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An incomplete augmented Lagrangian preconditioner, for the steady incompressible Navier-Stokes equations discretized by
stable finite elements, is proposed. The eigenvalues of the preconditioned matrix are analyzed. Numerical experiments show
that the incomplete augmented Lagrangian-based preconditioner proposed is very robust and performs quite well by the Picard
linearization or the Newton linearization over a wide range of values of the viscosity on both uniform and stretched grids.

1. Introduction

We consider the numerical solution for large systems of linear
equations that arise from the finite element discretization
of the incompressible steady-state Navier-Stokes equations
governing the flow of viscous Newtonian fluids. The primitive
variables formulation of the steady Navier-Stokes equations
are

—vAu+ (u-A)u+Vp=f on Qx[0,T],

divu on Qx][0,T],

)

u=g on 0Qx[0,T],

u(x,0)=u,(x) on Q,

where Q ¢ R” is an open bounded domain with sufficiently
smooth boundary 0Q, [0,T] is the time interval of interest,
u(x,t) and p(x,t) are the unknown velocity and pressure
fields, v is the kinematic viscosity, A is the vector Laplacian, V
is the gradient, div the divergence, and f, g, and u,, are given
functions.

We refer to [1] for an introduction to the numerical solu-
tion of the Navier-Stokes equations. Implicit time discretiza-
tion and linearization of the Navier-Stokes equations by the
Picard fixed iteration result in a sequence of steady Oseen
problems. Spatial discretization of the steady Oseen problems

using LBB-stable finite elements (see [1, 2]) is reduced to a
series of large sparse linear systems of equations with the
following saddle point matrix structure:

Ax =b, (2)

() ) () o

where u and p represent the discrete velocity and pressure,
respectively. This matrix is positive definite, in the sense that
A+ATis symmetric positive definite.

In the past few years, a considerable amount of work has
been spent in developing efficient preconditioners for incom-
pressible flow problems; see [1, 3] for a comprehensive survey.
Most of the classical and recent preconditioners are based on
approximate block factorization. This class includes a variety
of block diagonal and block triangular preconditioners. The
crucial ingredient in all these methods is an approximation
to the Schur complement. This class includes the pressure
convection diffusion (PCD) preconditioner, the least squares
commutator (LSC) preconditioner, and their variants [4-6].
Another approach is based on the Hermitian or skew Her-
mitian splitting (HSS) (see [7-10]), and dimensional splitting

with



(DS) of the problem along the components of the velocity
field and its relaxed version are introduced in [11, 12]. More
recently, preconditioners for incompressible flow problem
based on the augmented Lagrangian (AL) reformulation of
(2) have been introduced and analyzed in [13-17].

The remainder of the paper is organized as follows. In
Section 2, we present a new preconditioner based on the
incomplete augmented Lagrangian formulation and a study
of the spectrum of the preconditioned system. In Section 3,
we show the results of a series of numerical experiments
indicating that the incomplete augmented Lagrangian-based
preconditioner has been implemented efficiently for the
steady incompressible Navier-Stokes equations.

2. Incomplete AL-Based Preconditioner for
Stable Finite Flements

In this section, we introduce the incomplete AL-base pre-
conditioner for the steady Oseen problem discretized by
stable finite element pairs, such as Q2-QI or Q2-P1. Here, we
consider 2D problems as follows:

u f1
()
p g

where A, € R"™, A, € R B, € R™" and B, € R"™"™,
Thus, A € R™ with n = n, + n,. It is often possible to
use augmented Lagrangian techniques to replace the original
saddle point system with an equivalent one having the same
solution; the original system given in (4) is replaced by
incomplete augmented Lagrangian form

A, 0 Bl
0 A, B
B, B, 0

T
A, 0 B u fi o
yBiw™'B, A, Bl |[v]|=(F | orAx=b,
B, B, 0/ g

)

where A, = A, + yBIW™'B,, f= fo+ YBIW g, W is
SPD, and y > 0. For form (5), the incomplete augmented
Lagrangian (or IAL for short) preconditioner is defined as

follows:
u h
B0 -
p g

where S is an approximation to the Schur complement § =
~BA,B",A, = A, +yB{W'B,, A, = yByW 'B,,and A, =

