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A robust filtering problem is formulated and investigated for a class of nonlinear systems with correlated noises, packet losses, and
multiplicative noises. The packet losses are assumed to be independent Bernoulli random variables. The multiplicative noises are
described as random variables with bounded variance. Different from the traditional robust filter based on the assumption that the
process noises are uncorrelated with the measurement noises, the objective of the addressed robust filtering problem is to design a
recursive filter such that, for packet losses and multiplicative noises, the state prediction and filtering covariance matrices have the
optimized upper bounds in the case that there are correlated process and measurement noises. Two examples are used to illustrate

the effectiveness of the proposed filter.

1. Introduction

In recent years, the state estimation theory has received
extensive attention in many fields of application, such as
attitude estimation [1], target tracking [2], signal processing
[3], and integrated navigation [4]. State estimation refers
to a methodology that is used for estimating the state of a
time-varying system through noisy measurements, which are
different from other methods [5-9]. So far, various kinds of
filtering algorithms for state estimation have been presented,
for example, Kalman filter [10], extended Kalman filter (EKF)
[11], unscented Kalman filter (UKF) [12], and so forth. As is
well known, among those filters, Kalman filter is an optimal
solution based on the minimum mean square error rule
for linear systems and EKF is an effective way for softly
nonlinear system to estimate the state by using linearization
techniques. Although EKF is a popular estimating algorithm
in engineering practice, its use must satisfy the following
two assumptions: (1) the system model should be accurate
and (2) the additive noises should be Gaussian and uncorre-
lated. Otherwise, the performance of EKF can be degraded
severely, even unstable. Unfortunately, in real world, the
model uncertainty is an unavoidable and crucial problem for

nonlinear systems. Therefore it is required to develop a more
general filtering algorithm. To this end, the robust filtering
technique has been developed to reduce the unfavorable
effect of model uncertainties by establishing an appropriate
uncertain model in consideration of uncertainties. Up to
now, a lot of literatures on the robust filtering problem
with model uncertainties have been published, such as the
H_, filter [13-16], set-valued nonlinear filter [17, 18], mixed
H,/H_, filter [19, 20], and robust extended Kalman filter
design [21, 22]. In these reports, the robust recursive filter
design has been investigated to be available for handling the
nonlinear filtering problem with model uncertainties. For
instance, a discrete-time robust extended Kalman filter has
been presented for uncertain systems with sum quadratic
constraints in [21]. Due to the influence of the misalignments
of star sensors, by considering the model uncertainties, a
nonlinear robust filter for satellite attitude determination is
developed and verified in [22].

In literature mentioned above, however, only additive
noises are considered for nonlinear systems. Actually, another
important noise called multiplicative noise is often encoun-
tered in many engineering systems, such as attitude estima-
tion systems and airborne synthetic aperture radar systems. It



is coupled with the state and has an unknown noise variance,
which results in a negative impact on the state estimation.
Hence, the multiplicative noise is usually viewed as a model
uncertainty. Currently, the nonlinear robust filtering problem
with multiplicative noises has been much less researched.
In [23, 24], by utilizing linear matrix inequality approach, a
robust Kalman filter is derived for linear systems. Different
from them, another robust Kalman filter is proposed for
linear systems by finding two Riccati differential equations
and determining the filter parameters in [25]. Then, [26]
extends the work to nonlinear systems. Apart from multi-
plicative noises, signal transmissions in the sensor networks
are often unreliable. For example, sudden sensor failure,
random communication delays, and packet losses appear in
the practical system frequently [27-31]. All these lead to the
measurement mode uncertainty. Accordingly, the filtering
problem with packet losses has stirred considerable research
attention and many research results have been published
recently; see, for example [32-35]. In most literatures, the
packet loss is described as a random variable in the distri-
bution of Bernoulli, which may not be available because of
the existence of the different transmission process in multiple
sensors. In [36, 37], a diagonal matrix composed of Bernoulli
random variables is introduced to the measurement equation,
which means that individual sensor might have different
missing rates. Meanwhile, it is not difficult to find that the
most existing filtering researches concerning packet losses are
subject to linear systems. However, as we all know, nonlinear-
ity is inevitable in almost all engineering applications, which
will directly degrade the quality of the filtering performance.
For this purpose, a quantized recursive filtering is presented
for a class of nonlinear systems with missing measurements,
multiplicative noises, and quantization effects in [37]. Though
missing measurements and multiplicative noises are taken
into consideration at the same time, this work endures the
limitation that the measurement equation must be linear,
which makes that the algorithm in [37] cannot be extended
to solve the general nonlinear filtering problems in the case
that the process and measurement model are all nonlinear.
But note that the multiplicative noise case is just a special case
of the stochastic nonlinearities considered in [36]. Therefore,
an explicit and systematic solution to this problem can be
extended.

