performance degrades proportionally to the deadlock frequency.

The proposed scheme lies in the middle of the centralized and the
distributed approaches. As a centralized approach, all data
exchange between component simulators goes through the
cosimulation backplane. Unlike the centralized approach,
however, the backplane does not serialize the communication
activities. Instead, each component simulator waits until it
receives input events from all input ports, and processes the event
of the smallest time-stamp like the distributed approach. Therefore,
the proposed simulation is based on the idea of deadlock detection
and recovery. The difference between Chandy and Misra's
approach is that the cosimulation backplane plays the role of the
central process without paying extra communication overhead to
find a runnable simulator.

175

Figure 2 illustrates how the proposed scheme works. We need to
introduce a simulator interface between the backplane and a
component simulator, which contains wrap-up code for deadlock
detection and recovery since the component simulator is not
expected to have this capability. The simulator interface has a
local queue to check causality conditions, which confirms that
there arrives no earlier event after processing a current event. And
it manages a local clock related to the simulator. The event
produced from the predecessor is delivered to the associated local
queue of the destination block. Because events are stored in the
distributed local queues, the backplane executes the simulators in
parallel as long as they meet causality conditions. When a
deadlock occurs, it finds the earliest event in all local queues and
makes it delivered although it does not meet local causality
condition [3].

Figure 2. The proposed cosimulation scheme

There is a significant difference between the cosimulation
problem and the typical DED simulation problem. In a typical
DED simulation, each process is assumed to finish processing the
current input event before accepting the next event. In other
words, the local process is non-preemptive. On the other hand, the
component simulator performs itself an event-driven simulation
so that it advances the local clock while processing events.
Without the support of rollback mechanism, the local clock
should not be ahead of the time-stamp of the next event. During
processing the current event, the local clock should be compared
with the time-stamp of the next earliest event and the current
processing should be preempted if the next event arrives before
completion. If the next event time is not known a priori, such
time-synchronization requirement charges huge overhead of
exchanging time information between simulators during the event
processing.

In the proposed scheme, we can do much better if we consider the
underlying computation model of the simulated tasks. Dataflow
tasks can be regarded as non-preemptive process if we use a
clever time adjustment scheme as explained in the next section.

4. EVENT-DRIVEN SCHEDULING WITH
DATA-DRIVEN MODELS
As explained in section 2, the simulated task in a component
simulator is a SDF subgraph. Recall that a SDF block becomes
active after all input ports have the required number of data
samples. By utilizing the data-driven execution model, we could
reduce both the data communication overhead and the time
synchronization overhead significantly. Although we restrict our
discussion to the SDF model, our approach is also applicable to
more general cases when the simulated tasks are data-driven and
have predictable access patterns to shared resources [5].

4.1 Virtual Synchronization
Time synchronization problem explained in the previous section
has been the main performance bottleneck for the distributed

cosimulation. The difficulty lies in the fact that the local clock of
a component simulator should be synchronized with the global
clock of the backplane in order not to violate the causality
condition. We observe that such synchronization requirement is
no more needed if the simulated tasks are data-driven. In the
proposed scheme, we do not synchronize the local clock with the
global clock, but still preserve the correctness. We will explain
the key idea with a simple example of Figure 3.

Figure 3(a) shows a simple synchronous dataflow subgraph that a
component simulator should simulate, where a, b, and d denote
the data samples and a(k) indicates the k-th data sample. The
execution time of each block is also displayed. For synchronous
dataflow graphs, the local schedule of block executions is pre-
determined at compile-time. Figure 3(b) and (c) show Gantt chart
representations of two local schedules, one for a software
component where blocks are sequentially executed, and the other
for a hardware component where blocks can be executed
concurrently.

Suppose that data samples from the backplane arrive following
the scenario as displayed in Figure 3(d). After a(1) and b(1) are
both available, the component simulator simulates the task graph
as shown in Figure 3(e) and computes the time duration between
d(1) and a(1),)1(∆ . When the component simulator returns the
result d(1) to the backplane, the time stamp of d(1) is adjusted to
the sum of the time stamp of a(1) plus)1(∆ as shown in Figure
3(f). Similarly the component simulator simulates the task graph
again with the next input data a(2) and b(2) and computes)2(∆ .
The time stamp of d(2) is adjusted as displayed in the figure.

