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ABSTRACT 
Fast distributed cosimulation is a challenging problem for the 
embedded system design. The main theme of this paper is to 
increase simulation speed by reducing the frequency of inter-
simulator communications, reducing the active duration of 
simulators and utilizing the parallelism of component simulators, 
which is accomplished by combining event-driven and data-
driven simulation methods. The proposed technique is applicable 
when the simulated tasks follow dataflow execution semantics. 
Experimental results show that the proposed technique can boost 
the cosimulation speed significantly compared with the previous 
conservative approaches. 

Categories and Subject Descriptors 
B.7.2 [Design Aids]: Simulation and Verification 

General Terms: Performance, Verification 

Keywords 
Cosimulation, distributed simulation, time accurate simulation, 
virtual synchronization. 

1. INTRODUCTION 
A complex embedded system usually consists of software modules 
and hardware modules that are mapped to heterogeneous 
components such as programmable processors, customized ASIC, 
and IPs. Though several efforts are invested to model all modules 
in a single simulation platform, a current practice of system-level 
simulation is likely to involve communication and 
synchronization between component simulators, sometime 
geographically distributed, to make it a distributed cosimulation. 
For time-accurate simulation, component simulators are basically 
event-driven or time-driven that the simulator processes events in 
the chronological order [1].  

As system complexity increases and fast design turn-around time 
is required, increasing the simulation performance becomes more 
important specially because the simulation complexity is a super-
linear function of design size. The performance bottleneck of 
distributed event-driven simulation comes from the huge overhead 
of time synchronization and data communications.  

A typical technique to minimize data communication overhead is 
to group data samples and send them all at once. Minimizing time 
synchronization overhead is more difficult. A naive but expensive 
solution is to let the main simulator marshal the local clock 
advancement of each component simulator by paying extra 
communication overhead and waiting delay. Better solutions 
allow the component simulators to advance their clocks 
asynchronously and to exchange clock information as few times 
as possible. They are classified into optimistic [2] and 
conservative [3] approaches. In this paper, we focus on 
conservative distributed approaches to accommodate existent 
component simulators without rollback capability.  

Another performance bottleneck is the simulator performance 
because time accurate simulation for software or hardware is very 
slow. Compiled co-simulations make it faster but sacrifice 
accuracy [4][5]. In-circuit emulators boost the speed [6] but they 
require special hardware components. 

The main theme of this paper is to increase the simulation speed 
by reducing the frequency of inter-simulator communications, 
reducing the active duration of simulators, and utilizing the 
parallelism of component simulators, without modifying the 
component simulators. Though the proposed technique is based 
on the assumption that the simulated tasks follow dataflow 
execution semantics, it is applicable to more general cases where 
task execution results do not depend on the arrival times of input 
data but their arrival order. 

 First, we propose a new distributed event driven simulation 
technique of component simulators. Our approach uses a 
cosimulation backplane as the master process in the distributed 
event driven (DED) cosimulation. Furthermore, we present a 
novel technique to reduce the time synchronization and 
communication overheads significantly by combining event-
driven and data-driven simulation methods. Previous distributed 
event-driven simulation techniques do not assume any special 
execution semantics of the simulated tasks. Execution semantics 
allows us to minimize the communication overhead, while not 
violating the causality condition of the event driven simulation.  
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In the next section, we explain the execution model of task graphs 
and the environment assumed in this paper. Section 3 explains the 
proposed distributed event driven (DED) cosimulation technique 
and compares it with the existent techniques. Section 4 discusses 
the main theme of this paper: how to use data-driven scheduling 
information for the DED cosimulation. Experimental results and 
conclusions will follow in section 5 and 6 respectively. 

2. COSIMULATION ENVIRONMENT 
In our proposed environment, we specify control and function 
modules separately on the codesign/cosimulation backplane using 
FSM model for control modules and synchronous dataflow (SDF) 
model for function modules. In a SDF graph, a block represents a 
function that transforms input data streams into output streams. 
An arc represents a channel that carries a stream of data samples 
from the source block to the destination block. The number of 
samples produced (or consumed) per block firing is predefined. 
An SDF model has a restriction that a block becomes runnable 
only after all input ports have the predefined number of input 
samples.  

