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In the last two decades, numerous scientists have highlighted the interactions between bone and immune cells as well as their
overlapping regulatory mechanisms. For example, osteoclasts, the bone-resorbing cells, are derived from the same myeloid
precursor cells that give rise to macrophages and myeloid dendritic cells. On the other hand, osteoblasts, the bone-forming
cells, regulate hematopoietic stem cell niches from which all blood and immune cells are derived. Furthermore, many of the
soluble mediators of immune cells, including cytokines and growth factors, regulate the activities of osteoblasts and osteoclasts.
This increased recognition of the complex interactions between the immune system and bone led to the development of the
interdisciplinary osteoimmunology field. Research in this field has great potential to provide a better understanding of the
pathogenesis of several diseases affecting both the bone and immune systems, thus providing the molecular basis for novel
therapeutic strategies. In these review, we reported the latest findings about the reciprocal regulation of bone and immune cells.

1. Introduction

Bone remodelling, a coordinated process between formation
and degradation of bone, respectivelymanaged by osteoblasts
(OBs) and osteoclasts (OCs), ensures the bone homeostasis.
In physiological conditions, canonical OC formation requires
macrophage colony-stimulating factor (MCSF) and receptor
activator factor of nuclear factor kB ligand (RANKL) [1],
which act on cells of the monocyte-macrophage lineage,
inducing their fusion to form polynucleated active resorbing
cells. However, a number of other cytokines and growth
factors are known either to substitute these two molecules
inducing a noncanonical OC formation or to act indirectly
on osteoclastogenesis promoting RANKL release from other
cells [1]. Physiologically, osteoclastogenesis is sustained by
OBs, cells arising from the bone marrow stromal cells
(BMSCs)which following the activation of different pathways
and specific transcription factors, such as Cbfa1/Runx2,
differentiate in mature cells producing bone matrix [2].
Consistently, OB activity can be also regulated by OCs.

In the attempt to understand the mechanisms regulating
bone remodelling, it has been found that skeletal homeosta-
sis is dynamically influenced by the immune system, and
lymphocyte- or macrophage-derived cytokines are among
the most potent mediators of osteoimmunological regulation
[3, 4].Thus, in this reviewwewill describe osteoclastogenesis,
osteoblastogenesis, and the role of immune system in regulat-
ing the activity of bone cells.

2. Osteoclastogenesis

OCs are formed by the attraction of myelomonocytic pre-
cursors to the resorption site, followed by their fusion, and
attachment of the subsequent multinucleated cell to the
bone surface. This process requires the activation of critical
intracellular pathway as well as specific cytokines, primarily
M-CSF and RANKL, but also TNF-𝛼, IL-1, IL-7, IL-17, IL-
23, IL-6, TGF𝛽, and IFN𝛾. Most of these molecules are also
involved in the regulation of immune system and this may
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explain some of the relationship between immune and bone
cells [5].

2.1. M-CSF. M-CSF is a homodimeric glycoprotein, pro-
duced by OBs and bone marrow stromal cells, that binds
to high-affinity receptors (c-fms) expressed on cells of the
monocyte/macrophage lineage. Homozygous disruption of
M-CSF coding sequences in osteopetrotic (op/op) mice
severely impairs production of macrophage populations
underlying the importance of M-CSF for their development
[6]. M-CSF induces the proliferation of OC precursors, their
differentiation and increases the survival of mature OCs [7];
OC formation occurs when monocytes are costimulated by
the essential osteoclastogenic factors M-CSF and RANKL.

2.2. RANKL/RANK/OPG System. A central role in OC biol-
ogy is played by the receptor activator of NF-kB ligand
(RANKL), that is essential for osteoclastogenesis and bone
resorption [8]. Mice and humans deficient in the RANKL
gene completely lack OC and exhibit variable forms of
osteopetrosis. RANKL has also been implicated in regulation
of immune response and in arterial wall calcification [5,
9]. The functional receptor for RANKL, RANK, is encoded
by a tumour necrosis factor receptor (TNFR) superfamily
gene (TNFGS11A) and is expressed on OC precursors. Mice
lacking TNFGS11A have a profound defect in bone resorption
and in the development of cartilaginous growth plates. One
of the key steps upon activation of the RANK pathway is the
binding of TNFR-associated cytoplasmic factors (TRAFs) to
specific domains within the cytoplasmic domain of RANK.
The TRAF family proteins are cytoplasmic adapter proteins
involved in the mediation of several cytokine-signalling
pathways. Different members of the family activate different
transcriptional pathways: TRAF2, 5, and 6 are involved in
the activation of NF-kB through IkB kinase (IKK) activation
and AP-1 through activation of mitogen-activated protein
kinases (MAPKs), including Jun-N-terminal kinase (JNK),
p38, and extracellular signal-regulated kinase (ERK). More-
over, TRAF6 functions as a ubiquitin ligase, which catalyzes
the formation of a polyUb chain. This leads to the activation
of IKK and JNK through a proteasome-independent mecha-
nism [10].

RANKL/RANK signalling promotes the differentiation of
OC precursors into mature multinucleated OCs, stimulates
their capacity to resorb bone, and decreases OC apoptosis.
RANKL is present as both a transmembrane molecule and
a secreted form; its interaction with RANK is opposed by
osteoprotegerin (OPG), a neutralizing soluble decoy recep-
tor, produced by marrow stromal cells and OBs [11]. The
unbalance between RANKL and OPG has been indicated
as the pivotal mechanism responsible for bone loss in case
of estrogen deficiency [12], inflammation [13], and cancer-
induced bone loss [14].

2.3. TNF-𝛼. TNF-𝛼 enhances OC formation by upregulat-
ing stromal cells production of RANKL and M-CSF and
by augmenting the responsiveness of OCs precursors to

RANKL. TNF directly induces marrow precursor differen-
tiation into OCs, although according to some studies it
is not osteoclastogenetic in cells not previously primed by
RANKL. The ability of TNF to increase the osteoclastogenic
activity of RANKL is due to synergistic interactions at the
level of NFkB and AP-1 signalling. In addition, TNF and
RANKL synergistically upregulate RANK expression. In vivo
blockade of TNF in postmenopausal osteoporosis reduces
bone resorption [15]; this suggests that TNF-𝛼 increase could
be one of the mechanisms responsible for postmenopausal
bone loss. TNF is mainly produced by activated T cells and
it is also involved in inflammation and cancer induced bone
loss both systemically and locally.