In addition, the correlation of additive noises is one of
the key factors to the filtering algorithm. Disturbed by the
complicated environment, the additive noises often show
the characteristic of correlation in the practical application.
Unluckily, the design procedures of all the above filters
for multiplicative noises or packet losses are based on the
assumption that there are uncorrelated additive noises in the
system. In fact, this assumption does not always come into
existence, and the process noise might be correlated with the
measurement noise in real applications. In [38], a modified
UKEF for nonlinear systems with correlated additive noises is
proposed. Wang et al. [39] extend the work to develop a Gaus-
sian approximation recursive filter framework to deal with
correlated noises. But model uncertainties are not considered
in these works. To the best of the authors’ knowledge, up to
the present, based on the assumption that the process noise is
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correlated with the measurement noise, the nonlinear robust
filtering problem with multiplicative noises and packet losses
has not been reported. Therefore, in order to better reflect the
actual situation and consider the complex dynamical systems,
there is a strong desire to develop a robust recursive filter to
handle the robust filtering problem with correlated additive
noises, multiplicative noises, and packet losses.

Motivated by the above discussion, we present a robust
recursive filter for a class of nonlinear systems with correlated
additive noises, multiplicative noises, and packet losses. In
this paper, multiplicative noises are assumed as zero mean
Gaussian white noises and the packet losses are modeled
as independent Bernoulli random variables. Based on the
structure of the extended Kalman filter with correlated noises,
the proposed filter designs an optimal upper bound of the
prediction error and the filtering error covariance matrices,
respectively. The main contributions of the paper are as
follows. (1) In the case that the process noise is correlated
with the measurement noise, a recursive filter framework
is established to deal with the robust filtering problem for
nonlinear systems in the presence of multiplicative noises
and packet losses. (2) The addressed robust recursive filter
problem is new especially when the correlated additive
noises appear in the system. (3) The developed robust filter
is recursive, which is suitable for online applications. The
remainder of the paper is organized as follows. In Section 2,
the problem is formulated. In Section 3, the robust recursive
filter with correlated additive noises, multiplicative noises,
and packet losses is developed. In Section 4, two simulation
examples are employed, and the simulation analysis is given.
In Section 5, some conclusions are drawn.

2. Problem Formulation and Preliminaries

Consider a general class of discrete time-varying systems with
multiplicative noises, correlated additive noises, and packet
losses:

q
X1 = f (%) + ZAfk’hkxk + W @
i=1

Vi = Zeh (%) + Zcfkfikxk + Vi (2)

i=1

where x, € R” is the state vector, y, € R is the
measurement vector, #;, and &, are the uncorrelated zero
mean Gaussian multiplicative noises, and Afk and ka are
known matrices with appropriate dimension. The diagonal
matrix Y, is denoted as X, = diag{)tl,)ti,...,/\f}, where
Ay i = L,2,...,m) are independent Bernoulli random
variables. It is assumed that A} has the probability density
function p(/\’;() on the interval [0,1] with mean y,i and
covariance (ali)z. The process noise w;, and the measurement
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noise v, are correlated zero mean Gaussian white noises,
which satisfies

E (Wk) = 0, cov (wk,wf) = Qkakj

E(v;) =0, cov (vk,v?) = Ry 3)

cov (wk,VJT) = §,0y;-

The deterministic nonlinear functions f(x;) : R" — R”
and h(x;) : R” — R™ are known. According to the known
measurement equation, we employ the assumption in [36] as
the following form:

I (x| < ay x| + az (4)

where g, and g, are the nonnegative scalars.

Because of existing correlated additive noises, for system
(1)-(2), a recursive filter with correlated noises to be designed
is constitutive of the following two steps including the state
prediction and correction:

State prediction:
Kerte-1 = f Xegpe) > ®)
Xeitlk = Xperrpe1 + L [Yk -Zh (iklkfl)] , (6)
State correction:

Xier1k+1 = Xerrke T Kiar [Yk+1 — I h (ik+1|k)] ()

where T, = E(Z;) = diag(pt,i,y,%, oo H); Xygg—y 1s the one-
step state prediction at time k — 1 with Xy_; = %05 Xy 1jk—1
is the two-step state prediction at time k — 1; L, and K, are
the gain parameters to be determined; X, is the state
estimation at time k + 1.

