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Most existing array processing algorithms are very sensitive to model uncertainties caused by the mutual coupling and sensor
location error. Tomitigate this problem, a novel method for direction-of-arrival (DOA) estimation and array calibration in the case
of deterministic signals with unknown waveforms is presented in this paper. The analysis begins with a comprehensive perturbed
array output model, and it is effective for various kinds of perturbations, such as mutual coupling and sensor location error. Based
on this model, the Space Alternating Generalized Expectation-Maximization (SAGE) algorithm is applied to jointly estimate the
DOA and array perturbation parameters, which simplifies the multidimensional search procedure required for finding maximum
likelihood (ML) estimates. The proposed method inherits the characteristics of good convergence and high estimation precision
of the SAGE algorithm. At the same time, it forms a unified framework for DOA and array perturbation parameters estimation in
the presence of mutual coupling and sensor location error. The simulation results demonstrate the effectiveness of the algorithm.

1. Introduction

The problem of estimating direction-of-arrival (DOA) of
multiple narrowband signals plays an important role inmany
fields, including radar, wireless communications, seismology,
and sonar.The performance ofmost existingDOAestimation
methods relies crucially on perfect knowledge of the array
manifold. In practice, however, the array manifold is often
affected by the mutual coupling, gain/phase uncertainty,
sensor location error, and so forth. Without array manifold
calibration, the performance of DOA estimation may deteri-
orate significantly.

To mitigate this problem, various array calibration meth-
ods have been proposed. Those methods formulate the
array perturbations with unknown parameters and estimate
those parameters together with the source directions, so as
to realize array calibration and DOA estimation. Most of
the existing methods only focus on certain type of array
imperfection, such as mutual coupling [1–4], gain/phase
uncertainty [5–7], and sensor location error [8, 9]. The
DOA estimation problem in the presence of more than
one type of array perturbation has also been studied in a
small amount of literatures [10, 11]. However, the method

in [10] is computationally much expensive as it requires
multidimensional parameter searching, while the method in
[11] needs to know the directions of the calibration sources.

Among all popular DOA estimation methods, the maxi-
mum likelihood (ML) approach provides the best asymptotic
performance and remains stable in scenarios involving small
numbers of snapshots, coherent signals, and low signal-to-
noise ratios (SNR). The main drawback of the ML approach
is the high computational complexity caused by optimization
of the likelihood function. To reduce this difficulty, the
Expectation-Maximization (EM) algorithm has been derived
for both deterministic and stochastic signal models with
known noise covariance structure [12, 13]. The Space Alter-
natingGeneralized EM (SAGE) algorithm is a variation of the
widely used EM algorithm, which updates subsets of param-
eters sequentially in one iteration.Through the augmentation
scheme specified by the EM or SAGE algorithm, the com-
plicated multidimensional search involved in maximizing
likelihood functions can be simplified to one-dimensional
search. It was proved in [14] that SAGE converges faster than
EM while retaining the advantages of numerical simplicity
and stability due to its flexible augmentation scheme. Both
the EM algorithm and the SAGE algorithm are earlier applied
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to DOA estimation problem in accurately calibrated arrays.
However, because the directional information can hardly be
extracted directly when array perturbation exists, there is
little literature using EMor SAGE algorithm to estimateDOA
in perturbed arrays. In [15], we present a comprehensive per-
turbed output model, which makes the relationship between
the array output and the perturbation parameters clearer.The
sparse Bayesian method and EM algorithm are applied to
estimate DOA and perturbation parameters in the case of
stochastic signals.

In this paper, we focus on deterministic and unknown
narrowband signals. And a single type of array imperfection
is considered, withmutual coupling and sensor location error
treated as typical examples. Based on the comprehensive
perturbed array output model proposed in [15], we derive
an SAGE-based algorithm, which applies the SAGE algo-
rithm to jointly estimate DOA and perturbation parameters.
Compared to the existing method, the proposed algorithm
can achieve higher estimation precision; at the same time, it
follows a unified framework to address the DOA estimation
problem in the presence of array imperfections, with typical
perturbations of mutual coupling and sensor location error
taken into consideration.

This paper is outlined as follows. The comprehensive
perturbed array output model is described in Section 2. The
SAGE algorithm for DOA estimation and array calibration is
developed in Section 3. Numerical results are presented and
discussed in Section 4. Section 5 concludes this work.

