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The symplectic analytical method is introduced to solve the problem of the stokes flow in the thin film coating applications. Based
on the variational principle, the Lagrangian function of the stokes flow is established. By using the Legendre transformation, the
dual variables of velocities and the Hamiltonian function are derived. Considering velocities and stresses as the basic variables, the
equations of stokes flow problems are transformed into Hamiltonian system.The method of separation of variables and expansion
of eigenfunctions are developed to solve the governing equations in Hamiltonian system, and the analytical solutions of the stokes
flow are obtained. Several numerical simulations are carried out to verify the analytical solutions in the present study and discuss
the effects of the driven lids of the square cavity on the dynamic behavior of the flow structure.

1. Introduction

Theproblems of the stokes flow in rectangular-shaped cavities
have received considerable attention from engineers and
researchers. For example, in coating systems [1], polymer
melts [2], ceramic tape casting [3], and so on. Thus, the
analysis of mechanical properties of the stokes flow in
rectangular-shaped cavities has become a subject of primary
interest in recent research.

For the solutions of the problems of the stokes flow,
there are three formulations, in terms of primitive vari-
ables of velocity-pressure and velocity, velocity-vorticity, and
vorticity-potential forms. By using the primitive variables
of velocity-pressure formulations, Zeb et al. [4], Alves and
Silvestre [5], Chen et al. [6], and Tsai et al. [7] studied
the two- and three-dimensional stokes flow problems. By
adopting vorticity-velocity approach, a system of Laplace and
Poisson type equations for the components of vorticity and
velocity fields [8, 9], respectively can be transferred from the
governing equations of primitive variable Stokes flow. The
third formulations of the vorticity-potential formulations are
used to deal with two-dimensional stokes flow problem, and
they can be applied to derive the vorticity-stream functions,
which are governed by the Laplace and Poisson equations or
even only the biharmonic streamfunction equation. Gaskell

solved the biharmonic equation of streamfunction to analyze
Stokes flow in a double-lid-driven cavity with free surface
side walls [10, 11], and he investigated the flow structure
further by considering the behavior of the streamfunction
close to stagnation points for two control parameters: the
cavity aspect ratio and the speed ratio [12, 13]. Smyrlis and
Karageorghis [14] and Onyejekwe [15] used the numerical
methods for the biharmonic equation.

However, each formulation will suffer different degrees
of difficulty [16]. The velocity-pressure formulation requires
complicated integrals to be evaluated and the use of the
tensorial fundamental solution for the full stokes system [17],
whilst the vorticity-velocity direct computation will have no
immediate solutions for the pressure and needs explicitly the
vorticity boundary conditions. The streamfunction-vorticity
formulation is restricted to 2D and it is not straightforward
to extend 2D streamfunction formulation to 3D flows, whilst
the solution is based on the semi-inverse method which
requires trial functions to satisfy the biharmonic equation of
streamfunction and the boundary conditions.

The present paper develops a symplectic analytical
method to study the stokes flow problem in a double-
lid-driven cavity with free surface side walls. Zhong first
introduced the Hamiltonian formulation into the theory
of elasticity and put forward a direct method [18]. Since
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the early 1990s, the researchers developed some problems
in solid mechanics and elasticity [19–21]. Xu et al. used
Hamiltonian systematic method to solve stokes flow problem
in the rectangular domain with no-slip boundaries [22, 23]
and axisymmetric problems of stokes flow in a tube [24].
Although Xu et al. solved for Stokes flow in a lid-driven
rectangular cavity, they did not study the Stokes flow problem
in a rectangular cavity with free surface side walls. In the
present study we consider this problem through symplectic
analytical method. Symplectic analytical method is based
on Hamiltonian principle with Legengre’s transformation
where by analytical solutional solutions could be obtained
by expansion of eigenfunctions. The methodology is rational
and systematic with clear step-by-step derivation procedure.
The special properties under Hamiltonian system of this
problem is that it’s eigenvalue-equations give the real repeated
double roots hence existing first-order Jordan form.

Two-dimensional variational principle for the Stokes flow
in a rectangular domain is established.The Lagrange function
is derived from the variational principle. Taking original
variables (velocities) and their dual variables as the basic
variables, Hamiltonian canonical equation of stokes flow
using state variable is obtained and the symplectic solutions
under free-surface conditions are also determined with the
coordinate 𝑦 simulated as time. The eigensolutions corre-
sponding to zero-eigenvalue and nonzero-eigenvalues can be
solved analytically, and the unknown expansion coefficients
can be determined by using the end conditions based on the
symplectic orthonormalization relationships.