2.4. IL-1. IL-1 plays an important role in bone loss induced
by estrogen deficiency; its level increases after menopause
and is reversed by estrogen replacement. Bone loss does not
occur after ovariectomy in mice deficient in receptors for IL-
1, and treatment with IL-1 receptor antagonist decreases OC
formation and activity. A recent study demonstrates that the
blockade of IL-1 reduces bone resorption in postmenopausal
osteoporosis [15]. IL-1 acts by increasing RANKL expression
by bone marrow stromal cells and directly targets OC
precursors, promoting OC differentiation in the presence
of permissive levels of RANKL. The effect of TNF-𝛼 on
osteoclastogenesis is upregulated by IL-1.

2.5. IL-7. IL-7 is known for its ability to stimulate T and B cell
number and the reaction to antigenic stimuli. Recently, a role
for IL-7 has also been postulated in bone remodelling [16, 17].
We have demonstrated that IL-7 promotes osteoclastogenesis
by upregulating T and B cell-derived RANKL [17] and that
the production of IL-7 is downregulated by estrogen.

In humans it has been suggested that IL-7 is osteoclasto-
genic in psoriatic arthritis and in solid tumors, also in healthy
volunteer the expression of IL-7 receptor on T lymphocytes
correlates with their ability to induce osteoclastogenesis from
human monocytes.

2.6. IL-17, IL-23, and IL-27. IL-17 family members are mainly
expressed by a type of human T helper cell (Th17) [18]. It
is now believed that this cytokine plays a crucial role in
inflammation and the development of autoimmune diseases
such as rheumatoid arthritis; however, its mechanism of
action in the development of bone erosions, especially in
relation to other known key cytokines such as IL-1, TNF-
𝛼, and RANKL, remains unclear. Recently, IL-17 has been
suggested to be involved in the upregulation of OC forma-
tion in inflammation by increasing the release of RANKL,
which may synergise with IL-1 and TNF [19]. One of the
stimuli to IL-17 synthesis is IL-23 produced by activated
dendritic cells and macrophages. IL-23 drives the T helper 1
response and is a implicated in autoimmune diseases; hence;
it has been suggested that the IL-23/IL-17 axis is critical for
controlling inflammatory bone loss. However, in contrast to
IL-17-deficient mice, IL-23 knockout mice were completely
protected from bone and joint destruction in the collagen-
induced arthritis model, indicating that the IL-23-induced
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bone loss may not be entirely mediated by IL-17 and raising
the question whether IL-23 can directly stimulate OCs.
Recent work supports this hypothesis suggesting that IL-23
promotes OC formation [20]. Other recent in vivo studies
suggest that IL-23 inhibits OC formation via T cells [21]. In
physiological conditions (unlike inflammatory conditions),
IL-23 favours higher bone mass in long bones by limiting
resorption of immature bone forming below the growth plate
[21]. These contrasting data suggest different roles of this
cytokine in the control of physiological or inflammatory bone
turnover. Recently, Interleukin-27 (IL-27) raises investigator
attentions as an antiosteoclastogenic cytokine [22, 23]. In
particular, it suppresses osteoclastogenesis both through a
direct effect on OCs and an indirect action on T helper cell
subsets [22–26].OnOCprecursors IL-27 decreases the ability
to differentiate into fullymature resorbing cells, by abrogating
RANKL-mediated induction of NFATc1 and suppressing
proximal RANK signalling [22, 23]. On T helper (Th) subsets,
it favours the differentiation of T cells in Th1 cells, promotes
the differentiation of regulatory T cells, and decreases the
differentiation of Th 17 cells, resulting in osteoclastogenesis
inhibition in inflammatory condition [24–26].

2.7. IL-6. Activation of the signalling pathway mediated by
glycoprotein (gp) 130 by IL-6 and its soluble receptor has
been regarded as a pivotal mechanism for the regulation of
osteoclastogenesis [27]. Nevertheless, in IL-6 knockout mice
(IL6KO), as well as in gp 130-deficient mice, no decrease in
OC formation and function was found. These data may sug-
gest that IL-6 is not essential for bone resorption. However,
IL6KO mice were protected against ovariectomy-induced
bone loss, and this finding, together with the observation
of increased level of IL-6 after menopause in women, may
suggest a peculiar role for IL-6 in bone loss due to estrogen
deprivation. IL-6 was also shown to be involved in other
diseases associated with accelerated bone turnover such
as Paget’s disease of bone, multiple myeloma, rheumatoid
arthritis and renal osteodystrophy.

2.8. IFN𝛾. The effect of IFN𝛾 on OC formation and activity
is controversial. IFN𝛾 behaves like an antiosteoclastogenic
cytokine in vitro [28], in vivo in nude mice [29] and in a
knockout models in which the onset of collagen-induced
arthritis is more rapid, as compared with wild-type controls.
These data are not confirmed by studies in humans and in
experimental models of diseases that indicate an increased
level of IFN𝛾 during estrogen deficiency.

In humans IFN𝛾 is positively correlated with bone
erosions in leprosy and rheumatoid arthritis. Data from
randomized controlled trials have shown that IFN𝛾 does not
prevent bone loss in rheumatoid arthritis. The use of IFN𝛾 in
humans has been suggested to employ IFN𝛾 for the treatment
of osteopetrosis, in which condition IFN𝛾 is able to restore
bone resorption.

Taken together, the data in humans suggest that, in some
conditions, IFN𝛾 stimulates bone resorption. These discrep-
ancies could be explained by the fact that IFN𝛾 directly blocks
OC formation targeting maturing OC and induces antigen

presentation and thus T cell activation in vivo. Therefore,
when IFN𝛾 levels are increased in vivo, activated T cells
secrete proosteoclastogenic factors and this activity offsets its
antiosteoclastogenic effect.