The aim of the paper is to design a recursive filter for
the structures (5)-(7), which make the filtering prediction
and estimation covariance have upper bounds in the presence
of multiplicative noises and packet losses. Suppose that two
positive definite matrices By and By, satisfy

_ _ S
E [(Xk+1 = Keratk) (ka1 = Kesaji) ] < B ©
8

N _ T
E [(Xk+1 - Xk+1|k+1) (X1 — Xk+1|k+1) ] S Sgrifkel

The addressed filtering problem is that the designed filter
parameters L, and K, in (5)-(7) should minimize the upper
bounds &y, and By gy

Remark 1. In engineering applications, multiplicative noises
constantly existing in the systems depend on the real state
value, which results in the unknown noise variance. As
discussed in [26], it should be seen as a model uncertainty.
Moreover, the definition (3) shows that the process noise
is correlated with the measurement noise. This requires
employing a new state prediction step in (5)-(6), which is
different from the state prediction of the recursive filter form

in [36, 37]. Meanwhile, the unknown prediction gain L, does
not exist in the literature [36, 37], which will lead to the
different estimation results. Subsequently, the packet losses
are described by utilizing the diagonal matrix ¥, in (2), which
indicates that the different sensors have different failure rates.
Since multiplicative noises, correlated additive noises, and
packetlosses are taken into account, the system (1)-(2) is more
generalized to describe the realistic situations in engineering.

3. Design of Robust Recursive Filter

3.1. The Error Covariance Matrix. Denote the two-step pre-
diction error as X, jk_; = Xgy1 — Xgpqpp—; and the one-step
prediction error as X, = X1 — Xgpq k- From (1), (2), (5),
and (6), they can be calculated as

q
Zerrpeor = F (%) = f Ripern) ZAfkﬂika +We  (9)
i=1

Xir1lk = Xper1]k-1
L —
=Ly [ Zh (xg) + Zcfkfikxk + Vi = Zph (Rgp) | -

i=1

(10)

The nonlinear functions f(x,) and h(x;) can be linearized
by utilizing the Taylor series expansion around X;_;:

F(x) = f Rieer) + AxZigper + 0 (R |) s (11)

h(x) = h (Rep-1) + CiXgpor + 0 ([Kegpa |) » (12)

where A, = af(xk)/axklxk:ik‘k_l; C, = 0h(x;)/ox;|
0(|%yk-1 1) and O(|X_;|) represent the high-order terms of
the Taylor series expansion. According to the literature [26],
0(|Xyk-11) and 0(|Xy ., |) can be expressed as

X =Xgjk-1’

0 (|Zep-1]) = BiBeErXppe1»
(13)

0 ([Rip-1]) = Dreri ExXypss

where B, € R™" and D, € R™" are known scaling matrices,
E, € R™ is a known tuning matrix, and B, € R™" and
a; € R”" are unknown time-varying matrices accounting
for the linearization errors of the system model that satisfies

af <L (14)

T
BB <L

According to (9), (11), and (13), the two-step prediction
error can be written as

q
Kertpk-1 = (A + BeBrEi) Koy + ZA;k”ikxk +w.  (15)
i=1



Substituting (12), (13), and (15) into (9), the one-step
prediction error can be determined as

q
Kok = (Ag + BiBrEy) Kpey + ZAfk"ika + Wi

i=1

.
-L [Zkh (%) + Zcfkfikxk + Vi

i=1

~Z; (h(x¢) = (Cx + Do By) Ky y) ]
= [(Ak + LkEka) + (Bkﬁk + LkEka“k) Ek] Kplk-1

- L (Ek - Ek) h(x) - Ly <Zcfk§ikxk + Vk)

i=1

q
+ Ajtl X + Wy
o1
= [(Ak + LkEka) + HkaIkEk] Xplk-1

- L (Ek - Ek) h(x) - L <zcjk£ikxk + Vk)

i=1

q
N
+ ZAik"ikxk + Wi
i=1

(16)

where it is assumed that Hy = [Bk kaka],Fk = [0‘;’: 0;;” ],
and J, = [i"i" ] and from (14) we have FkF,f <L