2. Problem Specification and
Hamiltonian System

2.1. Problem Specification. The flows [1] in the coating bead
are modeled as double lid-driven cavity stokes flows which
are bounded at the top and below by moving rigid roll
surfaces and at the two sides by two free surfaces. The
geometry properties of the rectangular are width 𝑏, depth
𝑎, the velocities of the free surfaces, and moving lids 𝑆

𝑢

and 𝑆
𝑑
as in Figure 1. There are some assumptions: (a) flow

rate is negligibly small (based on experimental observation
[25]); (b) the roll curvature can be neglected; (c) liquid-gas
interfaces are planar; (d) gas adjacent to liquid remains at
uniform pressure, its viscosity is neglected; (e) the fluid is
Newtonian and incompressible with density 𝜌 and dynamic
viscosity 𝐺; (f) the flow is steady in the (𝑥, 𝑦) plane with
velocity 𝑞 = (𝑢, V); (g) the body forces and inertia effects are
neglected.

The shear stress and velocity 𝑢 on the two free surfaces are
expressed as

𝜏
𝑥𝑦

= 0, 𝑢 = 0 (𝑥 = 0, 𝑏) . (1)

For stokes flow in steady-state, the equilibrium equations
can be written as

𝜕𝜎
𝑥

𝜕𝑥
+

𝜕𝜏
𝑥𝑦

𝜕𝑦
= 0,

𝜕𝜏
𝑥𝑦

𝜕𝑥
+

𝜕𝜎
𝑦

𝜕𝑦
= 0, (2)

where 𝜎
𝑥
, 𝜎
𝑦
and 𝜏
𝑥𝑦

are the stress tensor components.

Fluid

(a)

(b)

(0, a/2) (b, a/2)

(0, −a/2) (b, −a/2)

Figure 1: (a) Schematic of a roll coating system; (b) idealized model
for the creeping flow, located between the rolls.

The constitutive equations can be given by

𝜎
𝑥
= −𝑝
𝑓
+ 2𝐺𝜀

𝑥
, 𝜎

𝑦
= −𝑝
𝑓
+ 2𝐺𝜀

𝑦
,

𝜏
𝑥𝑦

= 𝜏
𝑦𝑥

= 2𝐺𝜀
𝑥𝑦
,

(3)

where 𝑝
𝑓
is pressure, and 𝜀

𝑥
, 𝜀
𝑦
and 𝜀
𝑥𝑦

are the strain tensor
components.

The strain-velocity relationships are denoted by

𝜀
𝑥
=

𝜕𝑢

𝜕𝑥
, 𝜀
𝑦
=

𝜕V
𝜕𝑦

, 𝜀
𝑥𝑦

=
1

2
(
𝜕𝑢

𝜕𝑦
+

𝜕V
𝜕𝑥

) . (4)

The continuity equation is given by

𝜕𝑢

𝜕𝑥
+

𝜕V
𝜕𝑦

= 0. (5)

The velocity components are expressed in terms of a
stream function Γ:

𝑢 =
𝜕Γ

𝜕𝑦
, V = −

𝜕Γ

𝜕𝑥
, (6)

where the stream function is a constant (taken to be zero) on
the boundaries.

The force boundary conditions are given on the part of
the surface 𝑆

𝑓
:

𝐹
𝑛𝑥

= 𝐹
𝑛𝑥
, 𝐹
𝑛𝑦

= 𝐹
𝑛𝑦

on 𝑆
𝑓
, (7)

where 𝐹
𝑛𝑥

and 𝐹
𝑛𝑦

are the extra forces on the part of the
surface 𝑆

𝑓
.

On the other part of the boundary 𝑆
𝑢
(𝑆 = 𝑆

𝑓
∪ 𝑆
𝑢
),

velocities are defined as

𝑢 = 𝑢, V = V on 𝑆
𝑢
, (8)

where 𝑢 and V are the velocities on the part of the surface 𝑆
𝑢
.
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Table 1: Comparison calculated results at the two moving end walls with that in Reference [10] (superscript∗); 𝐴 = 0.5, 𝑆 = 2.

𝑥 𝑁
𝑦 = 𝑎/2 𝑦 = −𝑎/2

𝑢 V Γ 𝑢 V

0.0 200 0.0 1.9968∗ 1.3323 × 10−15 0.0 0.0 0.9984∗ −1.0333 × 10−16

50 0.0 1.9873∗ 1.3323 × 10−15 0.0 0.0 0.9936∗ −1.0333 × 10−16

0.2 200 1.9892 1.9967∗ −2.2204 × 10−16 1.9530 × 10−16 0.9946 0.9983∗ −1.9723 × 10−15

50 1.9568 1.9866∗ −2.2204 × 10−16 1.8865 × 10−16 0.9784 0.9933∗ −1.9723 × 10−15

0.4 200 1.9933 1.9961∗ 2.2204 × 10−16 1.8596 × 10−16 0.9967 0.9980∗ −7.0408 × 10−16

50 1.9732 1.9843∗ 2.2204 × 10−16 1.7981 × 10−16 0.9866 0.9921∗ −7.0408 × 10−16

0.6 200 1.9933 1.9946∗ −2.2204 × 10−16 1.8596 × 10−16 0.9967 0.9973∗ 7.0408 × 10−16