Suppose that the time stamp of a(2) is changed to 10 instead of 16.
Then, the component simulator detects the next execution of the
task graph should be delayed by 3 units after the previous
execution completes. The time duration between d(2) and a(2), in
this case, should include such delay.

Figure 3. Virtual synchronization of the synchronous dataflow
sub-graph: (a) example graph, (b) SW schedule, (c) HW
schedule, (d) assumed input arrival pattern, (e) simulation
behavior with virtual synchronization, (f) observed behavior
from the backplane.

176

In summary, a component simulator does not perform any
synchronization with the backplane during execution. It returns a
time difference between the start time and the end time of the task.
Then, we reconstruct the accurate simulated time of the output
data in the backplane. We call this scheme as virtual
synchronization because the local clock is apparently
synchronized with the global clock while not actually.

Virtual synchronization removes the need of time synchronization
overhead during the execution of the current schedule.
Synchronization between the backplane and the component
simulator is accomplished at the time of sample exchange. As a
result, we reduce the time-synchronization overhead near to zero
except adjusting overhead of the time stamp.

Since the virtual synchronization preserves the processing order
of data samples and the data-driven execution model is dependent
only on the arrival order of data samples, data values will not be
corrupted. In Figure 3(e), sample a(2) does not affect the value of
sample d(1). Therefore, we arrive at the following theorem.

Theorem 1Theorem 1Theorem 1Theorem 1.

If the simulated task is a synchronous dataflow graph, virtual
synchronization preserves the correctness of cosimulation.

Cockx [5] proposed a similar approach for compiled cosimulation
which allows out-of-order executions of SW modules. Correct
execution order is recovered from later time adjustments. The
proposed technique is similar to those in that we also use time
adjustment technique for timing correctness. But, there are three
significant differences. First, our technique is for the system-level
distributed cosimulation, which is more complicated. Second, we
can utilize parallelism between simulators. Third, we do not
synchronize local clocks of component simulators while they do.

4.2 Reduction of Active Simulation Duration
Virtual synchronization not only removes the synchronization
overhead but also reduces the active duration of component
simulators. A simulator does not need to increase the local clock
until it receives a new input data after processing the last data
samples as shown in Figure 3(e). The absolute value of local clock
is no more important. Instead time difference between output
production and input arrival matters for timing accuracy.
Therefore, we may shorten the simulation time significantly.

Figure 4. A simple video decoder example

Consider a simple video decoder example of Figure 4, where a
packet decoder (PD) block and a display block (DIS) are executed
on a SW simulator. And we assume that an inverse DCT (IDCT)
and a motion compensation (MC) blocks are run on a HW
simulator.

Figure 5(a) shows the simulated execution time. HW blocks
(IDCT, MC) are executed simultaneously and run faster than SW
blocks. Figure 5(b) illustrates a typical implementation where two
HW blocks are simulated in a same HW simulator because
multiple hardware simulators need more inter-process

communication with huge overhead. The simulation time of HW
simulator can be divided into two sections. The first gray section
indicates the period during which the HW simulator just increases
its local clock to be synchronized with the global clock. The
second section indicates the active duration processing two HW
blocks.

The proposed technique changes the execution profile as shown in
Figure 5(c). First the idle times are removed and sample times are
adjusted by the backplane. Second multiple HW simulators can be
invoked to process separate blocks. Since no time synchronization
is necessary, benefits from distributed simulation is bigger than
the increased IPC overheads

Figure 5. (a) Simulated execution time (b) Conventional
cosimulation profile (c) Cosimulation profile from the
proposed technique

4.3 Message Grouping
Using the backplane as a central simulator doubles the amount of
data communications among simulators. Even though the total
number of data samples becomes double, we can reduce the
communication overhead by grouping the samples into a large
packet. This grouping optimization is possible if it does not hurt
the local causality condition of the task. Message grouping in the
proposed scheme comes from the data-driven property. Because a
dataflow block becomes active only when all input ports have
data, the backplane does not need to send a separate packet to
each input port.