2.9. TGF𝛽. TGF𝛽 plays a complex role in osteoclastogenesis.
It has wide ranging effects and it has been suggested that it
may play a pivotal role in the growing skeleton contributing
to the coupling between OB and OC [30]. Three isoforms
of TGF𝛽 have been described (TGF𝛽1–3), which all interact
with the same receptor complex. TGF𝛽1 is mainly expressed
in lymphoid organs and in serum. Conversely, TGF𝛽2 and
TGF𝛽3 are predominantly expressed in mesenchymal tissues
and bone. TGF𝛽 is produced by many cell types, including
bone marrow cells, OBs, and stromal cells and is secreted in
a latent form that must be activated to mediate its effects.
Although several mechanisms of activation in vivo have
been proposed, the precise mechanism of this process is not
known. Both in vitro and in vivo studies have shown that
TGF𝛽1–3 have complex effects on bone. They stimulate or
repress proliferation or formation ofOBs andOcs, depending
on cell types and culture conditions used. Mice with OB-
specific overexpression of TGF𝛽2 develop high-turnover
osteoporosis [31].

TGF𝛽 has also been implicated in the pathogenesis
of ovariectomy-induced bone loss because local injection
of TGF𝛽1 and TGF𝛽2 prevent bone loss at the site of
the injection in ovariectomy rats. Furthermore, estrogen is
known to upregulate the expression of TGF𝛽 in murine OBs,
bone extracts and bone marrow cells and long-term in vivo
estrogen treatment has been shown to increase serum TGF𝛽1
and TGF𝛽2 levels in humans. Latent TGF𝛽 is abundantly
present in the bone matrix and is released and activated
during bone resorption, and it feeds back to modulate OB
andOCactivity. In particular TGF𝛽 is believed to induceOCs
apoptosis that follows bone resorption in vivo [31].

3. Osteoblastogenesis

OBs differentiate from mesenchymal stem cells (MSCs),
sharing their origin with the cells of connective tissues such
as fibroblasts adipocytes and chondrocyte; they represent
only 5% of total resident cells that are mainly constituted by
osteocytes. OBs attend the crucial function of building the
bone [2].During embryonic developmentOBs originate from
localmesenchymeof sclerotome and, in adults, fromMSCs or
bone marrow stromal cell. Recent works have demonstrated
in vitro that also human postnatal mesenchymal cells from
dental tissues could originate mature OBs [32–36].

In response to specific stimuli, these precursors commit
to osteogenic lineage anddifferentiate before in pre-OBs, then
in lining cells, and finally in mature OBs. Osteoblastogenesis
is defined by several phases: lineage commitment, prolifera-
tive expansion, synthesis and mineralization of extracellular
matrix, and establishment of osteocyte. All these stages
are characterized by sequentially expressed genes that lead
to the expression of specific proteins that often are used
as specific OB markers. These proteins are collagenic and
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constitutive as collagen I, enzymatic as alkaline phosphates
(ALP), mainly with adhesive function as bone sialoprotein,
osteonectin, osteopontin, with different metabolic functions
as osteocalcin, and rich in carbohydrates as biglycan and
decorin.

Mature OBs, the bone-forming cells, are basophilic,
mononuclear, polygonal, and able to secrete all the compo-
nent of bonematrix. OBs involved in matrix deposition show
the typical features of cells acting in an intense protein syn-
thesis: a corrugated cell membrane, a well-developed rough
endoplasmic reticulum, with dilated cisternae, a prominent
Golgi complex, several free ribosomes, and an euchromatic
nucleus with a voluminous nucleolus. Usually OBs are found
on bonematrix they are secreting, close to each other, assum-
ing the typical aspect of the lining cells. Once they become
surrounded by the matrix, they gradually lose the basophilia,
emit cellular process, extending into the newly deposited
matrix called osteoid, aftermatrixmineralizationOBs reduce
their size and transform in osteocytes. OB cytoplasm contains
PAS-positive granules holding the precursors of bone matrix
glycoproteins. The plasma membrane of OBs is particularly
enriched in ALP, an enzyme which is the characteristic OB
marker [37].

OBs form tight junctions with adjacent cells, assuming an
epithelioidmorphology and start matrix deposition secreting
the organic component [38].

OBs perform the matrix mineralization process secreting
hydroxyapatite crystals surrounded by plasma membrane:
the matrix vesicles. The process forming Ca

3
(PO
4
)
2
(tri-

calcium phosphate) in vesicles is not yet completely known:
it involves calcium-binding proteins such as calbindin D9k,
BSPII, calcium-binding phospholipids, phosphatidylserine,
calcium channel-forming annexins [39, 40], and phosphate
transporters and enzymes [41]. Once the accumulation of
calcium and phosphate overcomes the point of solubility,
hydroxyapatite crystals form within matrix vesicles.

The next event in the mineralization process is the
hydroxyapatite crystals extravesicle development that fills
the intercollagen fibrils spaces; when they assemble in the
first stable form named “critical nucleus,” the crystal growth
becomes faster increasing its size by ions addition.

The correct hydroxyapatite crystals growth requires typ-
ical OB marker ALP action: ALP hydrolyzes inorganic
pyrophosphate (PPi) forming two inorganic phosphate (Pi)
molecules that are assembled in hydroxyapatite crystals [42].

OBs are the most important cells regulating bone remod-
elling balance. The OB expresses PTH receptor whose bind-
ing to the hormone can activate OC activity increasing serum
calcium levels [43, 44]. Thus pre-OBs, OBs, and stromal
cells produce two factors acting on OC: the RANKL and
OPG [45]. RANKL stimulates osteoclastogenesis and mature
OCs activity, OPG, vice versa binding to the same RANKL
receptor RANK as competitive ligand, inhibits both these
actions.

Mechanical Loading. Mechanical loading has prominent
influences on OBs and bone remodelling. Disuse or lack of
loading causes an acceleration of bone turnover, with OC
resorption dominating OB formation with the result of a

substantial bone mass loss [46]. This type of bone loss has
also been observed in astronautswho spend extended periods
of time in the microgravity environment of a space station
or shuttle. Lining cells are ubiquitous on bone surface and
they contain gap junction connections to osteocytes andOBs.
Thus mechanical loads can propagate from osteocytes to
bone lining cells and vice versa. Osteocytes do not respond
directly tomechanical strain (deformation) of bone tissue but
sense the extracellular fluid flow variation caused by loading.
Bone surfaces are mostly covered with lining cells that can
potentially differentiate into mature OBs two days after a
mechanical stimulus [47]; within other two days new bone
matrix deposition can be observed [48]. Moreover loading
stimulates OB precursor proliferation and differentiation.
Mechanical forces also reduce programmed cell death in
osteocytes [49] and in active OBs [50]; furthermore loading
may extend the rate of bone mineral matrix deposition for
each OB.