2. Perturbed Array Output Formulation

Consider that 𝐾 unknown and deterministic narrowband
signals impinge onto an 𝑀 element uniform linear array
from directions of 𝜗 = [𝜗

1
, . . . , 𝜗

𝐾
]
𝑇, where 𝐾 < 𝑀. We take

the first array sensor as the reference. The perturbed array
output is given as follows:

x (𝑡) =
𝐾

∑

𝑘=1

a󸀠 (𝜗
𝑘
) 𝑠
𝑘
(𝑡) + k (𝑡) = A󸀠 (𝜗) s (𝑡) + k (𝑡) , (1)

where the array responding matrix A󸀠(𝜗) = [a󸀠(𝜗
1
), . . .,

a󸀠(𝜗
𝐾
)] and a󸀠(𝜃) is the perturbed responding vector. The

observe vector x(𝑡) = [𝑥
1
(𝑡), . . . , 𝑥

𝑀
(𝑡)]
𝑇 is sampled at time

instances 𝑡 = 𝑡
1
, . . . , 𝑡

𝑁
, where 𝑁 represents the number of

snapshots. The signal vector s(𝑡) = [𝑠
1
(𝑡), . . . , 𝑠

𝐾
(𝑡)]
𝑇, and

𝑠
𝑘
(𝑡) is thewaveformof the 𝑘th signal.Thenoise vector k(𝑡) =

[V
1
(𝑡), . . . , V

𝑀
(𝑡)]
𝑇 is independent, identically complex, and

normally distributed with zero mean and covariance matrix
𝜎
2I, where 𝜎 is an unknown noise spectral parameter. The

two types of typical array perturbations, including mutual
coupling and sensor location error, are concerned in this
paper, and the array geometry is assumed to be linear to
simplify notations. The sensor location error is also assumed
to exist along the array axes and thus does not destroy the
linear geometry of the array.

The perturbed array responding vector has diverse
expressions in the case of different array imperfections.When
mutual coupling is present, the vector is a󸀠(𝜗) = Ca(𝜗) [2],

with C representing the mutual coupling matrix. The mutual
coupling matrix can be written more explicitly as C =

toeplitz([1, 𝑏
1
, . . . , 𝑏

𝑃
, 0𝑇
(𝑀−𝑃−1)×1

]
𝑇

), where 𝑏
𝑝

∈ C is the
coupling coefficient of the two sensors displaced by 𝑝 −

1 times the interelement spacing of the ULA, and 𝑏
𝑝
is very

small when 𝑝 > 𝑃 and is, thus, neglected. The perturbed
array responding vector in the presence of sensor location

error is a󸀠(𝜃) = [𝑒𝑗2𝜋(𝑑1+𝑑1) sin 𝜃/𝜆, . . . , 𝑒𝑗2𝜋(𝑑𝑀+𝑑𝑀) sin 𝜃/𝜆]
𝑇

, with
𝑑
1
, . . . , 𝑑

𝑀
being the location errors of the 𝑀 sensors [8].

In this paper, we take the first array sensor as the reference;
thus 𝑑

1
= 0 and 𝑑

1
= 0.

Although the directional information of the incident
signals is still reserved in the perturbed array outputs, it
can hardly be extracted directly based on the array output
formulation in (1), as the structure of A󸀠(𝜗) is not available
beforehand due to the unknown array imperfections. In order
to highlight the perturbation-free signal components and
also make the relationship between the array output and
the perturbation parameters clearer, we have established the
following comprehensive formulation of the perturbed array
output in [15]:

x (𝑡) = A󸀠 (𝜗) s (𝑡) + k (𝑡) = A (𝜗) s (𝑡) +Q (𝑡) c + k (𝑡) .
(2)

Equation (2) adapts to the typical array perturbations,
including mutual coupling and sensor location error, with
c standing for a column vector consisting of the array
perturbation parameters, c ∈ C𝑃×1 for mutual coupling, and
c ∈ R(𝑀−1)×1 for sensor location error. We use 𝑃 to denote
the dimension of c uniformly for notational convenience;
that is, c = [𝑐

1
, . . . , 𝑐

𝑃
]
𝑇, and 𝑃 = 𝑀 − 1 in the case of

sensor location error.The explicit formulation ofA󸀠(𝜗) varies
with respect to the array perturbation type, and the following
equation holds forQ(𝑡) and c:

Q (𝑡) c = [A󸀠 (𝜗) − A (𝜗)] s (𝑡) ≜ ΨΦ (𝜗) s (𝑡) , (3)

where Ψ is a function of c and independent of the signal
directions, while Φ(𝜗) is independent of c and relies on the
signal directions; they diverge largely according to the array
perturbation type. However, for each of the typical pertur-
bations, it holds for Q(𝑡) that [Q(𝑡)]

:,𝑝
= G
𝑝
Φ(𝜗)s(𝑡) with

G
𝑝
= 𝜕Ψ/𝜕𝑐

𝑝
. Such an expression of Q(𝑡) is concluded by

taking the differentiations of both sides of (3) with respect to
𝑐
𝑝
. In order to explain (2) and (3) more explicitly, we itemize

the expressions of c,Ψ,Φ(𝜗), andQ(𝑡).

Mutual Coupling. Equation (2) can be rewritten as follows in
the case of mutual coupling:

x (𝑡) = A (𝜗) s (𝑡) + (C − I
𝑀
)A (𝜗) s (𝑡) + k (𝑡)

= A (𝜗) s (𝑡) +Q (𝑡) c + k (𝑡) .
(4)

By combining (3) and (4), it can be concluded that Ψ =

(C−I
𝑀
) = toeplitz([0, 𝑏

1
, ⋅ ⋅ ⋅ , 𝑏

𝑃
, 0𝑇
(𝑀−𝑃−1)×1

]
𝑇

),Φ(𝜗) = A(𝜗),
𝑐
𝑝

= 𝑏
𝑃
, [Q(𝑡)]

:,𝑝
= G
𝑝
A(𝜗)s(𝑡), and G

𝑝
= 𝜕Ψ/𝜕𝑐

𝑝
=

𝜕C/𝜕𝑏
𝑝
contain nonzero elements of 1 only on the ±𝑝 diag-

onals.
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Sensor Location Error.Equation (2) can be rewritten as follows
in the case of sensor location error:

x (𝑡) = A (𝜗) s (𝑡) + diag ([0, 𝑑
2
, . . . , 𝑑

𝑀
]
𝑇

)

× A (𝜗) diag (
𝑗2𝜋

𝜆
[sin 𝜗
1
, . . . , sin 𝜗

𝐾
]
𝑇

) × s (𝑡) + k (𝑡)

= A (𝜗) s (𝑡) +Q (𝑡) c + k (𝑡) .
(5)

The first equation in (5) is concluded via first-order Tay-
lor expansion under the assumption of small sensor loca-
tion errors, and Ψ = diag([0, 𝑑

2
, . . . , 𝑑

𝑀
]
𝑇

), Φ(𝜗) =

A(𝜗) diag((𝑗2𝜋/𝜆)[sin 𝜗
1
, . . . , sin 𝜗

𝐾
]
𝑇
), 𝑐
𝑝

= 𝑑
𝑃+1

, G
𝑝

=

𝜕Ψ/𝜕𝑐
𝑝
have their (𝑝 + 1, 𝑝 + 1)th element being the only

nonzero value of 1.

3. SAGE-Based Algorithm for DOA Estimation
and Array Calibration

It is well known that both EM algorithm and SAGE algo-
rithm have been applied to the question of DOA estimation
without array imperfections. And they can achieve the global
convergence. The EM algorithm is a general numerical
method for finding maximum likelihood estimates which
is characterized by simple implementation and stable con-
vergence. The SAGE algorithm is a generalized form of the
EM algorithm, which allows a more flexible optimization
scheme and converges faster than the EM algorithm. Instead
of estimating all parameters at once in EM, SAGE breaks
up the problem into several smaller ones and uses EM to
update the parameter subset associated with each reduced
problem. In this section, based on the existing comprehensive
perturbed array output model, we propose an SAGE-based
algorithm to jointly estimate DOA and array perturbation
parameters. At the same time, for comparing the performance
of the SAGE and EM algorithms in array self-calibration
problem, the EM-based algorithm is also considered.