The one-step prediction error covariance can be obtained
as

P =E (ik+1|kiZ+1|k)
= [(Ak + LkEka) + Hka]kEk] Pri

— T
X [(A + L2 C) + HFJE ] - S L - L,S]

+L, ik oE (h (%) ht (xk))
S CLE (xxl) (C)T + Ry | LT
i=1

q
+ Y ALE (xx;) (A" + Qg
i=1

17)

where ¥, = diag{(o,i)z, (oﬁ)z, e (0;:1)2}.
Denote the estimation error as

Kir1lkt1 = X1 — Xep1jks1- (18)
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From (1), (2), and (7), it can be rewritten as

Xjer1]+1
= X1k — Ky [Yk+1 —Xpqh (Xk+1|k)]

= X1k

.
S
Zperth (Xepr) + Zcikﬂzikﬂxkﬂ + Vi
i=1

- Kk+1

_ R (19)
b (Reeni)

= (I — Ky 1 241Gy - Kk+12k+1Dk+1‘xk+1Ek+1) X1k

r
S
- Ky (zcik+1£ik+lxk+1 + Vk+1>

i=1

- Kk+1 (Zk+1 - Ek+1) h (xk+1) >

where Cy,, = oh(x;)/ axk|xk:ik+1,k

dependent scaling matrix; E;,; is a known tuning matrix;
o, is an unknown time-varying matrix that satisfies

; Dy, is a known problem-

RN (20)

Subsequently, in the light of (19), the filtering error
covariance can be expressed as

l:.k+1|k+1
~ =T
=E (Xk+1|k+lxk+1|k+1)
= (I — K1 21 Crar — Kk+lzk+1Dk+lak+lEk+1)

_ - - _ - T
X Py (T = Ky 1 21 ey — Ky Ziy 1 Dy 1 041 By 1)

+ Ky ik+1 °E (h (Xk+1) ' (Xk+1))

r
s T s T
+ ZcikHE (Xk+1xk+1) (Cik+1)
i=1

T
+Rk+1 Kk+1'

(21)

Remark 2. Since there are the high-order errors, the matrices
B> &, and «;,; are unknown, which makes the fact that the
prediction covariance Py, and the filtering error covariance
Pyi1jk+1 from (17) and (21) cannot be computed directly. In
order to complete the design of the filter, an effective way
is to calculate the upper bounds for the Py, and Py 4
and then design the prediction gain L; and the filtering gain
K., to minimize the upper bounds. Due to the influence
correlated noises and unknown prediction gain L, there is
a striking contrast between the prediction covariance Py
in this paper and the counterpart in the literature [36, 37].
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3.2. The Robust Recursive Filter Design. To develop the robust
recursive filter, the following lemmas are given.

Lemma 3 (see [40]). Let A = [aij]m be a real matrix and let
B = diag(b,, b,, ..., b,) be a diagonal random matrix. Then

E{tf} E{bb) - E{bb,)
E{bb} EV2 E{bb,
E{BAB"} = b} Es) {.2" oA, (22)

where o is the Hadamard product.

Lemma 4 (see [41]). Given matrices A, H, E, and F with
compatible dimensions such that FE' <1, let X be a symmetric
positive definite matrix and let y be an arbitrary positive
constant such that

y 'I- EXE" > 0. (23)

Then the following matrix inequality holds:

(A + HFE) X(A + HFE)” < A(X"' - yE"E) AT
(24)

+y 'HH'.

Lemma 5 (see [42]). For0 < k < n, suppose that X = x'>o,
e (X) = e[ (X) € R™, and g, (X) = g (X) € R™™". If there
exists Y > X such that

e (Y) > ¢, (X),

8k (Y) > € (Y) >

(25)

then the solutions My and N to the following difference
equations,

M., = ¢ (M), Nii = g (Ni),

M, =N, >0,

(26)

satisfy My < Nj.

According to these lemmas, the following theorem is
given to obtain the main results of the robust recursive filter.

Theorem 6. Consider the covariance matrices of the one-step
prediction errorand the filtering error in (17) and (21). Assume
that the conditions shown in (14) and (20) come into existence.