50 1.9732 1.9783∗ −2.2204 × 10−16 1.7981 × 10−16 0.9866 0.9892∗ 7.0408 × 10−16

0.8 200 1.9892 1.9897∗ 2.2204 × 10−16 1.9530 × 10−16 0.9946 0.9949∗ 1.9723 × 10−15

50 1.9568 1.9589∗ 2.2204 × 10−16 1.8865 × 10−16 0.9784 0.9794∗ 1.9723 × 10−15

1.0 200 3.2826 × 10−14 3.2244 × 10−14∗ −1.3323 × 10−15 0.0 1.6413 × 10−14 1.6122 × 10−14∗ 1.0333 × 10−16

50 9.0049 × 10−15 8.0239 × 10−15∗ −1.3323 × 10−15 0.0 4.5024 × 10−15 4.0119 × 10−15∗ 1.0333 × 10−16

2.2. Symplectic Dual Equations. Multiplying (2) and (7) with
virtual velocities field (𝛿𝑢, 𝛿V) and integrating the resultant
equations over Ω and 𝑆

𝑓
, respectively, the following expres-

sion can be obtained as

− ∬
Ω

[(
𝜕𝜎
𝑥

𝜕𝑥
+

𝜕𝜏
𝑦𝑥

𝜕𝑦
)𝛿𝑢 + (

𝜕𝜏
𝑦𝑥

𝜕𝑥
+

𝜕𝜎
𝑦

𝜕𝑦
)𝛿V]𝑑Ω

+ ∫
𝑆𝑓

[(𝐹
𝑛𝑥

− 𝐹
𝑛𝑥
) 𝛿𝑢 + (𝐹

𝑛𝑦
− 𝐹
𝑛𝑦
) 𝛿V] 𝑑𝑆 = 0,

(9)

where 𝑑Ω = 𝑑𝑥𝑑𝑦 (𝑑Ω is the area element of domainΩ) and
𝑑𝑆 indicates the length element.

The virtual velocities satisfy the geometric boundary
conditions (𝑢 = 𝑢, V = V on 𝑆

𝑢
),

𝛿𝑢 = 0, 𝛿V = 0 on 𝑆
𝑢
. (10)

We use the Gauss integral theorem to receive

∬
Ω

(𝜎
𝑥
𝛿𝜀
𝑥
+ 2𝜏
𝑥𝑦
𝛿𝜀
𝑥𝑦

+ 𝜎
𝑦
𝛿𝜀
𝑦
) 𝑑𝑥 𝑑𝑦

− ∫
𝑆𝑓

(𝐹
𝑛𝑥
𝛿𝑢 + 𝐹

𝑛𝑦
𝛿V) 𝑑𝑆

= ∬
Ω

𝛿 (𝐺𝜀
2

𝑥
+ 𝐺𝜀
2

𝑦
+ 2𝐺𝜀

2

𝑥𝑦
− 𝑝
𝑓
𝜀
𝑥
− 𝑝
𝑓
𝜀
𝑦
) 𝑑𝑥 𝑑𝑦

− ∫
𝑆𝑓

(𝐹
𝑛𝑥
𝛿𝑢 + 𝐹

𝑛𝑦
𝛿V) 𝑑𝑆

= 𝛿∬
Ω

(𝐺𝜀
2

𝑥
+ 𝐺𝜀
2

𝑦
+ 2𝐺𝜀

2

𝑥𝑦
− 𝑝
𝑓
𝜀
𝑥
− 𝑝
𝑓
𝜀
𝑦
) 𝑑𝑥 𝑑𝑦

− ∫
𝑆𝑓

(𝐹
𝑛𝑥
𝛿𝑢 + 𝐹

𝑛𝑦
𝛿V) 𝑑𝑆

= 0,

(11)

where 𝛿𝜀
𝑥
= 𝜕𝛿𝑢/𝜕𝑥, 𝛿𝜀

𝑦
= 𝜕𝛿V/𝜕𝑦, 𝛿𝜀

𝑥𝑦
= (1/2)(𝜕𝛿𝑢/𝜕𝑦 +

𝜕𝛿V/𝜕𝑥).

Hamilton’s principle is

𝛿∬
Ω

𝐿 𝑑𝑥 𝑑𝑦 = 0. (12)

TheLagrange function of the stokes flow can be calculated
by

𝐿 = 𝐺𝜀
2

𝑥
+ 𝐺𝜀
2

𝑦
+ 2𝐺𝜀

2

𝑥𝑦
− 𝑝
𝑓
𝜀
𝑥
− 𝑝
𝑓
𝜀
𝑦

= 𝐺[(
𝜕𝑢

𝜕𝑥
)

2

+ (
𝜕V
𝜕𝑦

)

2

] +
1

2
𝐺(

𝜕𝑢

𝜕𝑦
+

𝜕V
𝜕𝑥

)

2

− 𝑝
𝑓
(
𝜕𝑢

𝜕𝑥
+

𝜕V
𝜕𝑦

) .