( 2‘21 £2 ) S is implicitly defined through its inverse

A, 0 Bl
yBIW™'B, A, B}
~ySW™'B, B, §

S'=—yM.}, (7)

where M}, is the diagonal of the pressure mass matrix M o
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It is important to note that the preconditioner M can be
written in factorized form as

A, o Bl
o I 00
M = 2A21 A2 B2 0 10 . (8)
o 0 3 —yW™'B, 0 I
It follows from the identity that
=1
I 00 A, 0 0
M= 0 10 2A'A, A AT o
yW™B, 0 I 0 0 I
)
T
I 0 B; 10 0
x| 01 Bf 01 0
o1
00 —I 00 =S

Theorem 1. Assume that W = M p- The preconditioned matrix

T = AM™" has an eigenvalue at 1 with multiplicity at least n, +
n,. The remaining m eigenvalues are A; of the matrix

Z,=y(8,+5,) -2%5,5,, (10)

whereS, = B,A,'B/ M, and S, = B,A,'B; M, ".

Proof. We have

T=AM"
T
A, 0 B I 0o
=| yB,W'B, A, B, 0 L0
B, B, 0 yW B, 0 I
A 0 0
x| —2A7'AL AT A o
0 0 I (11)
T
10BN\ /10 o
x| oI BY 0I 0
o1
00 1/ \00-=S
I 0 0
- o I 0|,
—1 -1
BA)}! B,A! Z,
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where

Z_

1 5Ta-1
y = —BAY B'S

_ opa-lpTyi-1
= yBA,'B"M,
— BT
Al 0 LY —
= B B — 1 — —
y (B, B,) (—ZAEIAZIAII A;1> B! p

=y(B,A'B] + B,A,'B) (12)

-1 1T\ 771
~2B,A;'A, A)'B)) M,

T-1pT F-1pT
= Y(BlAl B, +B,A, B,
T 1pT77-1p 71pT) 77-1
~2B,A;'BM,'B,A}'B{ ) M,
=y (§1 + §2 - 2y§2§1) .
Therefore, we can see that the eigenvalues of T are given by

1 with multiplicity at least n; + n,, and the remaining m
eigenvalues are A; of the matrix Z,,. O

_ AT
Lemma 2. Let H = (:1 221) € R n=mn+ny, A €
21 2

R™™M A, € R™™, and A,, A, be positive definite. Then, H
is positive definite.

Lemma3. LetH € R”" andB € R™" (m < n). Lety € Rand
assume that matrices H, H + yB"W™'B, BH ' B, and B(H +
yB"W™'B)B" are all invertible. Then,

_ -1 _ _
[B(H+yB"W™'B)B"]  =(BH'B")+yw™". (13
We note that the conditions of Lemma 3 are satisfied if
we assume that B has full row rank and H is positive definite.
Hence, the remaining m eigenvalues A; are solutions of the
generalized eigenproblem

yBA,'B'¢; = A, M, ;. (14)

We note that ;4\], = H + yB"W™'B, and Lemma 3 implies

= (B(H +yB"W'B")'B") Mg,
= ((BH'B") " +yW ) Mg, (1)
= ((BH'B") M, +y1)¢,
=u b+ vy
Hence,
A (16)

3
where y; satisfies the generalized eigenproblem
BH'B'¢; = ;' M4, 17
Hence, the nonunit eigenvalues of AM ™" are given by
Y ;
A= —, l<i<m. 18
Loyt (18)
Theorem 4. The eigenvalues A; of Z,, are of the form
YHi
A. = —)
BRSNS )

where the ;s satisfy the generalized eigenvalue problem
BH'B'¢; = M;lﬁp‘Pi-

Since H is positive definite, and M p is SPD (see [1]), we
have that the eigenvalues of (17) are enclosed in rectangle
contained in the half-plane R(z) > 0; using this result and
the relation (19), we can conclude that the same is true of the
eigenvalues of AM™". If we denote by a; and b; the real and
imaginary parts of y;, respectively, easy manipulations result
in the following expressions for the real and the imaginary
parts of A;:

% (/\i) _ y (ai +y (Zaiz + biz)z),
(ya; +1)" + (vb;)

S, = v .