Let Ay, A,, &, and &, be positive scalars. If the following two
discrete-time Riccati difference equations,

Skt 1k

= (A + LEC) (Bks - 2L EPE) T (A + LEC)”

_ - T
+ 27" (BBf + LD, D, L) + Q- S,Lf — L]
+ Lk {ik o [2 (af tr (lek_l) + a;)] I

r q
T T T
+Zcfknk|k—1(cfk) + Rk} L, + ZAkakafl(A;‘sk) >
i1 i=1
(27)
E‘k+1|k+1
—  — 1 T — -1
= (1- Kk+12k+1Ck+1) (Erik — A2E1 Bet)

- — T 1 - —= =T =T _r
X (I - Kk+12k+1Ck+1) + Az Kk+12k+1Dk+le+1Zk+1Kk+l

+ Ky {ikﬂ o [2 (af tr (Agae) + “5)] I

.
s s T T
+Zcik+1Ak+1|k(Cik+1) + Rk+1} K
i=1

(28)

with initial covariance E_; = Eg, > 0 have positive definite
solution, such that for0 <k < N

1 - T
AT =TE e JkE)" >0,
(29)
1 — —_ =T
Ay 1= B BBy > 0,

where

- N\ T
Qe = (1+&) Epgpey + (1 +te )Xklk—lxklk—l’
(30)
Ak =(1+¢&)E +(1+s_1)i X
k+1lk — 2) =k+1|k 2 k+1k*+1]k>

then the prediction gain Ly and the filtering gain K., | are given
by

-1 Tp \ ATy
L = [Sk — A By — 24 ELEy) Ckzk]
5 =1 T \7 ! ~T5w
x {Eka(%k_l —2ME(E,) C[Z,

+1]'%,D,DIT,



+3 0 [2 (af tr Q1) + ai)] I

. -1
s s\T
+Y Gy (Cy) + Rk} ,

i=1

(31)

-1
-1 =T = =T &
Kii1 = Cprpe — MEiBrn) G Zi

-1

= =1 = = =I' &

X{Z Ck+1<=‘k+1|k_A2Ek+1Ek+1> Ck+12k+1
k+1

.
-y o =T T s s T
+ 25 T D Dy Zes + D Chn Ak Cier)
i1

-1
+Z441 © [2 (af tr (Ak+1|k) + a;)] I+ Rk+1}
(32)

and the matrices By, and By, are upper bounds for
Pk+l|k and Pk+1|k+l" that iS,

Ptk < Brajio Pt < Bt (33)

Moreover, the prediction gain L given by (31) minimizes the
upper bound By, and the filtering gain K, given by (32)
minimizes the upper bound By, ;.

Proof. According to (17) and (21), the prediction covariance
Py 1 and the filtering error covariance Py, can be
expressed as the functions of Py_; and Py

Proik = Prorie (Pret) » )

Pierr = Pratjirs (Proaie) -

Assume that ¢, is a positive scalar. The matrix inequality
can be obtained as

- T o ST o o le T
Xielk-1Xpk-1 T Xepk—1 Xk k-1 S E1¥nelke—1Xppk—1 T €1 Xefh—1Xnpk—1-
(35)

From (35), we have

E (kaZ) <E [(iklk—l + Kegie-1) (Kegge-t + iklk—l)T]

IN

(1+&) Py + (1 + sfl) ik|k—1iz|k—1 (36)
= Wik-1-

According to the literature [36], based on (4), we obtain
E{h(x)h" ()} < E{Jh(x )1’} < E{(a [xe] + @)’} 1

<2afE {”Xk"Z} + 2a§) I

IN

2 [af tr (E (xkxz)) + af] L

(37)
Substituting (36) into (37), it can be rewritten as

E {h (x,) h" (xk)} <2 [af tr (Wppp) + aﬂ L (38)
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Furthermore, inserting (36) and (38) into (17), the one-
step prediction error covariance can be rearranged as

Prig < [(Ak + LkEka) + HkaIkEk] Pri
5 T T T

+ Lk[ ik o2 [af tr (‘I’klk_l) + a;] I

.
T
+ D Ch ¥ 1 (Ch)' + Ry Ly

i=1

q
T
+ ) ALY (A) + Qp
i=1

(39)
Similar to (36) and (38), let &, be a positive scalar; we have
T “Ne T
E (Xk+1xk+1) < (1+&) Py + (1 te, )xk+1|kxk+1|k

= Ak+1|k’

E {h (1) h' (Xk+1)} <2 [af tr (Agyip) + 5’22] L
(40)