Figure 1(a) shows an example system specification which is 
hierarchical and compositional. We assume that blocks A1 and A2 
generate simulation vectors and block E displays the result. Figure 
1(b) shows a corresponding architecture template. We assume that 
hierarchical blocks B and D are mapped to the DSP and the ASIC 
component respectively while block C is to the IP component and 
the control module to the micro-controller. After mapping 
between function modules and architecture components is 
determined, we establish a distributed cosimulation environment 
as illustrated in Figure 1(c). All component simulators establish 
their outside connections only to the backplane. The backplane is 
basically an event-driven simulator and a centralized backbone for 
communication between component simulators [7][8]. 

 
Figure 1. (a) An example system specification in the pro-posed 
methodology. (b) An example architecture template. (c) 
Cosimulation environment that consists of the cosimulation 
backplane and component simulators.  

3. DISTRIBUTED EVENT DRIVEN 
COSIMULATION 
In this section, we propose a new distributed event driven 
cosimulation technique which enhances parallelism between 
component simulators. The main difficulty to speed up the 
distributed event driven simulation is to synchronize the 
simulators so that no simulator violates causality condition of 
event processing. Several techniques for accelerating distributed 
discrete event simulations have been proposed since late 1970's 
and largely classified into two approaches: optimistic [2] and 
conservative [3].  

In the optimistic approach, a component simulator may advance 
its local time optimistically assuming that no past event will arrive. 
If that assumption fails, it rolls back its local time to the event 
arrival time or the earlier checkpoint time, and cancels all 
processing results after the adjusted time, paying huge over-head 
[9].  

To accommodate component simulators without rollback 
capability [10], we take the conservative approach where a 
component simulator advances its local time and processes events 
only after it is guaranteed that no event will arrive earlier 
[11][12][13]. There are two schemes to satisfy this causality 
condition: centralized approach and distributed approach. 

In the centralized approach, the central controller manages the 
component simulators with the information how far the local 
clock of the simulator can advance. The centralized approach 
serializes all communication activities between simulators in the 
global queue although there is no dependency between them. It is 
the main cause of low performance. 

In the distributed approach, there is no need of a central controller. 
Instead, each simulator should wait until it receives input events 
from all input ports and process the event of the smallest time-
stamp. The main difficulty of the distributed approach is deadlock 
possibility. If there is a cycle among simulators, no simulator can 
receive events from all input ports.  

One solution is to use null messages that carry the lower bound 
information of the time-stamp value of the next event [14]. On the 
other hand, Chandy and Misra [3] allow deadlock situation. When 
deadlock situation occurs, a central controller initiates the 
recovery phase in which each simulator exchanges time 
information with other simulators and updates the time until when 
it can safely advance its local clock. Since the overhead of 
deadlock detection and recovery is significant, the simulation 
performance degrades proportionally to the deadlock frequency.  

The proposed scheme lies in the middle of the centralized and the 
distributed approaches. As a centralized approach, all data 
exchange between component simulators goes through the 
cosimulation backplane. Unlike the centralized approach, 
however, the backplane does not serialize the communication 
activities. Instead, each component simulator waits until it 
receives input events from all input ports, and processes the event 
of the smallest time-stamp like the distributed approach. Therefore, 
the proposed simulation is based on the idea of deadlock detection 
and recovery. The difference between Chandy and Misra's 
approach is that the cosimulation backplane plays the role of the 
central process without paying extra communication overhead to 
find a runnable simulator. 
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Figure 2 illustrates how the proposed scheme works. We need to 
introduce a simulator interface between the backplane and a 
component simulator, which contains wrap-up code for deadlock 
detection and recovery since the component simulator is not 
expected to have this capability. The simulator interface has a 
local queue to check causality conditions, which confirms that 
there arrives no earlier event after processing a current event. And 
it manages a local clock related to the simulator. The event 
produced from the predecessor is delivered to the associated local 
queue of the destination block. Because events are stored in the 
distributed local queues, the backplane executes the simulators in 
parallel as long as they meet causality conditions. When a 
deadlock occurs, it finds the earliest event in all local queues and 
makes it delivered although it does not meet local causality 
condition [3]. 