3.1. Transcriptional Factors Regulating Osteoblast Differentia-
tion. The differentiation of OBs from MSCs, which can also
originate fibroblasts, chondrocytes, myoblasts, adipocytes,
and tendon cells, requires the activity of specific transcription
factors that are expressed at distinct time points during the
differentiation process, thereby defining various develop-
mental stages of the osteoblastogenesis.

Runt Domain-Containing Transcription Factor (Runx2),
also named cbfa1, is a master gene for OB differentiation.
Levels of Runx2 gradually increase in subsequent stages ofOB
differentiation, with maximum expression observed in the
mature OBs. Homozygous deletion of Runx2 in mice results
in a complete lack of OBs [51]. Runx2 is both necessary and
sufficient for mesenchymal cell differentiation towards the
OB lineage [52]. It was demonstrated that Runx2 controls
OB lineage cells by binding to the Runx regulatory element
in promoters of osteoblastogenesis genes. Runx2 target genes
include both genes expressed by immature and differentiated
OBs, such as TGF-𝛽 receptor, ALP, collagen type I, OPN,
OSTC, vitamin D receptor, BSP, and OPN [53]. Thus Runx2
is necessary for both OB differentiation and activity [54].

Osterix is another DNA-binding transcription factor that
is absolutely required for OB differentiation. Osterix/SP7 is a
member of the zinc-finger-containing SP family and is largely
expressed throughout OB differentiation. Genetic inactiva-
tion of Osterix in mice results in absence of mineralized bone
matrix, defective OBs and perinatal lethality [55]. Similarly
to Runx2, forced expression of Osterix in nonbone cells,
promote expression of both early and late marker genes of
OBs. However, molecular and genetic studies revealed that
Runx2 is expressed in mesenchymal tissues of Osterix-null
mice [55]. Thus, Osterix acts downstream of Runx2 in the
transcriptional cascade of OB differentiation. Consistently,
Osterix expression is positively regulated by direct binding of
Runx2 to a responsive element in the promoter of the Osterix
gene.

Activating Transcription Factor-4 (ATF4), amember of the
basic Leu zipper family of transcription factors, has important
roles in the mature stage of OB differentiation. Misregulation
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of ATF4 activity has been linked with the skeletal abnormali-
ties seen in human patients with the Coffin-Lowry syndrome
and neurofibromatosis type I [56]. ATF4 may function in
OB lineage cells through two distinct mechanisms. First, it
directly regulates the expression of osteocalcin and RANKL
[56]. Second, ATF4 promotes efficient amino acid import to
ensure proper protein synthesis by OBs [56].

3.2. Regulation of Osteoblast Differentiation by Secreted
Molecules. Bone cells, as well as many other cells present
in bone marrow compartment, produce numerous growth
factors and cytokines that act on OBs in both autocrine and
paracrine ways to control cell proliferation, differentiation,
and survival. These secreted factors and signalling pathways
either promote or suppress the expression of transcription
factors essential for OB differentiation.

TGF- 𝛽1 has a variety of widely recognized roles in bone
formation. For example, TGF-𝛽1 enhances OB proliferation
[57], blocks apoptosis ofOBs [58], and also recruits osteoblas-
tic precursors or matrix-producing OBs to the site through
chemotactic attraction [59]. In addition, TGF-𝛽1 enhances
the production of extracellular bone matrix protein by OBs
in the early stages of OB differentiation [60]. On the other
hand, TGF-𝛽1 inhibits the later phase of OB proliferation and
mineralization [61]. It has been previously reported that both
TGF-𝛽 receptor I and receptor II expression in murine, rat,
and human OBs were decreased during OB differentiation,
which may imply that OBs are less sensitive to TGF-𝛽1 in
the late phase of their differentiation [62].The later stages are
positively regulated by bone matrix proteins (BMP), which
aremembers of the TGF-𝛽 superfamily [63].Therefore, TGF-
𝛽1 cooperateswithBMP to regulate the differentiation ofOBs.

Moreover several reports indicate that Runx2 is regulated
by TGF-𝛽1 and BMP-2. In the initial phase of osteoblastic dif-
ferentiation (differentiation of MSCs to OB progenitor cells),
Runx2 inhibited differentiation ofMSCs to types of cells other
thanOBs, which required coordinated action between Runx2
and BMP2-induced Smad5 [64]. In the second phase of their
differentiation (from OB progenitor cells to OBs), TGF-𝛽1
induced the expression of Runx2, which crosstalks with beta-
catenin signaling to promote differentiation [59]. However,
in the final differentiation stages of OBs (mature OBs),
TGF-𝛽1 opposes BMP-2 actions [58]. Smad3, activated by
TGF-𝛽1, physically interacts with Runx2 at Runx2-responsive
elements and suppresses the expression of Runx2.

Bone Morphogenetic Proteins (BMPs), belonging to the
TGF-𝛽 superfamily, were originally identified as the active
components in bone extracts capable of inducing ectopic
bone formation. BMPs are expressed in bone, are required
for skeletal development and maintenance of adult bone
homeostasis, and play an important role in fracture healing
[62]. Genetic studies have demonstrated an important roles
for BMP2 and BMP4 in promoting OB differentiation and
function [63]. Recent studies have also shown that BMP3
inhibits the signal transduced by BMP2 or BMP4 [64]
working as a negative regulator of OB differentiation.