Substituting (40) into (21), we have

| AT
= (I - Kk+1§k+1Ck+1 - Kk+lfk+1Dk+1&k+lEk+l) Pk+1|k

= = - = _ = T
X (I - Kk+12“k+1Ck+1 - Kk+12k+1Dk+lak+lEk+l)

+ Kiy {ikﬂ ° [2 (“f tr (Agae) + C‘;)] I

,
T T
+Zcfk+1Ak+1|k(ka+1) + Rk+1} Kii
i=1

(41)

From (27) and (28), &y, and By, 41 can be rewritten
as the functions of By, _; and B, ;i

—
=)
—

[1]

kil = St (Bigeer) »

(42)

[m
[1]1

—
=
(=

k+1lk+1 = “k+1]k+1 ( k+1|k)'
Assume that there exist A; > 0 and A, > 0. Let the

matrices E; and Ey,, satisfy the inequalities

ATT- ]kEkEklk—1(IkEk)T >0,
(43)
-1 = =T
Ay T= B EppriEyyy > 0.
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According to Lemma 4, we have

[(Ak + kakck) + Hka]kEk] Erlk-1
— T
x [(Ag + LiZiCr ) + HeFJ L Ey |
< (Ac+ LEC) (Bih, - 21, ETE,)
x (A + L) + A7 <BkBZ + LkEkaDZEZLZ) ,
(I ~Ky1 2401 Cray — Kk+lfk+1ﬁk+1&k+lﬁk+1) Bk

- = — — _ = \T
X (I - Kk+12k+lck+1 - Kk+12k+1Dk+1“k+1Ek+1)

_ _ o _ -1
< (1 - Kk+12k+1Ck+1) (E‘l;illk - ’\ZEZHEkH)

x (I - I(kﬁ—IEkHEkH)T

- — —T =1 _T
'K, 2., D,.,D,. 2. K
+ Ay Ky 21 D1 Vg 1 By g

(44)

Combining (39) and (41)-(44), the condition (25) can be
satisfied in Lemma 5. Thus, according to Lemmas 4 and 5, we
have

Ptk < B Pritkr1 < Braajier- (45)

To minimize the upper bounds, constructingthe opti-
mized prediction gain L, and the filtering gain K, is to
minimize the upper bounds &y, and By, ; according to
(27) and (28), we have

otr (Egpuk) _ 5

] = Ty 1
(A + LkaCk) (Brper — 21 E By
oL,

X szk - ZSk
s =
+2L, {/\1 %,D,D'T,
+ ik o [2 (af tr (lek_l) + a;):l |

.
T
+Zcfkﬂk|k—l(c;‘sk) + Rk} =0,

i=1

otr (Bgyyjsr)
aKk+1

- — 1 T — -1
=-2 (I - Kk+12k+1Ck+1) sk — 2B Brar)

—T —
x Ck+12‘k+1

7
s = =T ST
+ 2'Kk+1 {/\2 Zk+1Dk+1Dk+12k+1
< 2 2
+ X © [2 (‘11 tr (Agsrp) + az)] I
c T
+ZC?k+1Ak+1|k(C?k+1) + Rk+1} =0,
=1
(46)

where Q. _; and Ay, are defined in (30).

Considering (46), the optimized prediction gain L; and
the filtering gain K, can be obtained in (31) and (32). The
proof is completed. O

For the sake of clarity, the robust recursive filter is
summarized as follows.

Step 1. Given X;;_; and Ey_; and from (31), the prediction
gain L, is computed. Using (5) and (31), the one-step state
prediction X, _; and the upper bound Ej ;. can be obtained
by (6) and (27).

Step 2. The filtering gain K ,; can be given by (32). The state
estimation X, ;c,; and the upper bound E; , ;. can be given
by (7) and (28).

Step 3. Repeat Step 1 to update the one-step state prediction
and its upper bound and use Step 2 to obtain the state
estimation.

Remark 7. The robust recursive filter problem is removed by
using Theorem 6 for nonlinear systems with multiplicative
noises, correlated additive noises, and packet losses. Different
from the most existing robust filter literature, the robust
recursive filter design proposed in this paper is based on
the structure including state prediction and state correction
in the presence of the correlated additive noises. Note that
the phenomenon of correlated additive noises, multiplicative
noises, and packet losses arises in the engineering applica-
tions. In order to solve this problem, a robust recursive filter
is derived to find the upper bound of the prediction error
covariance and the filtering error covariance and design the
filter parameters to minimize the upper bounds. It is worth
mentioning that, though the correction terms in (28) and (32)
are similar to the corresponding component in [36], there is a
clear difference between the prediction terms in (27) and (31)
caused by correlated additive noises and the counterpart in
[36, 37], which will directly affect the estimation results. This
distinguishes our work from the work in [36, 37].