() (ya; +1)* + (yb)’

The following result is an immediate consequence of
Theorem 4.

(20)

Theorem 5. The remaining m eigenvalues A; are given by (18),
where y; = a; + b, satisfies (17). The following estimates hold.

0 < min —2— < R <,
i 1+yaq
(1)
b
|S (A;)] < max Y|2'| 5 < S
Po(ya 1)+ (vh)” 2

Eigenvalue plot of the preconditioned matrices obtained
with the incomplete augmented Lagrangian preconditioner is
displayed in Figure 1. This plot confirms that, for the incom-
plete augmented Lagrangian preconditioner, the eigenvalues
of the preconditioned matrices are confined to a rectangular
region in the half-plane R(z) > 0; thatis, 0 < R(A;) < 1 and
IS(A;)] < 1/2; note that the appearance of a zero eigenvalue
is due to the singularity of the saddle point system (4). In
these two examples, corresponding to the viscosities v = 0.01
and v = 0.001, it is clear that the incomplete augmented
Lagrangian preconditioner produces a favorable eigenvalue
distribution, and the plot shows that the remaining nonzero
eigenvalues are well separated from the origin.
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FIGURE 1: Spectrum of the preconditioned matrix, 32 x 32 grid (Q2-
Q1 FEM) (a) » = 0.01, (b) v = 0.001.

3. Numerical Experiments

In this section, we will carry out numerical experiments for
the linear system coming from the finite element discretiza-
tion of the two dimensional linearized Stokes and Oseen
models of incompressible flow to test the performance of
our preconditioner. The test problem is the leaky-lid driven
cavity problem generated by the IFISS software package [18].
These experiments were performed in MATLAB on a PC with
2.20 GHz and 2 GB of memory.

Unless otherwise specified, we use right preconditioning
with restarted GMRES as the Krylov subspace method, with
the maximum subspace dimension set to 30, all these tests are
started with an initial guess equal to zero vector. The iteration
stops when

il
<12 <107, (22)
[61,

where 1y, is the incomplete augmented Lagrangian system (5)
of the residual vector at the kth iteration.

We consider the 2D leaky-lid driven cavity problem
discretized by the finite elements on uniform grids and
stretched grids [1]. The subproblems arising in the application
of the incomplete augmented Lagrangian preconditioner are
solved by direct methods. We use AMD reordering technique
[19, 20] for the degrees of freedom that makes the application
of the LU factorization of A, and A, relatively fast.

3.1. The Leaky Lid Driven Cavity Problem Discretized by Q2-
QI Finite Elements. The comparison is based on two type test
problems. The first type problem is the lid driven cavity prob-
lem discretized by Q2-Ql finite elements with linearization by
Picard and Newton on a uniform, respectively. The second
type is the same problem but discretized on a stretched
grid to investigate the influence of nonuniform elements; the
numerical experiments are performed using stretched grids
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TABLE 1: GMRES iterations with incomplete AL preconditioner for
steady Oseen problems (uniform grids, Q2-Ql FEM, and Picard).
The optimal y is in parentheses.

Grid Viscosity

0.1 0.01 0.005 0.001
16 x 16 11 (1.0) 11 (0.08) 15 (0.05) 21(0.03)
32x32 14 (1.0) 13 (0.08) 15 (0.05) 25(0.03)
64 x 64 14 (1.0) 13 (0.08) 15 (0.05) 29 (0.03)
128 x 128 14 (1.0) 13 (0.08) 15 (0.05) 29 (0.03)

TABLE 2: GMRES iterations with incomplete AL preconditioner for
steady Oseen problems (stretched grids, Q2-QI FEM, and Picard).
The optimal y is in parentheses.

Grid Viscosity

0.1 0.01 0.005 0.001
16 x 16 11 (1.0) 11 (0.08) 12 (0.05) 17 (0.03)
32x32 13 (1.0) 12 (0.08) 14 (0.05) 21(0.03)
64 x 64 14 (1.0) 13 (0.08) 15 (0.05) 26 (0.03)
128 x 128 14 (1.0) 13 (0.08) 16 (0.05) 32(0.03)

TABLE 3: GMRES iterations with incomplete AL preconditioner for
steady Oseen problems (uniform grids, Q2-Q1l FEM, and Newton).
The optimal y is in parentheses.

