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In order to run CFD codes more efficiently on large scales, the parallel computing has to be employed. For example, in industrial
scales, it usually uses tens of thousands ofmesh cells to capture the details of complex geometries. How to distribute thesemesh cells
among the multiprocessors for obtaining a good parallel computing performance (HPC) is really a challenge. Due to dealing with
the massive mesh cells, it is difficult for the CFD codes without parallel optimizations to handle this kind of large-scale computing.
Some of the open source mesh partitioning software packages, such as Metis, ParMetis, Scotch, PT-Scotch, and Zoltan, are able to
deal with the distribution of large number of mesh cells. Therefore they were employed as the parallel optimization tools ported
into Code Saturne, an open source CFD code, for testing if they can solve the issue of dealing with massive mesh cells for CFD
codes. Through the studies, it was found that the mesh partitioning optimization software packages can help CFD codes not only
deal with massive mesh cells but also have a good HPC.

1. Introduction

Code Saturne is a multipurpose computational fluid dynam-
ics (CFD) software [1]. The code was originally designed for
industrial applications and research activities in several fields
related to energy production. They are including nuclear
power thermal hydraulics, gas and coal combustion, turbo-
machinery, heating, ventilation, and air conditioning.

This code is based on a colocated finite volume approach
that can cope with three-dimensional meshes built with any
type of cell (tetrahedral, hexahedral, prismatic, pyramidal,
and polyhedral) and with any type of grid structure (unstruc-
tured, block structured, and their hybrid). The code is able to
simulate either incompressible or compressible flows, with or
without heat transfer, and has a variety of models to account
for turbulence [1].

It provided a mesh partitioning method, which is named
as space-filling curve (SFC) [2], to deal with the optimization
of parallel computing in Code Saturne. For extending the
parallel computing abilities, several open source mesh par-
titioning software packages, such as Metis [3], ParMetis [4],
Scotch [5], PT-Scotch [6], and Zoltan [7], were ported into
Code Saturne 2.0.0-beta2 for the optimization on HPC in
this paper. Through the tests using a DARPA submarine
model [8, 9] with the mesh cells above 121 million, it was

found that some of the software packages can perform the
optimization for the CFD code, Code Saturne, to deal with
massive meshes on large-scale parallel computing.

2. Validation of CFD Code

Normally before the formal applications, the CFD code
needs to be validated. It is because CFD simulations are
usually dependent on the options of models, especially
when the flow regime is controlled by turbulence. Generally,
the validation of the CFD simulation can be carried out
through the comparisons between the numerical results and
experiments or theoretical results [10]. Due to the complex
characteristics of the flows, it is generally impossible to get
the theoretical analytical results.Therefore the validation can
also be performed by the comparisons between the numer-
ical results and experiments or the simulations by other
software.

Before the studies of high-performance computing
(HPC), the validation of the CFD simulation was carried
out to ensure that Code Saturne 2.0.0-beta2 is able to cope
with the CFD calculation for the complex geometry under
turbulence regime. In this paper, the simulations of the
DARPA submarine [8, 9], shown in Figure 1, were chosen as
the target of the validation. The detail geometry sizes of the
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Figure 1: DARPA submarine model.

Figure 2: Tetrahedral mesh around the DARPA submarine.

DARPA submarine [8, 9] are of the geometry length, 4.355m;
cylinder body diameter, 0.507m; tail diameter, 0.0075m and
sail height, 0.206m.

The flow parameter for the simulation is the same as the
experiments of the DARPA submarine [8, 9].The flow is with
a 9m/s flowing speed attacking at the submarine’s nose with
a zero angle. The corresponding Reynolds number reaches
3.89 × 107 high based on the length of the submarine.

The simulation modeling can use the models provided by
Code Saturne. The RANS model (𝑘-𝜀 model) was employed
for modeling the turbulence. The standard wall function was
chosen as the near-wall treatment [11]. The stretched prism
meshwith growth rate 1.2 near wall was adopted, which keeps
the near wall 𝑦+ value as 30 averagely and within the range
of 25 to 70 in this paper. The unstructured tetrahedral mesh
around the submarine is shown in Figure 2.

Figure 3 shows the comparisons of the pressure coeffi-
cients (𝐶

𝑝
) at different cross-sections along the submarine’s

body with experiment and several other CFD software
packages.