The Wingless (Wnt) Family of Glycoproteins has recently
emerged as central regulators of bone mass [65–77]. Upon
engaging various membrane receptors, Wnt ligands activate

numerous intracellular pathways that are either dependent on
or independent of𝛽-catenin [65–67, 75, 76]. In the𝛽-catenin-
dependent signalling,Wnt binds to the Frizzled receptors and
their co-receptors low-density lipoprotein receptor-related
protein 5 or 6 (LRP5/6) to stabilize cytosolic 𝛽-catenin that
enters the nucleus and stimulates the transcription ofWnt tar-
get genes such as Runx2, Osterix, Fra-1, and Fra-2 [70]. Thus
activation of the canonical pathway promotes the differenti-
ation of OB progenitor cells into mature OBs. Wnt signalling
is tightly regulated by a delicate balance of extracellular
agonists and antagonists.There are different antagonists, such
as soluble Frizzled-related proteins (sFRPs) which inhibit
Wnt signaling by binding to and sequestering Wnt ligands,
and others belonging to theDickkopf (DKK) familymembers
or the SOST gene product (sclerostin) that bind to and
sequester the Wnt coreceptors LRP5/6. In humans, receptor
mutations that render Wnt signal constitutively active result
in a generalized increase in bone mass [71]. Loss-of-function
mutations in the gene encoding the Wnt coreceptor LRP5
cause osteoporosis-pseudoglioma syndrome [72], a form of
juvenile-onset osteoporosis. Conversely, mutations in LRP5,
that inhibit the interaction between the co-receptor and
DKK1 or sclerostin, cause high bone mass syndrome [71,
73, 74]. In addition, loss-of-function or loss-of-expression
mutations in SOST, result in the bone-thickening diseases
sclerosteosis or van Buchem disease, respectively [73, 74, 77].
𝛽-catenin-independent Wnt signalling has also been impli-
cated in promotingOB differentiation [75]. In particular,Wnt
5A is thought to promote OB differentiation by inhibiting
the activation of adipogenic genes [76].Thus both 𝛽-catenin-
dependent and 𝛽-catenin-independent Wnt signalling are
able to control differentiation of OB progenitor into mature
OBs.

Fibroblast Growth Factors (FGFs) are a large family of
proteins (23 different ligands) that transduce their signal
through one of the four FGF receptors (FGFR). FGFs ini-
tiate condensation of the mesenchyme and proliferation of
progenitor cells. In particular, FGF2 is important for pre-OB
proliferation and maturation [78], while FGF18 is essential in
mature OB formation [79].

TRAIL is a cytotoxic protein inducing apoptosis, upon
binding to death domain-containing receptors DR4 and
DR5; its activity can be modulated by association with two
membrane-bound decoy receptors, namely, DcR1 and DcR2,
lacking functional death domains and conferring TRAIL
resistance on expressing cell [80, 81]. Thus the sensitiveness
of TRAIL-induced apoptosis is determined by the ratio of
death and decoy receptor. OBs express TRAIL receptors, but
in normal conditions they are less sensitive to its apoptotic
effects [82]; however in inflammatory conditions as peri-
odontal disease TRAIL profoundly can affect OB stimulating
their apoptosis, impairing bone remodelling because of a
decreased bone formation [83].

4. Immune and Bone Cell Relationship

4.1. T Cells. T cells are critical mediators of the adaptive
immune response. These lymphocytes may be subdivided
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into major classes according to the subunits which form the
T cell receptor (TCR). T cells express either an 𝛼𝛽 or 𝛾𝛿
TCR on the cell surface, and these receptors are responsible
for recognizing a diverse range of antigens [84]. Most T
lymphocytes are 𝛼𝛽 T cells, a lineage which express either the
CD4 or CD8 marker. By contrast, the majority of 𝛾𝛿 T cells
lack expression of CD4 and CD8 and their function is poorly
understood [85]. Another small subset of T cells is known as
natural killer T (NKT) cells [86]. Although small in number,
NKT cells can produce large amounts of cytokines and have
been implicated in a variety of immune responses including
autoimmunity, graft rejection, and responses to pathogens
[87]. Togetherwith their prominent role on immune response
T cells also can affect bone remodelling. In particular, under
basal conditionsT cells are not considered a significant source
of RANKL, and T-cell-deficient nude mice do not show
evidence of diminished RANKLmRNA in their BM [87].The
bone protective role of resting T cells was, however, clearly
demonstrated by the finding that T-cell-deficient mice have a
significant increased in basal OC number and reduced bone
density as compared to controls [87, 88]. Moreover, resting
T cells have been shown to blunt OC formation in vitro [89]
and may contribute to dampen bone resorption in vivo [87].
In fact, depletion of CD4+ and CD8+ T lymphocytes in mice
in vivo enhances OC formation by a mechanism involving
the complete suppression of osteoprotegerin production by
B cells [90]. Providing further support to this hypothesis
others have found that 1,25 dihydroxyvitamin D3 was a more
potent inducer of OC formation in cultures of BM from T-
cell-depleted mice than from control mice [90]. In contrast,
it is well established that infection and inflammation lead to
T cell activation and T cell production of osteoclastogenic
cytokines such as RANKLandTNF𝛼 (TNF). Indeed activated
T cells have been implicated in the bone loss in inflammation,
autoimmune disorders [91, 92], periodontitis [93, 94], cancer
[95], and osteoporosis models [96, 97]. However, distinct
function should be attributed to the different T cell subsets
on bone remodelling.

4.2. CD4+ T Cells. These cells represent one of the main
components of the adaptive immune response. After anti-
genic stimulation, näıve CD4+ T cells proliferate and may
differentiate into distinct effector subsets, which have been
classically divided, on the basis of their cytokine production
profiles, intoTh1 andTh2cells [98].Th1 cells are characterized
by the secretion of IFN-𝛾, IL-2, IL-12, tumor necrosis factor
(TNF)-𝛼, and TNF-𝛽 and are involved in the eradication of
intracellular pathogens. Conversely, Th2 cells, characterized
by secretion of IL-4, IL-5, IL-6, IL-9, and IL-13, which are
potent activators of B cells, are involved in the elimination
of extracellular microorganisms and parasitic infections and
are also responsible for allergic disorders [99, 100]. In a
comprehensive study by Sato et al., Th1 and Th2 cells were
both shown to inhibit OC formation through their canonical
cytokines IFN-𝛾 and IL-4, respectively [101]. More recently,
two new subsets of CD4+ T cells have been characterized;
on the one hand, the Th17 subset, which follows different
polarizing conditions and displays different functional activ-
ities from those of Th1 and Th2 cells [102, 103] and, on the

other hand, the regulatory T (Treg) cell subset, which can be
defined based on expression of CD25 and the transcription
factor FoxP3 and are critical in the prevention of autoimmune
disease [104, 105]. Of these, Th17 T cells have been suggested
to be the osteoclastogenic T cells.