Grid Viscosity

0.1 0.01 0.005 0.001
16 x 16 11 (1.0) 11 (0.08) 12 (0.06) 19 (0.03)
32x32 14 (1.0) 12 (0.08) 14 (0.05) 26 (0.03)
64 X 64 14 (1.0) 12 (0.08) 14 (0.05) 29 (0.03)
128 x 128 14 (1.0) 12 (0.08) 14 (0.05) 42 (0.03)

with stretch factors 1.2712 for the 16 x 16 grid, 1.1669 for the
32 x 32 grid, 1.0977 for the 64 x 64 grid, and 1.056 for 128 x 128
grid. The stretching is done in both the horizontal and vertical
direction, resulting in rather fine grids near the boundaries.

In Tables 1 and 2, we consider the solution of Picard
linearization for the lid driven cavity problem discretized on
uniform grids and stretched grids, respectively. For viscosity
less than or equal to 0.005, from these results we can see that
the performance of the incomplete augmented Lagrangian
preconditioner is independent of the mesh size and the
viscosity; we also can observe that the uniform grid and
stretched grid lead to similar numerical results. Moreover, the
optimal y is grid independent and mild dependent viscosity.

Next, we present some results using Newton linearization
for the lid driven cavity problem discretized on a uniform
grids and stretched grids, respectively. From Tables 3 and 4,
it appears that the Newton method gives a similar numerical
result on uniform grid and stretched grid, respectively.

3.2. The Leaky Lid Driven Cavity Problem Discretized by Q2-P1
Finite Elements. Here, we show results of some tests on prob-
lems generated from the discretization using Q2-P1 elements.
The preconditioners are tested for a uniform, grid stretched
grid, and varying viscosity by Picard or Newton linearization.
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TABLE 4: GMRES iterations with incomplete AL preconditioner for
steady Oseen problems (stretched grids, Q2-QI FEM, and Newton).
The optimal y is in parentheses.

TABLE 9: GMRES iterations with incomplete AL preconditioner for
the steady Oseen in a uniform backward facing step (Q2-Ql FEM
and Picard).

Grid Viscosity

0.1 0.01 0.005 0.001
16 x 16 11 (1.0) 10 (0.08) 11 (0.05) 24 (0.07)
32x32 13 (1.0) 11 (0.08) 12 (0.05) 30 (0.05)
64 x 64 14 (1.0) 13 (0.08) 14 (0.05) 45 (0.05)
128 x 128 14 (1.0) 13 (0.08) 14 (0.05) 51(0.05)

TABLE 5: GMRES iterations with incomplete AL preconditioner for
steady Oseen problems (uniform grids, Q2-P1 FEM, and Picard).
The optimal y is in parentheses.

Grid Viscosity

0.1 0.01 0.005
16 x 48 12 (0.5) 16 (0.2) 20 (0.1)
32 %96 13 (0.5) 16 (0.08) 19 (0.1)
64 x 182 12 (0.5) 15 (0.08) 21(0.1)

TaBLE 10: GMRES iterations with incomplete AL preconditioner for
the steady Oseen in a uniform backward facing step (Q2-Ql FEM
and Newton).

Grid Viscosity

0.1 0.01 0.005 0.001
16 x 16 11 (1.0) 12 (0.08) 15 (0.06) 24 (0.03)
32x32 11 (1.0) 12 (0.08) 15 (0.06) 26 (0.03)
64 x 64 11 (1.0) 12 (0.08) 15 (0.06) 26 (0.03)
128 x 128 11 (1.0) 11 (0.08) 14 (0.06) 25 (0.03)

Grid Viscosity

0.1 0.01 0.005
16 x 48 12 (0.5) 15(0.2) 26 (0.1)
32x96 13 (0.5) 16 (0.08) 25(0.1)
64 x 182 12 (0.5) 15 (0.08) 27 (0.1)

TABLE 6: GMRES iterations with incomplete AL preconditioner for
steady Oseen problems (stretched grids, Q2-P1 FEM, and Picard).
The optimal y is in parentheses.