Based on the comprehensivemodel of the perturbed array
output in (2), we construct the augmented data as follows for
separating different signal components of array output:

y
𝑘
(𝑡) = a󸀠 (𝜗

𝑘
) 𝑠
𝑘
(𝑡) + k

𝑘
(𝑡)

= a (𝜗
𝑘
) 𝑠
𝑘
(𝑡) +Q

𝑘
(𝑡) c + k

𝑘
(𝑡) ,

𝑘 = 1, . . . , 𝐾,

(6)

where Q
𝑘
(𝑡)c = [a󸀠(𝜗

𝑘
) − a(𝜗

𝑘
)]𝑠
𝑘
(𝑡), [Q

𝑘
(𝑡)]
:,𝑝

= (𝜕/𝜕𝑐
𝑝
)

[a󸀠(𝜗
𝑘
) − a(𝜗

𝑘
)]𝑠
𝑘
(𝑡) ≜ G

𝑘,𝑝
𝜙(𝜗
𝑘
)𝑠
𝑘
(𝑡).G
𝑘,𝑝

and 𝜙(𝜗
𝑘
) diverge

largely according to the array perturbation type.

Mutual Coupling. Equation (6) can be rewritten as follows in
the case of mutual coupling:

y
𝑘
(𝑡) = a (𝜗

𝑘
) 𝑠
𝑘
(𝑡) + (C − I

𝑀
) a (𝜗
𝑘
) 𝑠
𝑘
(𝑡) + k

𝑘
(𝑡)

= a (𝜗
𝑘
) 𝑠
𝑘
(𝑡) +Q

𝑘
(𝑡) c + k

𝑘
(𝑡) ,

𝑘 = 1, . . . , 𝐾.

(7)

It can be concluded that 𝜙(𝜗
𝑘
) = a(𝜗

𝑘
), c = [𝑐

1
, . . . , 𝑐

𝑃
]
𝑇
=

[𝑏
1
, . . . , 𝑏

𝑃
]
𝑇, and G

𝑘,𝑝
= 𝜕C/𝜕𝑏

𝑝
contain nonzero elements

of 1 only on the ±𝑝 diagonals.

Sensor Location Error. Equation (6) can be rewritten as
follows in the case of sensor location error:

y
𝑘
(𝑡) = a (𝜗

𝑘
) 𝑠
𝑘
(𝑡) + diag ([0, 𝑑

2
, . . . , 𝑑

𝑀
]
𝑇

)

× a (𝜗
𝑘
)
𝑗2𝜋

𝜆
sin 𝜗
𝐾
× 𝑠
𝑘
(𝑡) + k

𝑘
(𝑡)

= a (𝜗
𝑘
) 𝑠
𝑘
(𝑡) +Q

𝑘
(𝑡) c + k

𝑘
(𝑡) ,

𝑘 = 1, . . . , 𝐾.

(8)

It can be concluded that 𝜙(𝜗
𝑘
) = a(𝜗

𝑘
)(𝑗2𝜋/𝜆) sin 𝜗

𝐾
, c =

[𝑐
1
, . . . , 𝑐

𝑃
]
𝑇

= [𝑑
2
, . . . , 𝑑

𝑀
]
𝑇

, and G
𝑘,𝑝

have their (𝑝 +

1, 𝑝 + 1)th element being the only nonzero value of 1.
k
𝑘
(𝑡) is a portion of noise extracted from k(𝑡), and k

𝑘
(𝑡) ∼

N(0, 𝜌
𝑘
𝜎
2I
𝑀
), 0 ≤ 𝜌

𝑘
≤ 1.

In the framework of the EM algorithm, the noise process
k
𝑘
(𝑡), (𝑘 = 1, . . . , 𝐾) is independent and 𝜌

𝑘
= 1/𝐾, so the

likelihood of y
𝐾
(𝑡) is given by

𝑝EM (y
𝑘
(𝑡) | Ω

𝑘
(𝑡))

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜋
𝜎
2

𝐾
I
𝑀

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

−1

exp {− 𝐾
𝜎2

󵄩󵄩󵄩󵄩󵄩
y
𝑘
(𝑡) − a󸀠 (𝜗

𝑘
) 𝑠
𝑘
(𝑡)
󵄩󵄩󵄩󵄩󵄩

2

2
} ,

(9)

where Ω
𝑘
(𝑡) is the subset of all unknown parameters set

Ω = {𝜗, {s(𝑡
𝑛
)}
𝑁

𝑛=1
, c, 𝜎2} and, correspondingly, Ω(𝑡) =

{𝜗, s(𝑡), c, 𝜎2}. Because k
𝑘
(𝑡
𝑛
), (𝑘 = 1, . . . , 𝐾, 𝑛 = 1, . . . , 𝑁) is

independent, we can infer that y
𝑘
(𝑡
𝑛
), (𝑘 = 1, . . . , 𝐾, 𝑛 =

1, . . . , 𝑁) is independent. Hence, the unified log-likelihood
of {y
1
(𝑡
𝑛
), . . . , y