(13)

Introducing the dual variables

𝑝
1
=

𝜕𝑙

𝜕�̇�
= 𝐺(�̇� +

𝜕V
𝜕𝑥

) , 𝑝
2
=

𝜕𝑙

𝜕V̇
= 2𝐺V̇ − 𝑝

𝑓
, (14)

the dot represents differential with respect to 𝑦; namely, (⋅) =

𝜕/𝜕𝑦. The 𝑦 coordinate is analogous to the time coordinate
in the dynamic problem. The dual variables are stresses 𝜏

𝑥𝑦

and 𝜎
𝑦
. Write the vector forms of velocity variables and

their dual variables as 𝑞 = {𝑢, V}𝑇 and 𝑝 = {𝜏
𝑥𝑦
, 𝜎
𝑦
}
𝑇

=

{𝜏, 𝜎}
𝑇, respectively. The Hamiltonian function 𝐻(𝑞, 𝑝) can

be calculated as

Η(𝑞, 𝑝) = 𝑝
𝑇

̇𝑞 − 𝐿 (𝑞, ̇𝑞) = 𝜏�̇� + 𝜎V̇ − 𝐿 (𝑢, V, �̇�, V̇)

= −𝜎
𝜕𝑢

𝜕𝑥
− 𝜏

𝜕V
𝜕𝑥

+
1

2𝐺
𝜏
2

− 2𝐺(
𝜕𝑢

𝜕𝑥
)

2

.

(15)

Substituting (15) into (12) gives [23]:

̇𝑞 =
𝜕𝐻

𝜕𝑝
�̇� = −

𝜕𝐻

𝜕𝑞
. (16)
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Figure 2: Contour lines with 𝑆 = 1: (a) streamfunction Γ; (b) velocity 𝑢; (c) velocity V.

Equation (16) is the Hamiltonian dual equations. Rewriting
(16) in matrix-vector form, one has

�̇� = 𝐻𝑤, (17)

where 𝑤 = (𝑢, V, 𝜏, 𝜎)𝑇 is the state vector for variables; the
Hamiltonian operator matrix𝐻 is defined as

𝐻 =

[
[
[
[
[
[
[
[
[
[
[
[

[

0 −
𝜕

𝜕𝑥

1

𝐺
0

−
𝜕

𝜕𝑥
0 0 0

−4𝐺
𝜕
2

𝜕𝑥2
0 0 −

𝜕

𝜕𝑥

0 0 −
𝜕

𝜕𝑥
0

]
]
]
]
]
]
]
]
]
]
]
]

]

. (18)

2.3. Eigenvalue Solutions. Applying themethod of separation
of variables to 𝑤 yields

𝑤 (𝑦, 𝑥) = 𝑓 (𝑦) 𝜓 (𝑥) . (19)

Substituting the above expression into (17) gives

𝑓 (𝑦) = 𝑒
𝜇𝑦 (20)

and the eigenvalue equation

𝐻𝜓 (𝑥) = 𝜇𝜓 (𝑥) , (21)

where 𝜇 is the eigenvalue and Ψ(𝑥) is the corresponding
eigenvector.

As to zero eigenvalue 𝜇 = 0, (21) gives

𝐻𝜓 (𝑥) = 0. (22)
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Figure 3: Contour lines: (a) shear stress 𝜏 (𝑆 = 0); (b) normal stress 𝜎 (𝑆 = 0); (c) streamfunction Γ (𝑆 = 2).

Under lateral boundary condition (1), there does not exist the
zero eigenvalue solution.

The eigensolutions of nonzero eigenvalues in (21) may
be obtained by expanding the eigenvalue equation. First,
the eigenvalues 𝛼 in the 𝑥-direction can be obtained by
substituting

𝑢 = 𝑒
𝛼𝑥

, V = 𝑒
𝛼𝑥

, 𝜏 = 𝑒
𝛼𝑥

, 𝜎 = 𝑒
𝛼𝑥 (23)

into (21) which yields a characteristic polynomial as follows:

det(

−𝜇 −𝛼
1

𝐺
0

−𝛼 −𝜇 0 0

−4𝐺𝛼
2

0 −𝜇 −𝛼

0 0 −𝛼 −𝜇

) = 0 (24)

with repeated roots 𝛼 = ±𝜇𝑖 as the eigenvalues. Hence, the
general solutions of nonzero eigenvalues are

𝑢 = 𝐴
𝑢
sin (𝜇𝑥) + 𝐵

𝑢
cos (𝜇𝑥) + 𝐶

𝑢
𝑥 cos (𝜇𝑥)

+ 𝐷
𝑢
𝑥 sin (𝜇𝑥)

V = 𝐴V cos (𝜇𝑥) + 𝐵V sin (𝜇𝑥) + 𝐶V𝑥 sin (𝜇𝑥)

+ 𝐷V𝑥 cos (𝜇𝑥)

𝜏 = 𝐴
𝜏
sin (𝜇𝑥) + 𝐵

𝜏
cos (𝜇𝑥) + 𝐶

𝜏
𝑥 cos (𝜇𝑥)

+ 𝐷
𝜏
𝑥 sin (𝜇𝑥)
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Figure 4: (a) (𝑢, 𝑆) diagram for 𝑆 > 0 at 𝑥 = 0.5𝑏; (b) (𝑌st, 𝑆) diagram for 𝑆 > 0 with 𝐴 = 1.0.