5. PRELIMINARY EXPERIMENTS
Performance improvements from the proposed technique result
from several factors. First, virtual synchronization remove the
time synchronization overhead and reduce the active duration of
simulators. Second, it enhances parallelism between component
simulators. Last, message grouping reduces the data
communication overhead. In this section, we present the
experimental results on the first two factors separately. At last, we
compare the proposed approach with the optimized operation of
Seamless CVE co-verification environment.

5.1 Reduced Time Synchronization Overhead
To isolate the performance gain due to the reduced time
synchronization overhead, we make a simple example which

177

consists of a source, a HW simulator, and a display. We compare
two centralized approaches and the proposed approach: “normal”
indicates a conservative approach and “optimized” indicates an
optimized technique proposed in [15].

The first set of experiments assumes that the source block
generates an event every 200 ns and HW takes 140 ns. And the
clock period of the HW simulator is set to 20 ns. Figure 6 shows
the experimental results varying the total simulated time. In the
“normal” case, there need nine time-synchronization activities for
each invocation of the simulator. Each synchronization overhead
is measured 66 ms on the average. Since the “optimized” one
already knows when the next event arrives, it needs not any time
synchronization activity in this experiment. But, compared with
the proposed approach, it has another cause of performance
penalty. That is, it needs to advance the local clock during the idle
period to be synchronized with the global clock while the virtual
synchronization does not need to synchronize two clocks but
adjusts the time stamp values after executions.

Figure 6. Comparison between conservative approaches and
proposed virtual synchronization technique

Now, we increase the source period to 10000 ns, the performance
gain by the virtual synchronization becomes drastic as shown in
Figure 7. The performance gain from the proposed scheme
becomes 45 times in Figure 7 compared with the “optimized” one
mainly because of the removal of time synchronization overhead.

Figure 7. Another comparison between conservative
approaches and the proposed technique

5.2 Enhanced Parallel Execution
In this subsection, we examine the performance improvement due
to the distributed execution of simulators. We use six different
experiment sets with diverse experiment conditions by varying
graph topologies and machine specifications.

Figure 9 shows three different graph topologies. And three
machines are used in the experiments. Machine 1 is Pentium III
600Mhz using dual CPUs and machine 2 is Ultra Sparc II

450Mhz. Both are connected to an 100M fast Ethernet switch
while Machine 3 is Pentium III 350Mhz and connected through a
10M Ethernet hub. Six different experiment sets are listed in
Table 1. The first three sets have a single task graph and the next
three sets have two disconnected task graphs. Tasks mapped to the
SW component are simulated sequentially in a SW simulator
while we use a separate HW simulator process for each task
mapped to the HW component.

Figure 8. Experiment graphs

Table 1. Experiment sets

 Set 1 Set 2 Set 3 Set 4 Set 5 Set 6

Graph (a) (b) (c) (a),(b) (a),(c) (b),(c)

Machine 1 1 1,2 1,2 1,2,3 1,2,3

For each set of experiment, we perform five different experiments
by intentionally changing the execution time ratio between a SW
task and a HW task as 1(SW):1(HW), 1:2, 2:1, 1:3 and 3:1. Figure
10 illustrates the summary of performance improvement by the
distributed execution of simulators compared with the serialized
execution. Both adopt the virtual synchronization. The more
simulators are involved in the cosimulation with similar execution
times, the more performance gain is achieved.

Figure 10. Cosimulation applied with parallelism/ normal
serial cosimulation *100 (%)

5.3 Comparison with Seamless CVE
We compare the proposed approach with Seamless CVE co-
verification environment [16] using an H.263 decoder example
which is composed of a HW IDCT block and remaining SW
blocks. The approach uses Armulator for a processor simulator
and ModelSim for a HW simulator as Seamless CVE does on the
Ultrasparc II 450Mhz machine. In the Seamless CVE, we apply
the instruction fetch optimization and the data access optimization
[16] to enhance the simulation speed while maintaining the cycle
accuracy.

178

The experiment result shows a significant performance
enhancement. On Seamless CVE, the simulation takes 2031.71s
to decode one frame of QCIF format. But the proposed approach
ends the simulation at 303s and is 6.7 times faster. Such
performance gain comes from reducing synchronization overhead
and the active duration of simulators by the virtual
synchronization. In our approach, HW simulation time is major
bottleneck 78%. And IPC overhead and SW simulation times are
18% and 4% respectively.