𝐾
(𝑡
𝑛
)}
𝑁

𝑛=1
is given by

LEM ({y
1
(𝑡
𝑛
) , . . . , y

𝐾
(𝑡
𝑛
)}
𝑁

𝑛=1
)

=

𝐾

∑

𝑘=1

LEM ({y
𝑘
(𝑡
𝑛
)}
𝑁

𝑛=1
)

= 𝐾𝑀𝑁 ln𝜎2 + 𝐾

𝜎2

𝑁

∑

𝑛=1

𝐾

∑

𝑘=1

󵄩󵄩󵄩󵄩󵄩
y
𝑘
(𝑡
𝑛
) − a󸀠 (𝜗

𝑘
) 𝑠
𝑘
(𝑡
𝑛
)
󵄩󵄩󵄩󵄩󵄩

2

2
.

(10)

In the framework of the SAGE algorithm, k
1
(𝑡) = ⋅ ⋅ ⋅ =

k
𝐾
(𝑡) = k(𝑡) and 𝜌

𝑘
= 1, so the likelihood of y

𝐾
(𝑡) is given by

𝑝SAGE (y𝑘 (𝑡) | Ω𝑘 (𝑡))

=
󵄨󵄨󵄨󵄨󵄨
𝜋𝜎
2I
𝑀

󵄨󵄨󵄨󵄨󵄨

−1

exp {− 1

𝜎2

󵄩󵄩󵄩󵄩󵄩
y
𝑘
(𝑡) − a󸀠 (𝜗

𝑘
) 𝑠
𝑘
(𝑡)
󵄩󵄩󵄩󵄩󵄩

2

2
} .

(11)

Because k
1
(𝑡) = ⋅ ⋅ ⋅ = k

𝐾
(𝑡) = k(𝑡) for the SAGE algorithm,

we can infer that y
1
(𝑡), . . . , y

𝐾
(𝑡) have the same distribution.

Hence, the unified log-likelihood of {y
1
(𝑡
𝑛
), . . . , y

𝐾
(𝑡
𝑛
)}
𝑁

𝑛=1
is

the mean of the log-likelihood of {y
𝑘
(𝑡
𝑛
)}
𝑁

𝑛=1
for different 𝑘

value.
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Consider

LSAGE ({y1 (𝑡𝑛) , . . . , y𝐾 (𝑡𝑛)}
𝑁

𝑛=1
)

=
1

𝐾

𝐾

∑

𝑘=1

LSAGE ({y𝑘 (𝑡𝑛)}
𝑁

𝑛=1
)

= 𝑀𝑁 ln𝜎2 + 1

𝐾𝜎2

𝑁

∑

𝑛=1

𝐾

∑

𝑘=1

󵄩󵄩󵄩󵄩󵄩
y
𝑘
(𝑡
𝑛
) − a󸀠 (𝜗

𝑘
) 𝑠
𝑘
(𝑡
𝑛
)
󵄩󵄩󵄩󵄩󵄩

2

2
.

(12)

According to (10) and (12), the log-likelihood of
{y
1
(𝑡
𝑛
), . . . , y

𝐾
(𝑡
𝑛
)}
𝑁

𝑛=1
for the EM and SAGE algorithms can

be unified, written as

L ({y
1
(𝑡
𝑛
) , . . . , y

𝐾
(𝑡
𝑛
)}
𝑁

𝑛=1
)

= 𝐾𝑀𝑁 ln𝜎2 + 1

𝜌𝜎2

𝑁

∑

𝑛=1

𝐾

∑

𝑘=1

󵄩󵄩󵄩󵄩󵄩
y
𝑘
(𝑡
𝑛
) − a󸀠 (𝜗

𝑘
) 𝑠
𝑘
(𝑡
𝑛
)
󵄩󵄩󵄩󵄩󵄩

2

2

= 𝐾𝑀𝑁 ln𝜎2 + 1

𝜌𝜎2

𝑁

∑

𝑛=1

𝐾

∑

𝑘=1

󵄩󵄩󵄩󵄩y𝑘 (𝑡𝑛) − a (𝜗
𝑘
) 𝑠
𝑘
(𝑡
𝑛
) −Q
𝑘
(𝑡
𝑛
) c󵄩󵄩󵄩󵄩
2

2
.