From the comparisons in Figure 3, it can be seen that the
simulation results by Code Saturne 2.0.0-beta2 are coinci-
dent with experiments. The curve shows a quite good agree-
ment with experiment results. Code Saturne 2.0.0-beta2 is
able to get the simulation results equivalent to the famous
commercial software packages Fluent [12] and STAR-CD [13].
Within the whole region, the simulation of Code Saturne is
near the benchmark results by OpenFOAM [14].

After the validation, the casewith 121, 989, and 150 (121M)
tetrahedral cells was built up for the HPC tests. The tests
are aimed to measure if these mesh partitioning software
packages are able to optimize the CFD code, Code Saturne,
for obtaining a good HPC through dealing with the massive
meshes for the large-scale parallel computing.
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Figure 3: Comparisons of pressure coefficients.

3. Porting Mesh Partitioning Software
Packages into CFD Code

Different software code has its own characters and code
structures. Before the utilization of the code, the user must
know the structure of the code and find out where is the place
of the interface for linking the extra libraries to the code.
Through the studies, it was found that the mesh partitioning
software codes can be ported into Code Saturne through the
connection of the extra libraries.

The source code of Code Saturne contains four parts as
kernel, preprocessor, and opt and src.The solver is within the
kernel. The preprocessor performs reading the mesh in and
checking the mesh quality. The opt includes the libraries for
dealing with the numerical procedures and the src contains
all the basic mathematic and finite volume source codes.
Therefore, the extra libraries have two ways to be embedded
into Code Saturne. One is through kernel directly linked to
the solver. Another one is using the preprocessor to perform
the mesh reading in and checking together with a mesh
partitioning. Actually these two methods were used in this
paper. It is that Metis and Scotch libraries were linked to
preprocessor as a serial preprocessing, and ParMetis, PT-
Scotch, and Zoltan libraries were linked to kernel to do the
parallel mesh partitioning in the solver.

ParMetis is a parallel version of Metis [3]. Both of Metis
and ParMetis use a graphmesh partitioningmethod to realize
the parallel computing optimization. During the mesh parti-
tioning, a coarsening graph is abstracted from the original
mesh firstly. Then the partitioning based on the coarsening
graph is carried out through minimizing the edge-cut and
optimizing the load balance by a multilevel 𝑘-way graph
partitioning [4]. Finally through the multilevel refinement
the whole mesh partitioning is recovered on the original
mesh. After the mesh partitioning, the original mesh cells
are distributed into a number of subdomains. The number
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of subdomains equals the number of processors. If the
optimization performs well, the later parallel computing will
be easy to have a good HPC.

PT-Scotch is a parallel version of Scotch [5]. During the
mesh partitioning, Scotch and PT-Scotch use a dual recursive
bi-partitioning algorithm to perform the mesh partitioning.
It is the same as ParMetis, starting from a coarsening
phase that constructs a coarse graph. The coarsening process
reduces the size of the graph to bipartition through collapse
vertices and edges from the original mesh. The initial parti-
tioning is carried out on the coarse graph. Then a multilevel
partitioning process which is in conjunction with the banded
diffusion method to refine the projected partitions until
the whole mesh partitioning is built up on the original
mesh.

Zoltan is a direct parallel version for the mesh partition-
ing [7]. Both of graph partitioning and geometry partitioning
can be realized in Zoltan. Owing to the robust geometry
partitioning, Zoltan was ported into Code Saturne 2.0.0-
beta2 only with its geometry partitioning method in this
paper. There are three geometry mesh partitioning methods
provided by Zoltan. They are recursive coordinate geometric
bisection (RCB) [15], recursive inertial bisection (RIB) [16],
and Hilbert space-filling curve partitioning (HSFC) [17].
After the tests, HSFC and RIB were employed in this paper
for the studies.

4. Influence of Mesh Partitioning on HPC

Code Saturne has its own mesh partitioning tools for the
parallel computing. They are simple mesh partitioning [1]
and space-filling curve (SFC) method [2]. The simple mesh
partitioning actually did not perform any optimization on the
mesh distributions.

Figure 4 shows the 3D mesh partitioning results on 4
processors for the DARPA submarine. It can be seen that
Metis, ParMetis, Scotch, PT-Scotch, and Zoltan (RIB) can
produce the neat inner boundaries among the processors.
Therefore, they can have fewer neighbor processors. It will
be in merit for the data communication during the parallel
computing.

Table 1 shows the comparisons of CPU time and speedup
at 512 processors for 121M case. The CPU time and speedup
were calculated by the average value from the numbers of
iterations. In Table 1, all the HPC tests were carried out on
HECToR Phase2a Cray XT4, which was a cluster supercom-
puter as a high-end computing resource in the UK [18].

