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Mutations in phosphatase and tensin homologue-induced kinase 1 (PINK1) cause recessively inherited Parkinson’s disease, a
neurodegenerative disorder linked to mitochondrial dysfunction. Studies support the notion of neuroprotective roles for the PINKI,
as it protects cells from damage-mediated mitochondrial dysfunction, oxidative stress, and cell apoptosis. PARL is a mitochondrial
resident rhomboid serine protease, and it has been reported to mediate the cleavage of the PINKI. Interestingly, impaired mitophagy,
an important autophagic quality control mechanism that clears the cells of damaged mitochondria, may also be an underlying
mechanism of disease pathogenesis in patients for Parkinson’s disease with the PARL mutations. Functional studies have revealed
that PINKI recruits Parkin to mitochondria to initiate the mitophagy. PINKI is posttranslationally processed, whose level is
definitely regulated in healthy steady state of mitochondria. As a consequence, PINKI plays a pivotal role in mitochondrial healthy

homeostasis.

1. Introduction

Mitochondria play an important role in eukaryotic metabolic
processes by serving as cellular energy generators of ATP [1],
which are critical for cell survival and for correct cellular
functions, and they play an important role in mediating
apoptosis and in determining their own destruction called
mitophagy [2], an important autophagic control mechanism
that clears damaged mitochondria. Mitochondria are also
recognized to play an important role in neurodegenera-
tive disorders including multiple sclerosis, Alzheimer’s, and
Parkinson’s diseases, which are characterized by progres-
sive and selective loss of neuronal cell populations [3-5].
Midbrain dopaminergic neurons are susceptible to oxidative
stress due to the environment of the dopamine biosynthetic
pathways and their low mitochondrial reserve compared to
other neuronal populations [6]. Molecular genetics has linked
mitochondrial dysfunction to the pathogenesis of Parkinson’s
disease by the discovery of several inherited mutations
in gene products that associate with the mitochondrial
function.

The PTEN-induced kinase 1 (PINK1) is a mitochondria-
targeted serine/threonine kinase, which is linked to auto-
somal recessive familial Parkinson’s disease [7] (Figure1).
In addition to its protective role against mitochondrial

dysfunction and apoptosis, PINK1 is also known to reg-
ulate Parkinson’s disease-related protein Parkin [7]. The
PINKI recruits the E3 ubiquitin ligase Parkin to mito-
chondria in order to initiate the mitophagy. In addition,
presenilin-associated rhomboid-like serine protease (PARL)
can affect the proteolytic processing of the PINKI1 [8].
Normal PINKI localization and stability requires catalytic
activity of the PARL. Consequently, PARL deficiency impairs
Parkin recruitment to mitochondria, suggesting that PINK1
processing and localization is essential in determining its
interaction with Parkin [9]. More than 50 mutations of PINK1
have been mapped throughout the kinase and carboxyl-
terminal regulatory domains of PINKI with various effects
on protein stability implicating neuroprotective roles [10,
11]. This paper will provide a concise overview on the
cellular functions of the mitochondrial kinase PINKI and
the relationship between parkinsonism and mitochondrial
dynamics, particular emphasis on a mitochondrial damage
response pathway and mitochondrial quality control.

2. Expression and Characteristics of PINK1

Mutations in PINKI are the most common cause of recessive
familial Parkinsonism (10, 11]. The PINKI (phosphatas-e and
tensin-homolog- (PTEN-)induced kinase 1) gene consists of
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FIGURE 1: Implication of mitochondrial dysfunction caused by
PINKI, Parkin, and so on for neurodegenerative disorders including
Parkinson’s disease. Abnormality of these molecules may also be a
causative factor in the development of mitochondrial dysfunction.
There is a relationship between mitochondrial dysfunction and
neurodegenerative disorders. Note that some critical molecules have
been omitted for clarity.