4.2.1. Th17. Th17 cells are produced when naı̈ve T cells
are activated by TGF𝛽 and IL-6 in the mouse or TGF𝛽
and inflammatory stimuli in humans. The resulting clonal
memory T cell population will be instructed to produce the
Th17 signature cytokines IL-17A, IL-17F, IL-22, and IL-26
[106]. A subset of Th17 cells also produce small amounts of
IFN𝛾, which in vitromoderate the osteoclastogenic activity of
Th17 [107]. The cytokine repertoires of specific Th17 subsets
depend on master differentiation factors present in the
microenvironment during initial antigen recognition [106].
Thus, Th17 cells promote osteoclastogenesis mostly through
production of IL-17, which as known acts on OC precursors
to induceRANK [108, 109] and induces RANKL expression in
stromal cells andOBs.However,Th17 cells produce additional
cytokines relevant for bone, including RANKL and TNF
[108]. It should be noted that the effect of IL-17 is not limited
to this direct effect on the osteoclastogenesis-supporting
cells. IL-17 facilitates local inflammation by recruiting and
activating immune cells, which leads to an abundance of
inflammatory cytokines such as TNF-alpha and IL-1 [108].
The inflammatory cytokines enhance RANKL expression on
osteoclastogenesis-supporting cells and activate OC precur-
sor cells by synergizing with RANKL signaling. A prominent
role forTh17 has been demonstrated in bone diseases, such as
multiple myeloma and arthritis [110, 111].

4.2.2. CD4 T Reg. The anti-inflammatory Treg inhibits OC
differentiation and function in vitro and suppresses inflam-
matory bone erosions in mice [112–114]. Tregs negatively
influence osteoclastogenesis through two mechanisms: the
first involves cell contact, whereas the second is contact
independent and involves the production of cytokines [115–
118]. In particular, Kim et al. found that Tregs inhibit OC
differentiation from peripheral blood mononuclear cells in
a cytokine-dependent manner and proposed that TGF𝛽
and IL-4 cytokine secreted by Th2 cells may be the key
cytokines responsible for the suppressive function of Tregs
[115]. Recently, Tregs have been implicated in the mechanism
by which estrogen suppresses OC differentiation and bone
resorption through production of IL-10 and TGF𝛽1 [116].
Another mechanism by which Tregs maintain control of
immune function is by secretion of cytotoxic T-lymphocyte
antigen 4 (CTLA4), an inhibitor that binds to CD80 and
CD86 coreceptors on antigen-presenting cells and blocks
their association with CD28 on T cells, thus dulling inflam-
matory responses [117]. However, direct antiosteoclastogenic
effects of CTLA4 mediated on purified OC precursors were
documented. The data suggest that in addition to an anti-
inflammatory role of CTLA4, this receptor may directly
suppress osteoclastogenesis by binding to CD80/CD86 on
mononuclear OC precursors [119]. Interestingly, Tregs have
also been shown to directly inhibit OC formation by CD11b
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monocytes treated with M-CSF and RANKL as well as to
suppress resorption of pits in vitro by mature OCs.

4.3. CD8+ T Cells. CD8+ T cells have a protective role on
bone. In particular, they profoundly suppressed osteoclasto-
genesis, mostly via soluble proteins. CD8+ T cells expressed
a substantial amount of OPG along with RANKL [119].
However, blocking antibody to OPG did not reverse the
suppression by CD8+ T cells, suggesting that other factor(s)
is involved [119]. Anabolic PTH treatment in mice was
found to significantly increase the production of Wnt10b
by bone marrow CD8+ T cells leading to activation of
canonical Wnt signaling in preosteoblasts. Demonstrating a
key role of T cells in anabolic PTH action, T-cell-null mice
displayed diminished Wnt signaling in pre-OBs and blunted
osteoblastic commitment, proliferation, differentiation, and
lifespan. These actions culminated in a diminished anabolic
response in trabecular bone and a failure to increase bone
strength. Furthermore, mice conditionally lacking Wnt10b
production specifically in their T cells failed to induce
an anabolic response to intermittent PTH [120]. Further
studies involving conditional silencing of the PTH receptor
specifically in T cells were found to blunt the capacity of
intermittent PTH to induce T cell production of Wnt10b,
thus abrogating activation ofWnt signaling inOBs, expansion
of the osteoblastic pool, and increased BMD and trabecular
bone volume in response to intermittent PTH. These data
thus revealed a direct action of PTH on the T cell leading to
Wnto10b production [120, 121]. Recently, an important role
for CD8+ cells has been demonstrated in bone tumor burden
protecting from bone metastasis [122].

4.3.1. CD8 T REG. Although CD8 T REG have been docu-
mented in humans and mice [123–128], they have not been
studied extensively, in part due to their low abundance (0.2
to 2% of CD8 T cells) in lymphoid organs. In comparison,
the well-studied CD4 regulatory T cells, TREG, comprise 5–
12% of CD4 T cell in the spleen. The FoxP3+ CD8 T cells and
the TREG have overlapping and distinct functions. Both cells
express CD25 and the transcription factor, FoxP3 a marker
of the regulatory T cells.The osteoclast-induced FoxP3+ CD8
T-cells secreted cytokines that could suppress formation and
activity by OCs. The FoxP3+ CD8 T-cells did not affect the
survival of OCs, but FoxP3+ CD8 T-cells could directly act on
mature OCs to suppress actin ring formation. The ability of
OCs to induce FoxP3+ CD8 T-cells and the ability of FoxP3+
CD8 T-cells to subsequently regulate OC function establishes
a bidirectional regulatory loop between these two cells in the
bone marrow. Notably, the regulatory loop does not require
the presence, in vitro, of proinflammatory cytokines. Indeed,
the ability to isolate functional FoxP3+ CD8 T-cells from
mice, in the absence of any inflammatory disease, indicates
that these cells have a role inmaintaining skeletal homeostasis
in vivo [129].

4.4. NK T Cells and 𝛾𝛿 T Cells

4.4.1. NK T Cells. Natural killer (NK) T cells are known
to participate in the clearance of virus-infected, aberrant,

or transformed cells [130]. Moreover, NK cells are poised
for a rapid release of cytokines and growth factors that
might influence the initiation and development of immune
responses mediated by T and B cells [131–133]. Moreover, the
activation of a particular subset of NK cells, the invariant
NKT (iNKT) cells, increases OC development, maturation,
and activity [134].