 
Figure 2. The proposed cosimulation scheme 

There is a significant difference between the cosimulation 
problem and the typical DED simulation problem. In a typical 
DED simulation, each process is assumed to finish processing the 
current input event before accepting the next event. In other 
words, the local process is non-preemptive. On the other hand, the 
component simulator performs itself an event-driven simulation 
so that it advances the local clock while processing events. 
Without the support of rollback mechanism, the local clock 
should not be ahead of the time-stamp of the next event. During 
processing the current event, the local clock should be compared 
with the time-stamp of the next earliest event and the current 
processing should be preempted if the next event arrives before 
completion. If the next event time is not known a priori, such 
time-synchronization requirement charges huge overhead of 
exchanging time information between simulators during the event 
processing. 

In the proposed scheme, we can do much better if we consider the 
underlying computation model of the simulated tasks. Dataflow 
tasks can be regarded as non-preemptive process if we use a 
clever time adjustment scheme as explained in the next section. 

4. EVENT-DRIVEN SCHEDULING WITH 
DATA-DRIVEN MODELS 
As explained in section 2, the simulated task in a component 
simulator is a SDF subgraph. Recall that a SDF block becomes 
active after all input ports have the required number of data 
samples. By utilizing the data-driven execution model, we could 
reduce both the data communication overhead and the time 
synchronization overhead significantly. Although we restrict our 
discussion to the SDF model, our approach is also applicable to 
more general cases when the simulated tasks are data-driven and 
have predictable access patterns to shared resources [5]. 

4.1 Virtual Synchronization 
Time synchronization problem explained in the previous section 
has been the main performance bottleneck for the distributed 

cosimulation. The difficulty lies in the fact that the local clock of 
a component simulator should be synchronized with the global 
clock of the backplane in order not to violate the causality 
condition. We observe that such synchronization requirement is 
no more needed if the simulated tasks are data-driven. In the 
proposed scheme, we do not synchronize the local clock with the 
global clock, but still preserve the correctness. We will explain 
the key idea with a simple example of Figure 3.  

Figure 3(a) shows a simple synchronous dataflow subgraph that a 
component simulator should simulate, where a, b, and d denote 
the data samples and a(k) indicates the k-th data sample. The 
execution time of each block is also displayed. For synchronous 
dataflow graphs, the local schedule of block executions is pre-
determined at compile-time. Figure 3(b) and (c) show Gantt chart 
representations of two local schedules, one for a software 
component where blocks are sequentially executed, and the other 
for a hardware component where blocks can be executed 
concurrently. 

Suppose that data samples from the backplane arrive following 
the scenario as displayed in Figure 3(d). After a(1) and b(1) are 
both available, the component simulator simulates the task graph 
as shown in Figure 3(e) and computes the time duration between 
d(1) and a(1), )1(∆ . When the component simulator returns the 
result d(1) to the backplane, the time stamp of d(1) is adjusted to 
the sum of the time stamp of a(1) plus )1(∆ as shown in Figure 
3(f). Similarly the component simulator simulates the task graph 
again with the next input data a(2) and b(2) and computes )2(∆ . 
The time stamp of d(2) is adjusted as displayed in the figure.  

Suppose that the time stamp of a(2) is changed to 10 instead of 16. 
Then, the component simulator detects the next execution of the 
task graph should be delayed by 3 units after the previous 
execution completes. The time duration between d(2) and a(2), in 
this case, should include such delay. 

 
Figure 3. Virtual synchronization of the synchronous dataflow 
sub-graph: (a) example graph, (b) SW schedule, (c) HW 
schedule, (d) assumed input arrival pattern, (e) simulation 
behavior with virtual synchronization, (f) observed behavior 
from the backplane. 
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In summary, a component simulator does not perform any 
synchronization with the backplane during execution. It returns a 
time difference between the start time and the end time of the task. 
Then, we reconstruct the accurate simulated time of the output 
data in the backplane. We call this scheme as virtual 
synchronization because the local clock is apparently 
synchronized with the global clock while not actually.  

Virtual synchronization removes the need of time synchronization 
overhead during the execution of the current schedule. 
Synchronization between the backplane and the component 
simulator is accomplished at the time of sample exchange. As a 
result, we reduce the time-synchronization overhead near to zero 
except adjusting overhead of the time stamp. 