𝜎 = 𝐴
𝜎
cos (𝜇𝑥) + 𝐵

𝜎
sin (𝜇𝑥) + 𝐶

𝜎
𝑥 sin (𝜇𝑥)

+ 𝐷
𝜎
𝑥 cos (𝜇𝑥) .

(25)

The constants are not all independent. For convenience,
𝐴
𝑢
, 𝐵
𝑢
, 𝐶
𝑢
, and 𝐷

𝑢
may be chosen as the independent con-

stants. Substituting (25) into (21) yields the relations between
these constants. Further, substituting general solution (25)
into the corresponding boundary conditions on both sides
𝑥 = 0 or 𝑏, then

sin2 (𝜇𝑏) = 0 (26)

which gives real repeated double roots as

𝜇
𝑛
=

𝑛𝜋

𝑏
(𝑛 = ±1, ±2, . . .) . (27)

The corresponding basic eigenvector is

𝜓
(0)

𝑛
= {𝑢, V, 𝜏

𝑥𝑦
, 𝜎
𝑦
}
𝑇

= {sin (𝜇
𝑛
𝑥) , − cos (𝜇

𝑛
𝑥) , 2𝐺𝜇

𝑛
sin (𝜇

𝑛
𝑥) ,

−2𝐺𝜇
𝑛
cos (𝜇

𝑛
𝑥)}
𝑇

.

(28)

Then, the solution to eigenvalue equation (17) is

𝑤
(0)

𝑛
= 𝑒
𝜇𝑛𝑦𝜓
(0)

𝑛
. (29)

From velocity-streamfunction relation (6), the streamfunc-
tion Γ can be expressed as

Γ
(0)

𝑛
=

𝑒
𝜇𝑛𝑦

𝜇
𝑛

sin (𝜇
𝑛
𝑥) . (30)

Because the eigenvalue 𝜇
𝑛
is a double root, the first-order

Jordan form eigen-solution can be solved via

𝐻𝜓
(1)

𝑛
= 𝜇
𝑛
𝜓
(1)

𝑛
+ 𝜓
(0)

𝑛
(𝑛 = ±1, ±2, . . .) . (31)

Imposing boundary conditions (1) yields

𝜓
(1)

𝑛
= {

1

𝜇
𝑛

sin (𝜇
𝑛
𝑥) , 0, 2𝐺 sin (𝜇

𝑛
𝑥) , 0}

𝑇

. (32)

Hence, the solution to (17) is

𝑤
(1)

𝑛
= 𝑒
𝜇𝑛𝑦 (𝜓

(1)

𝑛
+ 𝑦𝜓
(0)

𝑛
) . (33)

Again, from velocity-streamfunction relation (6), the stream-
function Γ can be expressed as

Γ
(1)

𝑛
=

𝑦

𝜇
𝑛

𝑒
𝜇𝑛𝑦 sin (𝜇

𝑛
𝑥) . (34)

From the eigenvalues and eigenvectors with adjoint sym-
plectic orthogonality property, the general solution for stokes
flow with free surface on lateral boundaries can be expressed
as

𝑤 =

∞

∑

𝑛=1

[𝑓
(0)

𝑛
𝑤
(0)

𝑛
+ 𝑓
(1)

𝑛
𝑤
(1)

𝑛
+ 𝑓
(0)

−𝑛
𝑤
(0)

−𝑛
+ 𝑓
(1)

−𝑛
𝑤
(1)

−𝑛
] . (35)

Equation (35) above strictly satisfies the homogeneous differ-
ential equation in the domain and homogeneous boundary
conditions (1), while 𝑓

(𝑘)

𝑛
(𝑘 = 0, 1; 𝑛 = ±1, ±2, . . .) are

unknown constants which can be determined by imposing
the remaining two boundary conditions at 𝑦 = 𝑎/2 and
𝑦 = −𝑎/2. According to the expansion theorem, the
streamfunction Γ can be expressed as

Γ =

∞

∑

𝑛=1

[𝑓
(0)

𝑛
Γ
(0)

𝑛
+ 𝑓
(1)

𝑛
Γ
(1)

𝑛
+ 𝑓
(0)

−𝑛
Γ
(0)

−𝑛
+ 𝑓
(1)

−𝑛
Γ
(1)

−𝑛
] . (36)

2.4. End Conditions. The end boundary conditions are

𝑢|
𝑦=𝑎/2

= 𝑆
𝑢
, 𝑢|

𝑦=−𝑎/2
= 𝑆
𝑑
, V|

𝑦=±𝑎/2
= 0. (37)



Mathematical Problems in Engineering 7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

−0.5

−0.4

−0.3

−0.2

−0.1

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

−0.5

−0.4

−0.3

−0.2

−0.1

(b)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

−0.5

−0.4

−0.3

−0.2

−0.1

(c)

Figure 5: Contour lines with 𝑆 = 0: (a) streamfunction Γ; (b) velocity 𝑢; (c) velocity V.