6. CONCLUSION
As the embedded systems are complex and the design turn-around
time is shortened, the performance of co-simulation becomes
more important to verify such a system. And the component
simulators used in the cosimulation are likely to be heterogeneous
or geographically distributed. So the fast distributed cosimulation
is essential for the embedded system design.

Our proposed backplane approach uses the “deadlock detection
and recovery” approach to enhance the parallel execution of
component simulators. The key contribution of the proposed
approach is to combine data-driven and event-driven simulation
technique for fast distributed cosimulation. Data-driven properties
of the specification model reduce the number of communication
packet exchanges by message grouping and minimize time-
synchronization overhead by virtual synchronization. Virtual
synchronization also reduces the active duration of component
simulators significantly. The preliminary experiments give
promising results on the performance improvement specially
when there are more component simulators involved.

7. ACKNOWLEDGMENTS
This work was supported by National Research Laboratory
Program (number M1-0104-00-0015) and Brain Korea 21 Project.
The RIACT at Seoul National University provided research
facilities for this study.

8. REFERENCES
[1] Cassandras, C., "Discrete event systems, modeling and per-

formance analysis", Irwin, Homewood IL, 1993.

[2] Jefferson, D.R., “Virtual time”, ACM Trans. Prog. Lang. and
Syst. 7, Jul. 1985, pp404-425.

[3] Chandy, K.M., and Misra, J. “Asynchronous distributed
simulation via sequence of parallel computations”, Commun.
ACM 24, Nov. 1981, pp. 198-205.

[4] Desmet et al. “Timed executable system specification of an
ADSL modem using a C++ based design environment: A
case study”, CODES '99, 1999, Page(s): 38 –42

[5] Cockx, J., “Efficient modeling of preemption in a virtual
prototype”, RSP 2000, 2000, Page(s): 14 –19

[6] Meerwein, M.; Baumgartner, C.; Wieja, T.; Glauert, W.,
"Embedded systems verification with FGPA-enhanced in-
circuit emulator", System Synthesis, 2000. Proceedings. The
13th International Symposium on , 2000, Page(s): 143 -148

[7] Kim, D. and Ha. S., "System level specification for
multimedia applications", the 6th Conference of Asia Pacific
CHip Design Languages, Fukuoka, Japan, Oct. 6-8, 1999

[8] Sung, W. and Ha, S., "Efficient and Flexible Cosimulation
Environment for DSP Applications" , IEICE Transactions on
Fundamentals of Electronics, Communications and
Computer Sciences, Special Issue on VLSI Design and CAD
algorithms, Vol.E81-A, No. 12, pp. 2605-2611, December,
1998

[9] Yoo, S. and Choi, K., “Optimistic Distributed Timed
Cosimulation Based on Thread Simulation Model”, Proc. of
Proc. 6th Int'l Workshop on Hardware/Software Co-Design,
Mar. 1998.

[10] Nicol, D. and Heidelberger, Ph, “Parallel Execution for
Serial Simulators”, ACM Transactions on Modeling and
Computer Simulation, vol. 6, no. 3, July 1996, pp. 210-242.

[11] Atef, D., Salem, A. and Baraka, H., “An Architecture of
Distributed Co-Simulation”, 42nd Midwest Symposium on
Circuits and Systems 2000, Volume: 2 , 2000, Page(s): 855 -
858 vol. 2

[12] Klein, R., “Miami: A Hardware Software Co-Simulation
Environment”, In proceedings. 7th IEEE International
Workshop on Rapid System Prototyping, June 1996.

[13] Hines, K. and Borriello, G., “Dynamic Communication
Models in Embedded System Co-Simulation” In Proceedings
of the 34 th Design Automation Conference, June 1997

[14] Fujimoto, R. M., “Parallel Discrete Event Simulation”,
Communication of the ACM, Oct. 1990, Vol. 33, No. 10, pp.
30-53

[15] Sung, W. and Ha, S., "Optimized Timed Hardware Software
Cosimulation without Rollback", 1998 Design Automation
and Test in Europe, Paris, France, Feb. 1998.

[16] Mentor Graphics Seamless CVE Home Page
(http://www.mentorg.com/seamless/)

179

	Main
	ISSS02
	Front Matter
	Table of Contents
	Author Index