Since the virtual synchronization preserves the processing order 
of data samples and the data-driven execution model is dependent 
only on the arrival order of data samples, data values will not be 
corrupted. In Figure 3(e), sample a(2) does not affect the value of 
sample d(1). Therefore, we arrive at the following theorem. 

Theorem 1Theorem 1Theorem 1Theorem 1. 

If the simulated task is a synchronous dataflow graph, virtual 
synchronization preserves the correctness of cosimulation. 

Cockx [5] proposed a similar approach for compiled cosimulation 
which allows out-of-order executions of SW modules. Correct 
execution order is recovered from later time adjustments. The 
proposed technique is similar to those in that we also use time 
adjustment technique for timing correctness. But, there are three 
significant differences. First, our technique is for the system-level 
distributed cosimulation, which is more complicated. Second, we 
can utilize parallelism between simulators. Third, we do not 
synchronize local clocks of component simulators while they do. 

4.2 Reduction of Active Simulation Duration 
Virtual synchronization not only removes the synchronization 
overhead but also reduces the active duration of component 
simulators. A simulator does not need to increase the local clock 
until it receives a new input data after processing the last data 
samples as shown in Figure 3(e). The absolute value of local clock 
is no more important. Instead time difference between output 
production and input arrival matters for timing accuracy. 
Therefore, we may shorten the simulation time significantly. 

 
Figure 4. A simple video decoder example 

Consider a simple video decoder example of Figure 4, where a 
packet decoder (PD) block and a display block (DIS) are executed 
on a SW simulator. And we assume that an inverse DCT (IDCT) 
and a motion compensation (MC) blocks are run on a HW 
simulator.   

Figure 5(a) shows the simulated execution time. HW blocks 
(IDCT, MC) are executed simultaneously and run faster than SW 
blocks. Figure 5(b) illustrates a typical implementation where two 
HW blocks are simulated in a same HW simulator because 
multiple hardware simulators need more inter-process 

communication with huge overhead. The simulation time of HW 
simulator can be divided into two sections. The first gray section 
indicates the period during which the HW simulator just increases 
its local clock to be synchronized with the global clock. The 
second section indicates the active duration processing two HW 
blocks.  

The proposed technique changes the execution profile as shown in 
Figure 5(c). First the idle times are removed and sample times are 
adjusted by the backplane. Second multiple HW simulators can be 
invoked to process separate blocks. Since no time synchronization 
is necessary, benefits from distributed simulation is bigger than 
the increased IPC overheads 

 
Figure 5. (a) Simulated execution time (b) Conventional 
cosimulation profile (c) Cosimulation profile from the 
proposed technique 

4.3 Message Grouping 
Using the backplane as a central simulator doubles the amount of 
data communications among simulators. Even though the total 
number of data samples becomes double, we can reduce the 
communication overhead by grouping the samples into a large 
packet. This grouping optimization is possible if it does not hurt 
the local causality condition of the task. Message grouping in the 
proposed scheme comes from the data-driven property. Because a 
dataflow block becomes active only when all input ports have 
data, the backplane does not need to send a separate packet to 
each input port. 

5. PRELIMINARY EXPERIMENTS 
Performance improvements from the proposed technique result 
from several factors. First, virtual synchronization remove the 
time synchronization overhead and reduce the active duration of 
simulators. Second, it enhances parallelism between component 
simulators. Last, message grouping reduces the data 
communication overhead.  In this section, we present the 
experimental results on the first two factors separately. At last, we 
compare the proposed approach with the optimized operation of 
Seamless CVE co-verification environment. 

5.1 Reduced Time Synchronization Overhead 
To isolate the performance gain due to the reduced time 
synchronization overhead, we make a simple example which 
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consists of a source, a HW simulator, and a display. We compare 
two centralized approaches and the proposed approach: “normal” 
indicates a conservative approach and “optimized” indicates an 
optimized technique proposed in [15]. 

The first set of experiments assumes that the source block 
generates an event every 200 ns and HW takes 140 ns. And the 
clock period of the HW simulator is set to 20 ns. Figure 6 shows 
the experimental results varying the total simulated time. In the 
“normal” case, there need nine time-synchronization activities for 
each invocation of the simulator. Each synchronization overhead 
is measured 66 ms on the average. Since the “optimized” one 
already knows when the next event arrives, it needs not any time 
synchronization activity in this experiment. But, compared with 
the proposed approach, it has another cause of performance 
penalty. That is, it needs to advance the local clock during the idle 
period to be synchronized with the global clock while the virtual 
synchronization does not need to synchronize two clocks but 
adjusts the time stamp values after executions. 