eight exons, encoding a 58l-amino acid protein with a
predicted molecular mass of 62.8 kilodaltons. Defects in
the PTEN, which is a tumor suppressor, have been found
in cancers arising in a variety of human tissues. PINKI
mRNA is expressed ubiquitously, but high expression levels
are found in the heart, skeletal muscle, testes, and brain [12].
In the brain, higher expression is neuronal in the substantia
nigra, hippocampus, and cerebellar Purkinje cells [13]. The
PINKI protein has a central domain with homology to ser-
ine/threonine kinases, exhibiting an auto-phosphorylation
activity in vitro [14]. An amino-terminal mitochondrial-
targeting signal domain is sufficient for mitochondrial intro-
duction of PINKI1 (Figure 2) [15]. The protein can be found
on the outer and inner mitochondrial membrane (Figure 3)
(16, 17]. The PINKI can be processed into at least two
shorter forms, which are distributed in both mitochondrial
and cytosolic compartments. Physiological PINKI1 substrates
are localized in the outer mitochondrial membrane or pos-
sibly in the cytosol near the mitochondrial surface. The
cytoplasmic PINKI is degraded by proteasome [18]. Adding
to the variety of survival functions of PINKI, it has been
shown to phosphorylate the mitochondrial heat shock pro-
tein 75kDa (TRAPI), increasing neuronal survival against
oxidative stress or heat shock by preventing the release of
cytochrome c [19]. The mitochondrial serine protease HtrA2
has been identified to be regulated by PINKI1 [20]. Targeted
deletion of the HtrA2 causes mitochondrial dysfunction
leading to a neurodegenerative disorder with parkinsonian
features in mice [20]. The TRAPI may be a direct substrate
for PINKI1, which localize primarily in the mitochondrial
matrix and at extramitochondrial sites. Whether HtrA2 is a
direct PINKI substrate is somewhat unclear. It is possible that
differences in cell viability resulting from PINKI inactivation
may affect HtrA2 through the other kinase such as p38
SAPK [21]. HtrA2 is released from the inter membrane space
of mitochondria during apoptosis to the cytosol [22, 23].
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FIGURE 2: Schematic diagram indicating the domain structures of
PINKI (upper) and Parkin (lower) proteins. The predicted consen-
sual important domain structures for each protein are depicted.
MTD: mitochondrial targeting domain, UbH: ubiquitin homology
domain, RINGI1 and RING2: RING finger domain, and IBR: in
between RING fingers.
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FIGURE 3: Hypothetical schematic representation of the PINKI
regulatory pathway and Parkin mediated-mitophagy. Under healthy
and steady state, PINKI is degraded within the mitochondria. This
may be inhibited by mitochondrial damage, resulting in PINK1
and Parkin accumulation in the outer membrane of mitochondria.
Parkin is presumed to ubiquitinate unidentified substrate (black cir-
cle), resulting in the induction of mitophagy. Note that some critical
pathways have been omitted for clarity. OMM: outer mitochondrial
membrane; IMM: inner mitochondrial membrane.

PINKI1 may also interact with Beclinl, a key proautophagic
protein implicated in the pathogenesis of Alzheimer’s and
Huntington’s diseases [24]. Full-length PINKI interacts with
Beclinl [25], which enhances starvation-induced autophagy.
The PARL is a mitochondrial resident rhomboid serine
protease and has been reported to mediate the cleavage
of PINKI in mitochondria, which may mediate differential
cleavage of PINKI and phosphoglycerate mutase 5 (PGAM5)
depending on the health status of mitochondria [26].