NK cells can be detected in the inflamed synovial tissue
at an early stage of the disease, and they constitute up to 20%
of all lymphocytes in the synovial fluid (SF) of patients with
established RA [135, 136]. Recent evidence shows that this
CD56bright NK cell subset has an upregulated expression
of several chemokine receptors and adhesion molecules
that may participate in its preferential recruitment into the
inflamed synovium [137] and enable the cells to engage
and subsequently activate monocytes through a variety of
receptor-ligand interactions [135, 138, 139]. NK cells in the
SF of RA patients efficiently trigger formation of OCs from
monocytes. In particular, NK cells express both M-CSF and
RANKL, which are responsible for osteoclastogenesis, and
both molecules are further upregulated on NK cells by IL-15
[140, 141].

4.4.2. 𝛾𝛿 T Cells. Although the vast majority of circulating
T-cells express 𝛼𝛽 TCR chains, a subset of T-cells expresses
a different TCR, containing a gamma (𝛾) chain paired with
a delta (𝛿) chain, to form a 𝛾𝛿 TCR heterodimer, and giving
rise to a population of 𝛾𝛿 T-cells. 𝛾𝛿 T-cells represent only
1–10% of nucleated cells in the human peripheral circulation
although their numbers are more abundant in tissues, in
particular, epithelial tissues such as the skin, where 𝛾𝛿 T-
cells may represent the dominant T-cell population [142]. 𝛾𝛿
T-cells are dissimilar to 𝛼𝛽 T-cells in that their function is
largely innate-like rather than adaptive and TCR specificity
is directed almost exclusively towards nonpeptide antigens.
They have been implicated in responses to inflammation,
allergy, autoimmunity, infectious disease [142], and certain
hematological tumors [142, 143]. They express growth factors
important for tissue regeneration, such as fibroblast growth
factor [142] and connective tissue growth factor, [144] that are
critical for wound and skeletal fracture healing. Rather than
representing a single population, 𝛾𝛿 T-cells have been found
to be quite heterogeneous. Although found only in humans
and higher primates, V𝛾9V𝛿2 T-cells are a major subpop-
ulation of 𝛾𝛿 T-cells and are unique in their recognition of
low-molecular-weight nonpeptide antigens. Recently, Kalyan
et al. demonstrated that these unique innate T cells are lost
in osteoporotic patients on amino-bisphosphonate treatment,
and this loss is related to the potency of the systemic dose
and the length of time on therapy and the diagnosis of
osteonecrosis of the jaw [145, 146].

4.5. B Cells. In addition to this immune function, B cells have
a close and multifaceted relationship with bone cells [147].
B cells differentiate from hematopoietic stem cells (HSCs) in
supportive niches found on endosteal bone surfaces. Cells in
the osteoblastic lineage sustain HSC and B cell differentiation
in these niches. B cell differentiation is regulated, at least
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in part, by a series of transcription factors that function in
a temporal manner. While these transcription factors are
required for B cell differentiation, their loss causes deep
changes in the bone phenotype. This is due, in part, to
the close relationship between macrophage/OC and B cell
differentiation. While the role of B cells during normal bone
remodeling appears minimal, activated B cells play an impor-
tant role in many inflammatory diseases with associated
bony changes. In particular, B cells [148–150] and B-cell-
derived plasma cells in multiple myeloma (MM) have been
reported to have the potential to support osteoclastogenesis
[151], possibly via direct expression of RANKL [152], decoy
receptor 3 (DcR3) [153], or as an indirect consequence
of IL-7 secretion [154, 155], a potent stimulator of bone
resorption in vivo [156]. Malignant B-cell-derived plasma
cells in MM produce also different cytokines inhibiting OB
differentiation, such as sclerostin and DKK1 [151, 157, 158].
Moreover, B lymphopoiesis is stimulated during estrogen
deficiency [159] while estrogen treatment downregulates B
lymphopoiesis but upregulates immunoglobulin production
[160]. B-lineage cells have consequently been suggested to
play a role in ovariectomy-induced bone loss [156]. Inter-
estingly, immature B cell populations expressing the marker
B220 have been suggested to transdifferentiate along the
OC pathway in vitro [161] providing a potential enhanced
source of OC precursors and an explanation for a role of
B-lineage cells in ovariectomy-induced bone loss. After the
discovery of RANKL as the key osteoclastogenic cytokine,
expression of this factor by B-lineage cells (B220+ cells, which
in the bone marrow represent multiple populations of early
B-cell precursors, immature B cells, and mature B cells)
has been reported to be more abundant in ovariectomized
mice than in sham-operated mice [162]. RANKL from B
cells isolated from the bone marrow of estrogen-deficient
postmenopausal women has been demonstrated to secrete
RANKL [163], providing a plausible mechanism for a role
of B cells in estrogen deficiency-bone loss. Peripheral blood
B cells inhibit OC formation in a human in vitro model
of osteoclastogenesis, in part by secretion of TGF𝛽, [164] a
cytokine that induces apoptosis of OCs [164–166] and that
is reported to stimulate OPG production [167]. Depletion of
B cells in vivo also aggravates bone loss in an animal model
of periodontitis, suggesting that B cells may act to limit bone
resorption under certain pathological conditions [168].

Recently, however, to better address this issue, Onal et al.
made use of a state-of-the-art conditional B cell RANKL KO
mouse, to reevaluate the role ofmature B cells in ovariectomy-
induced bone loss. This high-sensitivity model did indeed
reveal a small contribution of mature B cells to ovariectomy-
induced bone loss as mice lacking RANKL in B lymphocytes
were partially protected from the increase in OC numbers
and bone loss caused by ovariectomy in cancellous bone,
although not in cortical bone, in the conditional KO mice
[169].