The expression of 𝑢 above can be represented in Fourier
series as [19]:

𝑢 = 𝑆 =

∞

∑

𝑛=1

2 sin (𝑛𝜋𝑥/𝑏)

𝑏
∫

𝑏

0

𝑆 sin 𝑛𝜋𝑥

𝑏
𝑑𝑥

=
−4𝑆

𝜋

∞

∑

𝑛=1,3,5,...

1

𝑛
sin 𝑛𝜋𝑥

𝑏
.

(38)

However, from (35), one has

𝑢 =

∞

∑

𝑛=1

{𝑓
(0)

𝑛
𝑒
𝜇𝑛𝑦 + 𝑓

(1)

𝑛
𝑒
𝜇𝑛𝑦 (

1

𝜇
𝑛

+ 𝑦) − 𝑓
(0)

−𝑛
𝑒
−𝜇𝑛𝑦

−𝑓
(1)

−𝑛
𝑒
−𝜇𝑛𝑦 (−

1

𝜇
𝑛

+ 𝑦)} sin 𝜇
𝑛
𝑥

V =

∞

∑

𝑛=1

[−𝑓
(0)

𝑛
𝑒
𝜇𝑛𝑦 − 𝑓

(1)

𝑛
𝑒
𝜇𝑛𝑦𝑦 − 𝑓

(0)

−𝑛
𝑒
−𝜇𝑛𝑦

−𝑓
(1)

−𝑛
𝑒
−𝜇𝑛𝑦𝑦] sin 𝜇

𝑛
𝑥. (39)

Substituting 𝑦 = ±𝑎/2 into (39) for the left-hand-side of (37)
and using the Fourier series representations of 𝑢 in (38) on
the right-hand-side, four set of equations can be derived.The
constants 𝑓(0)

𝑛
, 𝑓(1)
𝑛

, 𝑓(0)
−𝑛

, and𝑓(0)
𝑛

can be solved by comparing
the coefficients of sin(𝜇

𝑛
𝑥) and cos(𝜇

𝑛
𝑥), which are

𝑓
(0)

𝑛
= 𝑓
(0)

−𝑛
= 𝑓
(1)

𝑛
= 𝑓
(1)

−𝑛
for 𝑛 = 2, 4, 6, . . . ,

𝑓
(0)

𝑛
= −

[2𝑒
2𝛼𝑛𝑠ℎ (2𝛼

𝑛
) + 4𝛼

𝑛
] 𝑎𝑆
𝑢

𝑏𝑒𝛼𝑛 [𝑐ℎ (4𝛼
𝑛
) − 1 − 8𝛼2

𝑛
]
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Figure 6: Contour lines with 𝑆 = 0: (a) shear stress 𝜏; (b) normal stress 𝜎.

−
[2𝑠ℎ (2𝛼

𝑛
) + 4𝛼

𝑛
𝑒
2𝛼𝑛] 𝑎𝑆

𝑑

𝑏𝑒𝛼𝑛 [𝑐ℎ (4𝛼
𝑛
) − 1 − 8𝛼2

𝑛
]

for 𝑛 = 1, 3, 5, . . . ,

𝑓
(0)

−𝑛
=

[2𝑠ℎ (2𝛼
𝑛
) + 4𝛼

𝑛
𝑒
2𝛼𝑛] 𝑎𝑆

𝑢

𝑏𝑒𝛼𝑛 [𝑐ℎ (4𝛼
𝑛
) − 1 − 8𝛼2

𝑛
]

+
[2𝑒
2𝛼𝑛𝑠ℎ (2𝛼

𝑛
) + 4𝛼

𝑛
] 𝑎𝑆
𝑑

𝑏𝑒𝛼𝑛 [𝑐ℎ (4𝛼
𝑛
) − 1 − 8𝛼2

𝑛
]

for 𝑛 = 1, 3, 5, . . . ,

𝑓
(1)

𝑛
=

2 [2𝑒
2𝛼𝑛𝑠ℎ (2𝛼

𝑛
) − 4𝛼

𝑛
] 𝑆
𝑢

𝑏𝑒𝛼𝑛 [𝑐ℎ (4𝛼
𝑛
) − 1 − 8𝛼2

𝑛
]