Grid Viscosity

0.1 0.01 0.005 0.001
16 x 16 11 (1.0) 12 (0.08) 14 (0.06) 26 (0.03)
32x32 12 (1.0) 13 (0.08) 16 (0.06) 27 (0.03)
64 x 64 12 (1.0) 12 (0.08) 16 (0.06) 28 (0.03)
128 x 128 12 (1.0) 12 (0.08) 16 (0.06) 28 (0.03)

TABLE 7: GMRES iterations with incomplete AL preconditioner for
steady Oseen problems (uniform grids, Q2-P1 FEM, and Newton).
The optimal y is in parentheses.

Grid Viscosity

0.1 0.01 0.005 0.001
16 x 16 11 (1.0) 11 (0.08) 12 (0.05) 30 (0.05)
32 %32 11 (1.0) 10 (0.08) 12 (0.05) 44 (0.05)
64 x 64 11 (1.0) 10 (0.08) 12 (0.05) 46 (0.05)
128 x 128 11 (1.0) 10 (0.08) 11 (0.05) 46 (0.05)

TABLE 8: GMRES iterations with incomplete AL preconditioner for
steady Oseen problems (stretched grids, Q2-P1 FEM, and Newton).
The optimal y is in parentheses.

Grid Viscosity

0.1 0.01 0.005 0.001
16 x 16 11 (1.0) 11 (0.08) 12 (0.05) 30 (0.05)
32x32 12 (1.0) 11 (0.08) 13 (0.05) 46 (0.1)
64 x 64 12 (1.0) 11 (0.08) 13 (0.05) 50 (0.05)
128 x 128 12 (1.0) 10 (0.08) 12 (0.05) 57 (0.05)

The numerical results are summarized in Tables 5, 6, 7,
and 8. For viscosity not more than 0.005, from these tables

TaBLE 11: GMRES iterations with incomplete AL preconditioner for
the steady Oseen in a uniform backward facing step (Q2-P1 FEM
and Picard).

Grid Viscosity

0.1 0.01 0.005
16 x 48 12 (0.5) 18 (0.2) 25(0.1)
32x96 11(0.5) 18 (0.2) 23(0.1)
64 % 182 11 (0.5) 17 (0.2) 22(0.1)

TABLE 12: GMRES iterations with incomplete AL preconditioner for
the steady Oseen in a uniform backward facing step (Q2-P1 FEM
and Newton).

Grid Viscosity

0.1 0.01 0.005
16 x 48 12 (0.5) 18 (0.2) 27 (0.1)
32x96 11(0.5) 18 (0.2) 29 (0.1)
64 x 182 11(0.5) 17 (0.2) 27 (0.1)

we can see again that the convergence rate for the incomplete
augmented Lagrangian preconditioner is independent of the
mesh size and viscosity; we also can observe that the uniform
grid and stretched grid lead to similar numerical results.

3.3. Results for the Backward Facing Step Problem. In this
subsection, we consider the 2D backward facing step problem
using uniform grids. For the step problem, the number of cells
in the two directions x and y is unequal. For this problem, the
smallest value of the viscosity used is v = 0.005, since the flow
is unsteady for » = 0.001. We show this problem because itisa
standard benchmark and because we are interested in seeing
the effect of a nonsquare domain. From Tables 9,10, 11, and 12,
we observe iteration counts that are essentially independent
mesh size and mildly dependent on the viscosity.



4. Conclusions

We have introduced a novel incomplete augmented Lag-
rangian preconditioner for solving saddle point systems that
arise from the finite element discretization of the incompress-
ible steady-state Navier-Stokes equations. We prove that the
preconditioned matrix has 1 as an eigenvalue of algebraic
multiplicity at least n (recall that # is the number of velocity
degrees of freedom), and the remaining m are contained
in a box (0, 1] x (-1/2,1/2). Numerical experiments show
that the incomplete augmented Lagrangian preconditioner is
very robust and performs quite well by Picard linearization
or Newton linearization over a wide range of values of the
viscosity. The convergence behavior is also quite good for
problem posed on stretched grids.
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