The prominent role of B cells is also documented in
an animal model of HIV-1 infection. In particular, it has
been recognized as strong defect in skeletal homeostasis
that led to a significant decline in bone mineral density
and in bone volume. These alterations in skeletal mass were

consistent with significantly elevated OC numbers and bone
resorption, a consequence of a significant decline in B cell
OPG production, compounded by a significant increase in B-
cell production of RANKL. Production of RANKL is indeed
an established property of activated B cells [170, 171] and of
B-cell precursors [172]. This imbalance in the RANKL/OPG
ratio was favorable to osteoclastic bone resorption and was
likely further exacerbated by a dramatic increase in the
number ofOCprecursors [173]. Clinical studies to ratify these
changes in humans are currently underway.

Furthermore, B-cell to T-cell crosstalk may regulate B-
cell production of bone-active cytokines, because B cells
suppress osteoclastogenesis when activated by Th1 cytokines
while promoting osteoclastogenesis when stimulated with
Th2 cytokines [174]. In vitro ligation of the costimulatory
molecule CD40 on human tonsil-derived B cells with an
activating antibody is reported to stimulate B-cell OPG
production [175]. Physiologically CD40 interacts with its
cognate ligand, CD40 ligand (CD40L), a molecule expressed
on activated T cells during antigen presentation by antigen-
presenting cells such as B cells, macrophages, and dendritic
cells [176], and acts in priming of naive CD8+ cells [177].

Moreover, both T cells and B cells are involved in the
process of basal bone turnover. In addition to the well-
documented roles of lymphocytes in bone destruction under
pathological conditions, both T and B cells cooperate to play
a critical role in limiting basal bone resorption in vivo. This
protective effect is centered on a mechanism involving the
production of OPG by B-lineage cells, and augmented by T
cells, via CD40/CD40L costimulation [178].

4.6. Dendritic Cells. Dendritic cells (DCs) are highly dif-
ferentiated antigen-presenting cells (APCs) that play a key
role in the initiation and regulation of T cell immunity
to pathogens and tumors while at the same time prevent-
ing immune responses against self-tissues or environmental
antigens [179]. Under normal conditions, DCs are rarely
localized in the bone proper or adjacent stroma, and they
do not seem to contribute to bone remodeling, as DC-
deficient animals have no skeletal defects [180]. On the other
hand, it has been clearly documented that active lesions of
rheumatoid arthritis and periodontitis harbour both mature
and immature DC located in different compartments of the
affected synovial and periodontal tissues surrounded by bone
[181–186]. Interestingly, at active disease sites of rheumatoid
arthritis and periodontitis, DCs can form aggregates with
T cells in inflammatory foci, whereby they can interact
through RANK-RANKL signaling in vivo, and they have
been described as indirect players influencing inflammation-
induced bone loss through regulating T cell activity [181–187].

Recently, Rivollier et al. [188] showed that human periph-
eral blood Mo-derived DCs can transdifferentiate into OCs
in the presence of M-CSF and RANKL in vitro, suggesting
that DCs might directly contribute to osteoclastogenesis.
Alnaeeli et al. tested whether DC/T cell interactions can
support DDOC development by in vitro cocultures using
pure CD11c+CD11b−DC subset (lacking classical OC pre-
cursors [189, 190]) derived from total bone marrow (BM)
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cultures in the presence of granulocyte-macrophage colony-
stimulating factor (GM-CSF) and interleukin IL-4 [191]. The
results suggest that (1) murine CD11c+DC can develop into
functional OCs (DDOCs) during immune interactions with
CD4+ T cells and microbial products or protein Ags in the
bone environment and (2) DDOCs can induce bone resorp-
tion after adoptive transfer onto NOD/SCIDmouse calvarias
in vivo [191]. These findings indicate a potentially critical
contribution of CD11c+DC subset(s) to elevated osteoclasto-
genesis associated with inflammatory bone disorders where
they act not only as potent APCs for immune activation and
regulation but also as direct contributor to bone destruction.
DCs also promote hyperactive osteoclastogenesis in MM
bone disease [192, 193] because their number is higher within
the erosive lacunae. In addition, they may undergo OC-
like transdifferentiation following stimulation by the RANK-
RANK-L [194]. Additionally, mature DCs may drive, within
the tumor site, the expansion of aTh-17 clone leading to IL-17
overproduction that enhances osteoclastogenesis [195].

4.7. Neutrophils. Neutrophil granulocytes are the most abun-
dant type of white blood cells in mammals and form an
essential part of the innate immune system. Neutrophils are
normally found in the blood stream. During the beginning
(acute) phase of inflammation, particularly as a result of
bacterial infection, environmental exposure [196] and some
cancers [197, 198] neutrophils are one of the first responders
of inflammatory cells to migrate towards the site of inflam-
mation. The sites of bony lesions in humans and in animal
models show massive infiltration of the prototypic inflam-
matory cells, neutrophils. Neutrophils are also implicated in
human periodontitis [199], as well as several arthritis animal
models [200–202]. Of note, although traditionally considered
to be short-lived cells with limited synthetic capacity, acti-
vated neutrophils have been shown to synthesize consider-
able amounts of proteins and lipids that participate in the
inflammatory process [203, 204]. In human neutrophils from
inflammatory sites expressed high levels of RANKL [205].
Human, as well as murine, neutrophils strongly upregulate
their expression of membrane RANKL after LPS stimulation
and thus have the capacity to activate osteoclastic bone
resorption through neutrophil-OC interactions [206]. The
osteoclastogenic effect of neutrophil RANKL, demonstrated
with human- and murine-activated neutrophils (purity >
95%), was reproduced with purified neutrophil membranes
and fixed neutrophils, but not with culture supernatants
of activated neutrophils in which no secreted RANKL was
detected. Thus, RANKL expression in neutrophils differed
from that in activated CD3+ lymphocytes, which express
both cell surface and soluble RANKL [207, 208]. Moreover,
neutrophils can affect OB functions in children on chronic
glucocorticoid therapy as well as in tophaceous gout leading
to decreased bone formation and increased bone resorption
[209, 210].

5. Conclusion

Over the past two decades extraordinary advancement has
been done in understanding the crosstalk between the bone

and immune system in physiological and pathological con-
ditions. Although numerous data arise from animal models,
exciting data from human studies are emerging and as a
consequence the first biological drugs targeting cytokines
released from immune cells are emerging as alternative ther-
apeutic management for inflammatory bone disease, such as
arthritis and osteoporosis. However, despite the advancement
made, further studies needed to elucidate the cross-talk
between the bone and immune system.
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