+
2 [−2𝑠ℎ (2𝛼

𝑛
) + 4𝛼

𝑛
𝑒
2𝛼𝑛] 𝑆
𝑑

𝑏𝑒𝛼𝑛 [𝑐ℎ (4𝛼
𝑛
) − 1 − 8𝛼2

𝑛
]

for 𝑛 = 1, 3, 5, . . . ,

𝑓
(1)

−𝑛
=

2 [−2𝑠ℎ (2𝛼
𝑛
) + 4𝛼

𝑛
𝑒
2𝛼𝑛] 𝑆
𝑢

𝑏𝑒𝛼𝑛 [𝑐ℎ (4𝛼
𝑛
) − 1 − 8𝛼2

𝑛
]

+
2 [2𝑒
2𝛼𝑛𝑠ℎ (2𝛼

𝑛
) − 4𝛼

𝑛
] 𝑆
𝑑

𝑏𝑒𝛼𝑛 [𝑐ℎ (4𝛼
𝑛
) − 1 − 8𝛼2

𝑛
]

for 𝑛 = 1, 3, 5, . . . ,

(40)

where

𝛼
𝑛
=

𝜆
𝑛
𝑏

2
(𝑛 = 1, 3, 5, . . .) . (41)

Substituting (40)∼(41) into (35)∼(36), the general solutions
for velocity components, stress components, and streamfunc-
tion can be derived. In practice, it is only possible to include a
finite number (𝑁) of terms in the series (35), it is necessary to
first establish that the series converges and then determine the
number of terms that need to be taken into account in order
to ensure the convergence of the series was satisfactorily.

3. Numerical Results

3.1. Verification of the Present Analytical Solutions. In order to
validate the present formulation and the computing program
developed by the author, the comparison is made to illustrate
the convergence of the solution. The comparison results are
shown in Table 1, where the cavity aspect ratio 𝐴 = 𝑎/𝑏

and the speed ratio 𝑆 = 𝑆
𝑢
/𝑆
𝑑
are taken 0.5 and 2. In

Table 1, those data with superscripts ∗ are calculated from
[10]. By comparing results in Table 1, it can be obviously
found that the analytical solutions in the present study are
in good agreement with those in [10]. From Table 1, the
average deviation from the lid velocities is approximately 3%,
when the number of eigen-solution is equal to 𝑁 = 50.
Meanwhile, it can be easily found that as N increases to 200,
the average deviation decreases approximately to 0.3%, and
the only places where we have any significant deviation are
at the extremities where there is clearly a manifestation of
the Gibbs phenomenon. The discontinuity in velocity will
result in a Gibbs phenomenon at the point of contact between
the stationary and moving boundaries but will not cause any
significant numerical difficulties with the results we have in
Section 3.2. The convergence of the present method has been
proved in [26].

3.2. Stagnation Points and Flow Patterns. The stagnation
points in the interior of the cavity, where the velocity is
equal to zero, are important to study the flow structure. A
full search of stagnation points in the cavity for any value
of the top and bottom velocities can be done by analysing
the contour levels of the streamfunction and by looking for
its local extremum. Besides, by symmetry conditions, the
position of a stagnation point (0.5𝑏, 𝑌st) on 𝑥 = 0.5𝑏 can
be found by solving equation 𝑢(0.5𝑏, 𝑌st) = 0, because the
component V is equal to zero on this line. The stagnation
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Figure 7: Contour lines with 𝑆 = −1: (a) streamfunction Γ; (b) velocity 𝑢; (c) velocity V.

points can be divided into elliptic stagnation points, where
Γ has an extremum value (maximum or minimum) and
nearby streamlines surrounding it have the form of ellipses
or hyperbolic (saddle) stagnation points, where Γ has a
minimax value and nearby streamlines form two sets of
hyperbolae which are locally not closed [27]. Gaskell et al.
[11] identified the flow bifurcations at the stagnation points
as control parameter 𝐴 is continuously varied. Here, we
find the position of stagnation points numerically as control
parameter 𝑆 is continuously varied from −40 to 40 with 𝐴 =

1.0.
We start with the problem that the flow in a square cavity,

𝐴 = 1.0, is generated by moving the top and bottom wall
in same directions with the same velocity. The flow structure
simply consists of two eddies of equal size (Figure 2(a)). The

steady streamline patterns for 𝑆 = 1.0 reveal closed lines
around elliptical stagnation points with Cartesian coordinate
(0.5𝑏, 0.2938𝑎) and (0.5𝑏, −0.2938𝑎), respectively. These two
stagnation points are equivalent to the zero points of velocity
𝑢 at line 𝑥 = 0.5𝑏. It is clear that the streamfunction
Γ, the velocity V, and the shear stress 𝜏 are antisymmetric
about the horizontal centerline, whilst the velocity 𝑢 and
the normal stress 𝜎 are symmetric about this line. From
Figure 2(b), we can see two zero-contour lines, which indicate
that there are two zero-value points of velocity 𝑢 for every
section paralleling with line 𝑥 = 0.5𝑏. The velocity V in
the domain is divided into four zones and there are also
two zero-contour lines which correspond to the horizontal
and vertical centerline. In the vicinity of the corners, there
are stress concentration zones (Figures 3(a) and 3(b)) due
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Figure 8: Contour lines: (a) shear stress 𝜏 (𝑆 = −1); (b) normal stress 𝜎 (𝑆 = −1); (c) streamfunction Γ (𝑆 = −2).