3. PINK1 Function Involved in
Mitochondrial Health Status

PINKI silencing may result in mitochondrial respiratory
dysfunction, since PINKI knockout mice exhibit impaired
mitochondrial respiration and decreased activity of oxidative
phosphorylation [27]. In addition, the impaired mitochon-
drial respiration can be exacerbated by exposure of the
mitochondria to heat shock [27]. While knockdown studies
of endogenous PINKI indicate a key role for the PINKI
in maintaining the mitochondrial functioning networks,
the protective activities of PINK1 depend on its mitochon-
drial localization. Loss of PINKI leads to severe alterations
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in mitochondrial homeostasis as evidenced by increased
mitochondrial reactive oxygen species (ROS) inducing a
robust increase in mitochondrial mitophagy [28]. Stable
PINKI silencing may have an indirect role in the mitophagy
activation. As proteins with iron sulfur clusters, one of the
most ubiquitous redox centers, are sensitive to oxidative
stress, prolonged ROS exposure may cause mitochondrial
dysfunction [29, 30]. PINKI has been shown to protect
against cell death induced by proteasome inhibition and
oxidative damage [31, 32]. Thus, PINKI has a pivotal role
in the mitochondrial quality control via the mitochondrial
stabilization, phosphorylation of chaperones, and regula-
tion of the mitophagy. However, imbalanced induction of
mitophagic recycling can contribute to neuronal atrophy,
neurite degeneration, and neuronal cell death [33]. Excessive
rates of mitophagy may prove harmful results [33, 34].
Overexpression of wild-type PINK1 in neuronal cells stabi-
lizes respiring mitochondrial networks through maintaining
mitochondrial membrane potential and suppression of the
mitophagy [35]. Probably, high levels of cytoplasmic PINK1
may substitute for endogenous protein by phosphorylating
substrates at the mitochondrial surface or in the cytoplasm
near the mitochondrial surface. In healthy mitochondria,
PINKI1 is rapidly degraded in a process involving both
mitochondrial proteases and the proteasome. The mitochon-
drial protease PARL can affect the proteolytic processing
of PINKI and normal PINKI localization, and the stability
requires the PARL catalytic activity [17, 36]. The PARL may
also mediate differential cleavage of PINKI depending on
the health status of mitochondria. PARL deficiency impairs
Parkin recruitment to mitochondria, suggesting that PINK1
processing and localization are important in determining its
interaction with the Parkin.

With severe mitochondrial damage, PINKI facilitates
aggregation of depolarized mitochondria through interac-
tions with Parkin protein [37]. In addition, overexpression
of full-length PINKI is required for mitochondrial Parkin
recruitment for the mitochondrial aggregation. Besides,
transient overexpression of Parkin further augments mito-
chondrial mitophagy in PINK1 deficient neuronal cells,
resulting in cytoprotection and/or restoration of intercon-
nected mitochondrial networks [38]. Many lines evidences
indicate interactions of PINKI with Parkin in promoting
mitochondrial health homeostasis [38, 39]. The Parkin can be
phosphorylated by PINKI in its RING finger domain during
in vitro kinase reactions, which may promote translocation
of the Parkin to mitochondria [40]. Furthermore, the phos-
phorylated Parkin has been reported to facilitate the selective
clearance of depolarized mitochondria via mitophagy [41,
42]. Under conditions of PINK1 diminishment or deficiency,
it compromises the mitochondrial quality control. Failure of
this mitochondrial quality control eventually contributes to
cell death. In healthy mitochondria, by the way, PINKI is
rapidly degraded in a process involving both mitochondrial
proteases and the proteasome as mentioned above. Loss
of either PINKI or Parkin leads to fragmentation of mito-
chondria [43, 44]. On the other hand, mitochondrial Parkin
promotes the mitophagic degradation of dysfunctional mito-
chondria [25, 45]. The mitophagic response observed in

PINKI silencing cells could be associated with increased
Parkin levels, as endogenous Parkin protein expression is
increased in some PINKI deficient cells [46]. Thus, PINK1
and Parkin could complexly participate in a common mito-
chondrial protective signaling pathway.

4. Abnormal PINK]1 Involved in
Neurodegenerative Disease

Intramembrane proteolysis is a conserved mechanism that
regulates various cellular processes. The PARL cleaves human
PINKI within its conserved membrane anchor [47], suggest-
ing implication in neurodegenerative disease. Mature PINK1
is then free to be released into the cytosol or into the mito-
chondrial intermembrane space. Upon depolarization of the
mitochondrial membrane potential, the import of PINK1 and
PARL-catalyzed processing is blocked, leading to accumula-
tion of the PINKI1 precursor [47]. Targeting of this precursor
to the outer mitochondrial membrane has been shown to
trigger the mitophagy (Figure 3) [48]. The PARL-catalyzed
removal of the PINKI signal sequence in the import pathway
may act as a cellular checkpoint for mitochondrial integrity.
Interestingly, Parkinson’s disease-causing mutations decrease
the processing of PINK1 by PARL [49]. Decreased processing
of Pinkl may be an implication for the pathogenesis. When
mitochondrial import is compromised by depolarization,
PINK1 accumulates on the mitochondrial surface, where
it recruits the Parkinson’s disease-linked Parkin from the
cytosol, which in turn mediates the mitophagic destruction of
mitochondria (Figure 3) [48, 49]. The importance of PINK1
in mechanisms underlying neurodegeneration is reflected by
the neuroprotective properties of the Parkin in counteracting
oxidative stress and improvement of mitochondrial function.
The involvement of Parkin and PINKI in mitochondrial
dysfunction, oxidative injury, and impaired functioning of
the ubiquitin-proteasome system has been investigated in
light of Parkinson’s disease pathogenesis [48, 49].