4. Simulation

To show the effectiveness of the proposed robust recursive
filter (RRF), it is compared with the finite-horizon extended
Kalman filter (FEKF) in the literature [36] by employing the
following examples.



Example 8. The discretized maneuvering target tracking
example in [36, 37] is presented including correlated additive
noises, multiplicative noises, and packet losses:

X1,k+1] _ [0-8X1,k + xl,kxz,k]
X) 41 15Xy p = Xy Xk

L [0:06 0.08] [x] , [0.01
0.09 0.12| "k |x,, | T 0.03| Wk

Vi = i X 7.5sin (X, ) + [0.15 0.2] &, [zl,k] t v
2k

Xi+1 = [

where the state x;, = [x{k xgk]Trepresents the position
and velocity of target; 7, and &, are independent zero mean
Gaussian white noises with covariance 1I; w; and v, are
correlated zero mean Gaussian noises with Q; = 0.05 and
R, = 0.05. Let S; = 0.02. The mean and covariance of X, are
determined as i, = 0.9 and (0;)* = 0.065.

The initial state and covariance are set as Xy, = [1.8 0.2
and g, = 20L,. Letg; = 04, ¢ = 035,14, = A, = 0.002,

D, = D,,, = [0.1 0.15]", E, = E,, = 0.011,, and B, =
diag{0.1,0.2}.

To evaluate the performance of the proposed robust
recursive filter, the mean square error (MSE) is employed.
And it can be expressed as

]T

1 _
MSE = — ¥ (x; — %e)” (48)
Nk—l

where N is the sample number.

Simulation results are shown in Figures 1-4. From Figures
1 and 2, it can be seen that, compared with the FEKF in [36],
the proposed robust recursive filter performs better when
the model is correlated with additive noises, multiplicative
noises, and packet losses. Both true position and velocity
are tracked well. This is because the effect of the proposed
algorithm can compensate for the correlated noise, while the
FEKF cannot. Shown in Figures 3 and 4 are the comparisons
of MSE of the estimated states with the corresponding diag-
onal elements of the estimation error covariance. Obviously,
for the proposed algorithm, the MSE of the estimated state is
always lower than the upper bound. This confirms the results
of Theorem 6. Meanwhile, the MSE of the RRF stays below the
MSE of the FEKF, which further illustrates that the proposed
algorithm has higher precision than the FEKF in presence of
correlated additive noises, multiplicative noises, and packet
losses.

Example 9. According to the literature [26], the robust
recursive filter is considered to handle the attitude estima-
tion problem with correlated additive noises, multiplicative
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T (s)
—eo— Actual state x;
—+— Estimated state x; (RRF)
—— Estimated state x; (FEKF)

FIGURE 1: The trajectory of the actual state x; and its estimate.

2.5 T T T T T

—o— Actual state x,

—+— Estimated state x, (RRF)
—— Estimated state x, (FEKF)

FIGURE 2: The trajectory of the actual state x, and its estimate.

noises, and packet losses. The system process models are
expressed as follows:

At
Xy = [Qkﬂ] _ | Laxa t ?Q(“’k = Bi) 04 [qk]
’ Prena 05,4 L3 B
At _
oot
05,3 "
s 0
— = n. 4x1
= f (% @) + ZAlknszk + [% \/EIM] Wi

i=1
(49)
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—— MSE of state x; (RRF)
--— MSE of state x, (FEKF)

FIGURE 3: MSE of the estimated state x; and upper bound.
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Log
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—— MSE of state x, (RRF)
--— MSE of state x, (FEKF)

FIGURE 4: MSE of the estimated state x, and upper bound.

where the state x; consisted of the quaternion vector q; and
the gyro bias vector f,; @, is the gyro measured angular
rate at time k; At is the gyros sampling interval; #, is the
Gaussian white-noise process with zero mean and covariance
02; 1, is the zero mean Gaussian white-noise process with
covariance aiAt; s = 3; 1 is the zero mean multiplicative
noise with covariance 1; wy is the zero mean Gaussian noise
with covariance 1; [wx] is a cross-product matrix defined by