to the discontinuity in velocity 𝑢. For 𝑆 = 2, two separate
eddy structures (Figure 3(c)) still exist, the larger of which
is that adjacent to the faster moving wall, and the stagnation
points in Cartesian coordinate are (0.5𝑏, 0.2581𝑎) and (0.5𝑏,
0.3411𝑎). Figure 4(a) illustrates that, for 𝑆 > 0, there are two
large eddies within the cavity with two stagnation points on
the centre-line between the free surfaces. The effect on the
position of the eddies for 𝑆 ∈ [0, 40] is shown in Figure 4(b).
As S increases towards infinity, the stagnation point in the
upper cavity moves towards the horizontal centerline and
reaches to the point (0.5𝑏, 0.2069𝑎), while the stagnation
point in the under cavity moves towards the bottom lid and
reaches to (0.5𝑏, −0.5𝑎) and the eddy in the under cavity
reduces and disappears.

Consider, then, the case of flow 𝑆 < 0 with 𝐴 = 1,
including the case 𝑆 = 0, which is generated by moving
the top and bottom wall in opposite directions. As for flow
patterns when 𝑆 = 0, the cavity consists only of a large
recirculation. The streamline patterns for 𝑆 = 0 reveal
closed lines around elliptical stagnation points withCartesian
coordinate (0.5𝑏,−0.2069𝑎).We can note that the case 𝑆 = 0 is
essentially the same as 𝑆 = ∞; the immobile and moving lids
are merely interchanged. From Figure 5(b), we can see one
zero-contour line, which indicates that there are one zero-
value point of velocity 𝑢 for every section parallel to line 𝑥 =

0.5𝑏. The velocity V in the domain is divided into two zones
and there is also one zero-contour line which corresponds to
the vertical centerline. In the vicinity of the bottom corners,
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Figure 9: (a) (𝑢, 𝑆) diagram with 𝑆 ≤ 0 at 𝑥 = 0.5𝑏; (b) (𝑌st, 𝑆) diagram with 𝑆 ≤ 0 for 𝐴 = 1.0.

there are stress concentration zones (Figure 6) due to the
discontinuity in velocity 𝑢. For 𝑆 = −1, the streamlines in
Figure 7(a) show a single eddy with its centre at the middle
of the cavity. From Figure 7(b), we can see one zero-contour
line which just corresponds to line 𝑦 = 0. The velocity V is
antisymmetric about 𝑥 = 0.5𝑏 and there is also one zero-
contour line which corresponds to the vertical centerline.The
shear stress 𝜏 is symmetric about both the horizontal and the
vertical centerline and there are also two zero-contour lines,
whilst the normal stress 𝜎 is symmetric about the center of
the cavity and there are four zero-contour lines. Figure 8(c)
shows the flow pattern for 𝑆 = −2, where it is observed
that (compared with 𝑆 = −1) the eddy centre is displaced
from (0.5𝑏, 0) along the line of 𝑥 = 0.5𝑏—towards the faster
moving lid—and thus symmetry about 𝑦 = 0 is lost, and the
stagnation points in Cartesian coordinate are (0.5𝑏, 0.1256𝑎).
Figure 9(a) illustrates that, for 𝑆 ≤ 0, there is one eddy
within the cavity with one stagnation point on the centre-
line between the free surfaces. The effect on the position of
the eddies for 𝑆 ∈ [−40, 0] is shown in Figure 9(b). As 𝑆 is
reduced towards−∞, the stagnation pointmoves towards the
top lid and reaches the point (0.5𝑏, 0.2069𝑎).We note that the
case 𝑆 = −∞ is essentially the same as the case 𝑆 = ∞, the
direction of swirl is merely interchanged.

4. Conclusions

This paper has presented a new solution for stokes flow
in a double lid-driven cavity with free side surfaces. It
is based on a symplectic approach which has been used
previously in elasticitymechanics.The variational principle is
derived in a geometrical symplectic space. Using the essential
Hamiltonian principle with Legendre’s transformation, an
eigenvalue is obtained and thus solved in the symplectic
space under the Hamiltonian system formulation but not in
the Euclidian space under the traditional Lagrange system
formulation. Stokes flows analysis requires solving rational
first order ordinary differential equations.The examples show

the applicability and validity of the symplectic approach for
solving stokes flow problems.
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