(13)

where 𝜌 = 1/𝐾 for the EM algorithm and 𝜌 = 1 for the
SAGE algorithm.The second expression in (13) ismainly used
for optimizing c.

Both EM and SAGE algorithms update each unknown
parameter by iterative method. Each iteration consists of an
E-step and an M-step. Given the estimate of the (𝑞 − 1)th
iteration Ω

(𝑞−1), the 𝑞th iteration consists of the following
steps.

E-Step. Calculate

F (Ω
(𝑞)
; Ω
(𝑞−1)

)

= E [L ({y
1
(𝑡
𝑛
) , . . . , y

𝐾
(𝑡
𝑛
)}
𝑁

𝑛=1
) | {x (𝑡

𝑛
)}
𝑁

𝑛=1
, Ω
(𝑞−1)

] ,

(14)

where the superscript (𝑞) stands for the iteration index and
E[∙] denotes expectation operator. Equation (11) is equivalent
to computing the following conditional expectations:

y(𝑞)
𝑘
(𝑡) = E [y

𝑘
(𝑡) | x (𝑡) , Ω(𝑞−1)]

= a󸀠 (𝜗(𝑞−1)
𝑘

) 𝑠
(𝑞−1)

𝑘
(𝑡)

+ 𝜌 [x (𝑡) − A󸀠 (c(𝑞−1), 𝜗(𝑞−1)) s(𝑞−1) (𝑡)] ,

(15)

R(𝑞)y
𝑘

= E[ 1

𝑁

𝑁

∑

𝑛=1

y
𝑘
(𝑡
𝑛
) y𝐻
𝑘
(𝑡
𝑛
) | {x (𝑡

𝑛
)}
𝑁

𝑛=1
, Ω
(𝑞−1)

]

=
1

𝑁

𝑁

∑

𝑛=1

y(𝑞)
𝑘
(𝑡
𝑛
) (y(𝑞)
𝑘
(𝑡
𝑛
))
𝐻

.

(16)

For emphasizing the dependence on array perturbation
parameters, we use A󸀠(c(𝑞−1), 𝜗(𝑞−1)) to denote the perturbed
respondingmatrix in (15), which is different in above context.

M-Step. The unknown parameters Ω are updated by maxi-
mizing F(Ω

(𝑞)
; Ω
(𝑞−1)

), which can be realized by setting its
differentiations of those parameters to zero.

Consider

𝜗
(𝑞)

𝑘
= argmax

𝜃

(a󸀠 (c(𝑞−1), 𝜃))
𝐻

R(𝑞)y
𝑘

a󸀠 (c(𝑞−1), 𝜃)
󵄩󵄩󵄩󵄩a󸀠 (c(𝑞−1), 𝜃)

󵄩󵄩󵄩󵄩

2

2

,

𝑘 = 1, . . . , 𝐾,

(17)

𝑠
(𝑞)

𝑘
(𝑡
𝑛
) =

(a󸀠 (c(𝑞−1), 𝜗(𝑞)
𝑘
))
𝐻

y(𝑞)
𝑘
(𝑡
𝑛
)

󵄩󵄩󵄩󵄩󵄩
a󸀠 (c(𝑞−1), 𝜗(𝑞)

𝑘
)
󵄩󵄩󵄩󵄩󵄩

2

2

,

𝑘 = 1, . . . , 𝐾; 𝑛 = 1, . . . , 𝑁,

(18)

(𝜎
2
)
(𝑞)

=
1

𝐾𝑀𝑁
E[
𝑁

∑

𝑛=1

𝐾

∑

𝑘=1

󵄩󵄩󵄩󵄩󵄩
y
𝑘
(𝑡
𝑛
) − a󸀠 (𝜗

𝑘
) 𝑠
𝑘
(𝑡
𝑛
)
󵄩󵄩󵄩󵄩󵄩

2

2
] ,

(19)

c(𝑞) = {E[
𝑁

∑

𝑛=1

𝐾

∑

𝑘=1

Q𝐻
𝑘
(𝑡
𝑛
)Q
𝑘
(𝑡
𝑛
)]}

−1

× E[
𝑁

∑

𝑛=1

𝐾

∑

𝑘=1

Q𝐻
𝑘
(𝑡
𝑛
) (y
𝑘
(𝑡
𝑛
) − a (𝜗

𝑘
) 𝑠
𝑘
(𝑡
𝑛
))] .