0 -w; w,
w; 0 -w|,
-w, w; 0

>

QW) = [‘[“’?] “’]

lax] = -w 0

(50)

A, are known scaling matrices with appropriate dimen-
sion, which can be expressed as

'k:_Atov[Ailk 04X3], (51)
! 2 [03y4 O35
where
0 0 0 1] [0 0 -1 0
|0 010 (o0 01
Ak=10 —100] A%=110 0 0|
-1 0 00| [0 -1 0 0
) i (52)
0100
. _|-10 0 0
As=10 0 0 1
0 0-10]

The measurement model can be described as

1 1

o Ag)P] |

2= |2 | =2 [A(q) P | + | Vi | = Zeh(xi) + 00 Ve
2 A(q) ¥ v
k %

(53)

where z}'( (i = 1,2,3) is the measurement vector; A(qy) is the
real attitude matrix at time k; ¥ (i = 1,2, 3) is the reference
vector of the star sensors; i is the number of star sensors. v},
is a zero mean Gaussian white noise with covariance matrix
05213 « 35 Vi 1s the zero mean Gaussian noise with covariance
Lifq = [4),92 G594l = [p'>q,]", the attitude matrix can
be written as

A@=(qs-p'p) L +20p" —2q,[px].  (54)

The simulation conditions are set as follows: the gyro
sampling interval is At = 0.25s; the standard deviation of
gyros’ measurement noise is o, = 1.45444 x 10 rad/s"/?;
the standard deviation of gyros’ drift noise is 0, = 1.3036 x
107" rad/s**; w, and v, are correlated zero mean Gaussian
noises with Q. = 1 and R, = I;let §; = 0.5; the standard
deviation of star sensors’ measurement noise is all o, = 18";
due to using three star sensors, the reference vectors of the

star sensors are ¥ = [1 0 0]",# = [0 1 0] and ¥ =

[0 0 I]T; because of the high precision of the star sensors,
the estimation error is rather small in the attitude estimation
system. Therefore, set B, = 0, D, = Dy, = 0. The random
variables gj. (i =1,2,...,9) satisfy the Bernoulli distribution
with fk = diag{0.8,0.8,0.8,0.9,0.9,0.9,0.95,0.95,0.95}; let
& =¢ =0.1and A, = A, =0.0001; let C;t,; = 0,4, =1,and
a, = 0.05.

The simulated results are shown in Figures 5 and 6.
In Figure 5, blue lines represent the quaternion estimation
errors of the RRE, green dashed lines represent the quaternion
estimation errors of the FEKF, and red dashed lines show the
corresponding diagonal elements of the error covariance of
the RRE. It can be seen clearly that the estimation errors of
the quaternion vector part of the RRF are generally within
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FIGURE 5: The quaternion estimation errors of the proposed filter.

15

Roll ()

0 100 200 300 400 500 600

T (s)
()
15

=

S

-y

0 , . . . .
0 100 200 300 400 500 600

T (s)

(®)

3
0 , , , , ,
0 100 200 300 400 500 600
T (s)
—— RRF
FEKF

(c)

FIGURE 6: RMSE of attitude angles in the proposed filter.
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the boundaries of the computed covariance, which indi-
cates that the proposed filter can control correlated additive
noises, multiplicative noises, and packet losses. Besides, the
quaternion estimation errors of the RRF are smaller than the
quaternion estimation errors of the FEKF. These show that
the RRF performs better than the FEKE Furthermore, since
it is very important for attitude estimation to get the angle
information, the estimated quaternion needs to be converted
as the form of Euler angles. In Figure 6, root mean square
error (RMSE) is employed to express the quality of the Euler
angle estimation. For the RRF, the means of RMSE of the
attitude angles are 3.199”, 3.125", and 3.195", respectively,
which are lower than the REKF obviously. The reason why
our method has such advantages is that the effects of arising
multiplicative noises, packet losses, and correlated additive
noises are all compensated for without loss of generality.

5. Conclusion

Due to the fact that existing robust filtering algorithms are
difficult in dealing with correlated additive noises, a robust
recursive filter is developed in this paper for nonlinear
systems with consideration of correlated additive noises,
multiplicative noises, and packet losses. The proposed algo-
rithm is designed to minimize the upper bound on the
prediction covariance and the filtering covariance. Simulated
results demonstrate that the proposed filter provides effective
performance for controlling correlated additive noises, mul-
tiplicative noises, and packet losses.
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