 
Figure 6. Comparison between conservative approaches and 
proposed virtual synchronization technique 

Now, we increase the source period to 10000 ns, the performance 
gain by the virtual synchronization becomes drastic as shown in 
Figure 7. The performance gain from the proposed scheme 
becomes 45 times in Figure 7 compared with the “optimized” one 
mainly because of the removal of time synchronization overhead. 

 
Figure 7. Another comparison between conservative 
approaches and the proposed technique 

5.2 Enhanced Parallel Execution 
In this subsection, we examine the performance improvement due 
to the distributed execution of simulators. We use six different 
experiment sets with diverse experiment conditions by varying 
graph topologies and machine specifications.  

Figure 9 shows three different graph topologies. And three 
machines are used in the experiments. Machine 1 is Pentium III 
600Mhz using dual CPUs and machine 2 is Ultra Sparc II 

450Mhz. Both are connected to an 100M fast Ethernet switch 
while Machine 3 is Pentium III 350Mhz and connected through a 
10M Ethernet hub. Six different experiment sets are listed in 
Table 1. The first three sets have a single task graph and the next 
three sets have two disconnected task graphs. Tasks mapped to the 
SW component are simulated sequentially in a SW simulator 
while we use a separate HW simulator process for each task 
mapped to the HW component. 

 
Figure 8. Experiment graphs 

Table 1. Experiment sets 

 Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 

Graph (a) (b) (c) (a),(b) (a),(c) (b),(c) 

Machine 1 1 1,2 1,2 1,2,3 1,2,3 

For each set of experiment, we perform five different experiments 
by intentionally changing the execution time ratio between a SW 
task and a HW task as 1(SW):1(HW), 1:2, 2:1, 1:3 and 3:1. Figure 
10 illustrates the summary of performance improvement by the 
distributed execution of simulators compared with the serialized 
execution. Both adopt the virtual synchronization. The more 
simulators are involved in the cosimulation with similar execution 
times, the more performance gain is achieved. 

 
Figure 10. Cosimulation applied with parallelism/ normal 
serial cosimulation *100 (%) 

5.3 Comparison with Seamless CVE 
We compare the proposed approach with Seamless CVE co-
verification environment [16] using an H.263 decoder example 
which is composed of a HW IDCT block and remaining SW 
blocks. The approach uses Armulator for a processor simulator 
and ModelSim for a HW simulator as Seamless CVE does on the 
Ultrasparc II 450Mhz machine. In the Seamless CVE, we apply 
the instruction fetch optimization and the data access optimization 
[16] to enhance the simulation speed while maintaining the cycle 
accuracy. 
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The experiment result shows a significant performance 
enhancement. On Seamless CVE, the simulation takes 2031.71s 
to decode one frame of QCIF format. But the proposed approach 
ends the simulation at 303s and is 6.7 times faster. Such 
performance gain comes from reducing synchronization overhead 
and the active duration of simulators by the virtual 
synchronization. In our approach, HW simulation time is major 
bottleneck 78%. And IPC overhead and SW simulation times are 
18% and 4% respectively. 

6. CONCLUSION 
As the embedded systems are complex and the design turn-around 
time is shortened, the performance of co-simulation becomes 
more important to verify such a system. And the component 
simulators used in the cosimulation are likely to be heterogeneous 
or geographically distributed. So the fast distributed cosimulation 
is essential for the embedded system design. 

Our proposed backplane approach uses the “deadlock detection 
and recovery” approach to enhance the parallel execution of 
component simulators. The key contribution of the proposed 
approach is to combine data-driven and event-driven simulation 
technique for fast distributed cosimulation. Data-driven properties 
of the specification model reduce the number of communication 
packet exchanges by message grouping and minimize time-
synchronization overhead by virtual synchronization. Virtual 
synchronization also reduces the active duration of component 
simulators significantly. The preliminary experiments give 
promising results on the performance improvement specially 
when there are more component simulators involved. 
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