A protein kinase microtubule-affinity regulating kinase 2
(MARK2) also plays key roles in several cell processes
underlying neurodegenerative diseases, such as Alzheimer’s
disease, by phosphorylating tau and detaching it from
microtubules [50]. MARK2 phosphorylates and activates the
PINKI1 [51]. Thr-313 is the primary phosphorylation site, a
residue mutated to a nonphosphorylatable form in a frequent
variant of Parkinson’s disease [51]. Mutation of the Thr-313
in PINKI shows toxic effects with abnormal mitochondrial
distribution in neurons. Both MARK2 and PINKI have
been found to colocalize with mitochondria and regulate
their transport. So, MARK2 may be an upstream regulator
of PINKI, and it regulates the mitochondrial trafficking in
neuronal cells. The MARK2-PINKI cascade provides new
insights into the regulation of mitochondrial trafficking in
neurons and neurodegeneration in Parkinson’s disease. The
high temperature requirement A2 (HtrA?2) is indirectly phos-
phorylated and interacts with PINK1 in relation to a signaling
pathway [52]. The PINKI-dependent phosphorylation of the
HtrA2 enhances its protease activity leading to enhanced
survival against oxidative stress [52, 53]. The HtrA2 is also



phosphorylated on activation of the p38 SAPK pathway,
occurring in a PINKI-dependent manner [52]. Point muta-
tions in the HtrA2 are a susceptibility factor for Parkinson’s
disease. However, it has been shown in Drosophila that the
HtrA2 is not essential for all the protective functions of
PINKI1 [54, 55]. Another mitochondrial protease rhomboid-7
has been implicated in posttranslational regulation of both
PINK1 and HtrA2 [56, 57]. These protein signaling axes
might provide a link between neurodegenerative processes in
Alzheimer’s and Parkinson’s diseases.

5. Perspective

Mitochondrial protein phosphorylation is involved in cell
stress-induced programmed cell death such as apoptosis,
which also contributes to the regulation of mitochondrial
dynamics and mitophagy. Those are significant to main-
tain mitochondrial quality and ensure cellular homeostasis.
PINKI may function in the first line of mitochondrial quality
control, monitoring respiratory chain function [58] and trig-
gering the localized degradation of damaged mitochondrial
proteins. In addition, diminishment of PINKI would have
deleterious consequences on mitochondrial function [59].
The PINKI is a mitochondrial kinase that promotes cell
survival, particularly under conditions of oxidative stress.
Whether PINKI levels are enhanced or reduced, strategies to
promote selective mitophagy and mitochondrial biogenesis
may prove to be effective for multiple forms of neurodegener-
ative disease. Although the precise physiological substrate of
PINKI1 is not fully resolved, it is clear that the kinase activity is
important in playing roles for many aspects of mitochondrial
function [60, 61]. The involvement of PINKI and Parkin
in the mitochondrial dysfunction has now been intensively
investigated in Parkinson’s disease pathogenesis [62]. These
pathological mechanisms are not restricted to the Parkinson’s
disease, but they might be common characters of various
neurodegenerative and neuroinflammatory disorders. It is
therefore conceivable that PINKI and Parkin are also linked
to the pathogenesis of other neurological diseases including
Alzheimer’s disease. The mechanisms by which wild-type
PINKI and Parkin promote interconnected mitochondrial
networks may involve different steps in mitochondrial qual-
ity control. For example, severe mitochondrial injury may
require organelle-level responses including Parkin-facilitated
mitochondrial mitophagy. Enhancing pathways that promote
mitophagy might also delay age-related diseases by promot-
ing a healthy pool of viable mitochondria in neuronal cells
and sustaining energy demands. Future experimental work
would be needed to understand the precise mitochondria
protective roles of PINKI.
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