(20)

As can be seen from (15) to (18), the update pro-
cesses of 𝜗

𝑘
and {𝑠

𝑘
(𝑡
𝑛
)}
𝑁

𝑛=1
are mainly dependent on the

corresponding augmented data {y
𝑘
(𝑡
𝑛
)}
𝑁

𝑛=1
, and it does not

matter with {y
1
(𝑡
𝑛
), . . . , y

𝑘−1
(𝑡
𝑛
), y
𝑘+1
(𝑡
𝑛
), . . . , y

𝐾
(𝑡
𝑛
)}
𝑁

𝑛=1
. We

know that the parameters c and 𝜎
2 exist in all signal

components model, so the update processes are rested on
{y
1
(𝑡
𝑛
), . . . , y

𝐾
(𝑡
𝑛
)}
𝑁

𝑛=1
. The iteration process can be divided

into two parts: sequential update 𝜗
𝑘
and {s

𝑘
(𝑡
𝑛
)}
𝑁

𝑛=1
for

different 𝑘 values and unified update c and 𝜎
2 by using

all of augmented data. The formulation of Q
𝑘
(𝑡) is very

complicated, the iteration strategy of those parameters given
above is not usable directly. In appendix, we carry out
some deeper analysis to simplify the implementation of the
iteration.

4. Simulation Results

The simulations in this section illustrate the performance
of our proposed algorithm. The proposed algorithm gives
a unified framework for DOA estimation in the presence
of mutual coupling and sensor location error. In the first
experiment, the scenario when mutual coupling exists is
considered. For comparison, we also apply S-S method [2]
and Y-L method [3] to the same batch of data, as well as the
curves of the Cramer-Rao lower bound (CRLB) [16]. In the
second experiment, the scenario when sensor location error
exists is considered. The maximum likelihood method [8]
(denoted by ML method), IMTAM [8], and CRLB are also
implemented for the performance comparison.

We consider a nominally uniform linear array of 8 sensors
with interelement spacing equaling half a wavelength of the



International Journal of Antennas and Propagation 5

0 2 4 6 8 10

S-S method 
Y-L method
EM-based

SAGE-based
CRLB

SNR (dB) 

RM
SE

 (d
eg

) 

10
1

10
0

10
−1

−10 −8 −6 −4 −2

Figure 1: RMSE of DOA estimates of different methods against
SNR.

incident signals. Suppose that two equal-power independent
signals impinge onto the array from directions of −9∘ and
25
∘. The snapshot number is fixed at 200. The algorithm is

terminated if the increase in the data likelihood function is
smaller than 10

−4 or the maximal number of iterations has
arrived. The maximal number of iterations in the simulation
is set to be 200.The average root-mean-square error (RMSE)
of the DOA estimates is considered for statistical direction
estimation precision evaluation, which is defined as

RMSE
𝜗
=
√
𝑊

∑

𝑤=1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝜗̂
(𝑤)

− 𝜗
(𝑤)
󵄩󵄩󵄩󵄩󵄩󵄩󵄩

(𝐾 ×𝑊)
,

(21)

where 𝑊 denotes the number of Monte Carlo experiments.
We set 𝑊 = 500 in the simulation. 𝜗̂

(𝑤)

and 𝜗(𝑤) are
the estimated and true directions in the 𝑤th simulation.
Similarly, the RMSE of the mutual coupling coefficients is
used for the array calibration precision evaluation, which is
defined as

RMSEc = 𝜉 ×
√

𝑊

∑

𝑤=1

󵄩󵄩󵄩󵄩󵄩
ĉ(𝑤) − c󵄩󵄩󵄩󵄩󵄩

2

2

𝑊
, (22)

where c keeps constant in each scenario, ĉ(𝑤) is the estimated
coupling coefficient vector in the 𝑤th simulation, 𝜉 is a tun-
ing factor introduced to enhance the sense of the RMSE, 𝜉 =
‖𝑐‖
2
for mutual coupling, and 𝜉 = 𝜆

−1 for sensor location
error.