Due to the failure of initialization of the iterations, simple
method of Code Saturne produced nothing, therefore it is
not including the result of simple method in Table 1. From
Table 1, it can be seen that ParMetis can produce the best
HPC and have a speedup value above 30 times compared
with SFC. All the neat inner boundaries generation software,
such asMetis, ParMetis, Scotch, PT-Scotch and Zoltan (RIB),
was able to have higher speedup, that is, good performances
on HPC. Overall, the graph mesh partitioning methods
(Metis, ParMetis, Scotch, and PT-Scotch) are better than the
geometry mesh partitioning methods (SFC, Zoltan (RIB),
and Zoltan (HSFC)) on the performance of HPC.

5. Performance Dealing with
Massive Mesh on HPC

Through the comparisons of mesh partitioning in Section 4,
it can be seen that the different mesh partitioning methods
can produce different mesh distribution results. They will
affect the high performance parallel computing. Usually the
high performance parallel computing can be estimated by
the load imbalance, which is the reciprocal of load balance
normally larger than 1.0, before the parallel computing [19].
In this paper the load imbalance is defined as the number of
processors multiplying the maximum number of cells among
processors, and then the multiplied result was divided by the
whole mesh cells.

Table 2 shows the comparisons of the load imbalance of
different mesh partitioning methods at different processors
(subdomains) on the case of 121M (121, 989, 150 tetrahe-
dral cells). The symbolic in the first row is of Processor
(processors), Simple (simple method), SFC (space-filling
curve), Metis (Metis 5.0pres2), Scotch (Scotch 5.1), ParMetis
(ParMetis 3.1.1), PT-Scotch (PT-Scotch 5.1), Z RIB (Zoltan
(RIB) 3.0), and Z HSFC (Zoltan (HSFC) 3.0), respectively.
Due to the failure of initialization, the mesh partitioning was
failed for SFC at 4096 processors.

The mesh partitioning by Scotch, which can only be
executed sequentially due to that it is a serial code, employed
lots of memories. Through the tests it was found that when
the number of processors (subdomains) is greater than 1024
even on a computer with 250Gbmemories it was not enough
for Scotch to do themesh partitioning.Therefore the statistics
of Scotch do not include the results when the subdomains are
greater than 1024 in Table 2.

From Table 2, it can be seen that the Simple and SFC
provided by Code Saturne have the load imbalance larger
than the extra mesh partitioning software packages.The large
load imbalance means that the mesh distribution is seriously
nonuniform among the processors. Therefore the processor,
which has the maximum number of cells, will spend a lot of
time on the iteration computing, and the other processors
have to wait for it with a long idle time. It is unacceptable
especially for the large-scale high-performance parallel com-
puting [20].

ParMetis has the lowest load imbalance value among the
mesh partitioningmethods when the number of processors is
less than 512. When the number of processors is greater than
1024, Metis has the lowest load imbalance value.

Due to the memory limits, all the mesh partitioning
of Metis, which is a serial code, was carried out at SGI
machine atDaresbury Laboratory in theUK,which has 96Gb
memories at one processor. The peak value of memory used
by Metis on the mesh partitioning of 121M case is around
30Gb for all the mesh partitioning.

Figure 5 shows comparisons of the CPU time. It can be
seen that two groups are separated. One is composed by
Zoltan (RIB) and Zoltan (HSFC). Another one is composed
of Metis, ParMetis, and PT-Scotch. Following the increase
of the processors, the CPU time spent by Zoltan (RIB) and
Zoltan (HSFC) is averagely higher than others about 200%
when the number of processors is greater than 1024. Metis
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(a) Simple (b) SFC

(c) Metis 5.0-pre2 (d) Scotch 5.1

(e) ParMetis 3.1.1 (f) PT-Scotch 5.1

(g) Zoltan (RIB) 3.0 (h) Zoltan (HSFC) 3.0

Figure 4: Comparisons of mesh partitioning.

Table 1: Comparisons of CPU time and speed up on 512 processors.

SFC Metis Scotch ParMetis PT-Scotch Zoltan (RIB) Zoltan (HSFC)
CPU time (s) 8007.8 294.3 283.7 263.7 293.9 298.1 306.5
Speedup 1.00 27.21 28.23 30.37 27.25 26.86 26.13
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Table 2: Load imbalance under different processors.