4.1. Statistical Performance in the Presence ofMutual Coupling.
For each Monte Carlo experiment, we suppose that the
coupling coefficient vector includes two coupling coefficients.
Each coefficient is a random complex data. The range of real
and imaginary parts of coefficients is 0.1∼0.6. Figure 1 shows
the RMSE of DOA estimates of different methods against
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Figure 2: RMSE of coupling coefficients of different methods
against SNR.
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Figure 3:The average number of iterations needed for convergence
against SNR.

input SNR. The results illustrate that both SAGE-based and
EM-based algorithms can lead to significant improvement in
estimation accuracy, especially for low levels of SNR, and they
improve with a similar speed as that of the CRLB when the
SNR increases. Figure 2 shows the RMSE of mutual coupling
coefficients versus input SNR. The results illustrate that both
S-S method and Y-L method cannot achieve high estimation
precision, while the SAGE-based and EM-based algorithms
can achieve the better performance. They are always close to
the CRLB.

Figure 3 shows the average number of iterations needed
for convergence versus input SNR. Since each iteration of
the SAGE-based and EM-based algorithms requires similar
computations, their total computational costs are determined
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Figure 5: RMSE of sensor location error of different methods
against SNR.

by the number of iterations. It can be observed that the
number of iterations needed by the SAGE-based algorithm
is always smaller than that by the EM-based algorithm over
the whole range of SNR.

4.2. Statistical Performance in the Presence of Sensor Loca-
tion Error. In the second experiment, we suppose that the
sensor locations are not accurately calibrated. They depart
from the nominal positions by 0, 0.08, 0.12, 0.16, 0.04,
−0.12, −0.08, and −0.16 times the half-wavelength; that is,
c = [0.08, 0.12, 0.16, 0.04, −0.12, −0.08, −0.16]𝑇. The nominal
sensor positions are used to initialize the algorithm; that is,
c[0] = [0, 0, 0, 0, 0, 0, 0]𝑇. The initial DOA estimate is given by
𝜗
[0]
= [−5, 20].
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Figure 6:The average number of iterations needed for convergence
against SNR.

Figure 4 shows RMSE of DOA estimates of different
methods against SNR. As can be shown in Figure 4, the
SAGE-based and EM-based algorithms perform similarly
over the entire SNR range. They are always close to CRLB.
Both of them have significant improvement in estimation
accuracy than ML method and IMTAM method. Figure 5
shows RMSE of sensor location error of different methods
against SNR. We can easily observe that ML method fails
to estimate sensor location error effectively (no array cali-
bration result is available from IMTAM), while the SAGE-
based and EM-based algorithms provide reasonable results.
Figure 6 shows the average number of iterations needed for
convergence versus each SNR. As can be shown in Figure 6,
as the SNR increases, the numbers of iterations required by
both algorithms are reduced quickly, and the SAGE-based
algorithm gets a faster convergence rate over the entire SNR
range.

5. Conclusion

In this paper, the DOA and array perturbation parameters
estimation problem in the case of deterministic signals with
unknown waveforms is studied. An SAGE-based method
for DOA estimation and array calibration in the presence
of mutual coupling and sensor location perturbation is
proposed. First, a comprehensive array output model that is
applicable to two typical array perturbations is introduced.
Based on this model, we construct the augmented data
needed by the SAGE algorithm and establish the augmented
data unified likelihood for 𝑁 snapshots.Then, the E-step and
M-step of the SAGE algorithm for DOA and perturbation
parameters estimation are derived. The implementation of
the proposed method follows the standard SAGE iterations
and thus has guaranteed convergence and high estimation
precision. For comparison, the EM-based algorithm is also
studied, which applies the EM algorithm to jointly esti-
mate DOA and perturbation parameters. The simulation
results show that the EM-based algorithm can obtain higher
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estimation precisions than the existing methods, and the
SAGE-based algorithm converges faster than the EM-based
algorithm while retaining the advantage of high estimation
precisions.Therefore, the SAGE-based algorithm is an attrac-
tive method for DOA estimation and array calibration.

Appendix

Implementation of the Iteration

According to (14), (15), and (17), one can obtain that

𝑅
(𝑞)

𝑠
𝑘

= E[ 1

𝑁

𝑁
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𝑛
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𝑁
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(A.1)
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(A.2)

Moreover, according to (15), (16), (18), and (A.1), we can get
that
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(A.5)

where (h
𝑘
)
𝑝
represents the 𝑝th element of h

𝑘
, and (Σ

𝑘
)
𝑝
1
,𝑝
2

represents the (𝑝
1
, 𝑝
2
)th element of Σ

𝑘
.

Finally, (15), (16), and (A.3)–(A.5) can be substituted into
(17)–(20) to yield more convenient steps for updating the
unknown parameters and implementing the iterations.
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