Processor Simple SFC Metis Scotch ParMetis PT-Scotch Z RIB Z HSFC
32 6.46376 3.31521 1.05662 1.04363 1.01575 1.06292 1.02420 1.03958
64 7.24894 3.62416 1.03822 1.05928 1.05571 1.08747 1.03215 1.04492
128 7.24965 3.53683 1.06850 1.07096 1.06366 1.08627 1.04832 1.05739
512 7.80080 3.90431 1.09823 1.10278 1.09765 1.12977 1.09586 1.09930
1024 7.80855 4.17676 1.11929 1.13165 1.12763 1.23072 1.13053 1.17049
2048 7.80841 4.96599 1.13735 — 1.14698 1.15967 1.20171 1.20329
4096 7.91606 — 1.16461 — 1.18525 1.21051 1.37601 1.30728
8192 7.87476 5.51827 1.20426 — 1.22898 1.23925 1.63646 1.36711
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Figure 5: CPU time on different processors.

has the outstanding falling curve. When the number of
processors is less than 1024, ParMetis has the lowest CPU
time.However, when the number of processors is greater than
1024, the CPU time spent by ParMetis increases higher than
Metis about 100% and PT-Scotch about 50% averagely. PT-
Scotch has the CPU time higher than Metis about 50%.

Figure 6 shows the curve of speedup based on the CPU
time of per iteration. Metis has the fastest speedup following
the increase of the number of processors higher than others
when the number of processors is greater than 1024. PT-
Scotch has the similar speedup to Metis. ParMetis has lower
speedup than PT-Scotch but higher than Zoltan (RIB) and
Zoltan (HSFC).When the number of processors reaches 8192,
ParMetis has the speedup that is higher than PT-Scotch 28%.

From Figure 6, it can be seen that the different mesh
partitioning methods produce quite different results of the
speedup performance mainly at the number of processors
greater than 512. The reason can be analyzed from the load
imbalance in Table 2. From the load imbalance results, it can
be seen that since the number of processors is greater than
512, Metis has the smallest load imbalance values. The small
load imbalance value will produce the uniform distribution
of the mesh cells among the processors. Therefore during the
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Figure 6: Speedup of CPU time on different processors.

iteration computing, all the processors can keep synchronous
well. It has no extra idle time at waiting for the calculation
of synchronization. Accordingly every single processor CPU
time spending on the computing is saturated otherwise; the
CPU time at some of processors will be oversaturated and at
some of processors will be undersaturated. Needless to say
that the oversaturated processors will spendmore computing
time than the saturated processors, it means that the large
load imbalance will produce lower HPC than the small load
imbalance. It can be seen that in Table 2 when the number
of processors is greater than 512, Metis, ParMetis, and PT-
Scotch produce smaller load imbalance than Zoltan (RIB)
and Zoltan (HSFC). Therefore, Metis, ParMetis, and PT-
Scotch have higher speedup performance than Zoltan (RIB)
and Zoltan (HSFC), as shown in Figure 6.

However, the tendency of the speedup performance
between ParMetis and PT-Scotch is against the analysis of
load imbalance; that is, the small load imbalance produces
higher speedup performance. It must have some other factors
affecting the speedup performance. The reasons are the dis-
tributions of neighboring processors which can be referenced
from Shang’s researches [21].
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6. Conclusions

From the performance of HPC, it can be seen that the mesh
partitioning methods will affect the performance of HPC.
The graph mesh partitioning method is able to obtain better
HPC than geometry mesh partitioning method. The load
imbalance is the key criterion to measure HPC. The lower
load imbalance the better HPC can be obtained.

From the comparisons of HPC, it can be seen that Metis
5.0 has the highest high parallel performance synthetically.
However, it has to employ large memories to perform the
mesh partitioning for large-scale parallel CFD application
due to Metis 5.0 is a sequential code that has to be carried
out by a single processor.

The parallel mesh partitioning software packages can get
rid of the memory limit. However the quality is slightly lower
than serial version of Metis 5.0. Within the parallel versions,
ParMetis 3.1.1 and PT-Scotch 5.1 have the similar high parallel
performance. Zoltan (RIB) 3.0 and Zoltan (HSFC) 3.0 have
worse HPC compared with others.

In case of ignoring the memory limit, Metis can be
used for large-scale parallel CFD application. Among the
parallel mesh partitioning software packages, ParMetis and
PT-Scotch are recommended to CFD code for the large scale
parallel CFD computing.
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