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Multiorgan failure (MOF) represents the leading cause of death in patients with sepsis and systemic inflammatory response
syndrome (SIRS) following severe trauma. The underlying immune response is highly complex and involves activation of the
complement system as a crucial entity of innate immunity. Uncontrolled activation of the complement system during sepsis and
SIRS with in excessive generation of complement activation products contributes to an ensuing dysfunction of various organ
systems. In the present review, mechanisms of the inflammatory response in the development of MOF in sepsis and SIRS with
particular focus on the complement system are discussed.

1. Introduction

In the 1970s, a syndrome of progressive, sequentially dys-
functional organ systems has been firstly characterized,
eventually referred to as multiorgan failure (MOF) [1, 2].
As a predominant underlying condition, sepsis and sepsis-
associated MOF represent one of the leading causes of
death of hospitalized patients with reported morality rates
ranging from 28% to 56% [3, 4]. Likewise, severe trauma and
trauma-related multiorgan failure remain the leading cause
of death in people below the age of 40 [5, 6].

The conception of organ failure has changed over the
years and various scoring systems for the classification and
diagnosis of MOF exist all of which attempt to quantify the
degree of organ failure [7–9]. Currently, MOF is regarded as
a continuous process of varying levels of organ failure rather
than an all-or-none event [10]. To characterize MOF, six
different organ systems are regarded as “key organs”: lungs,
cardiovascular system, kidneys, liver, coagulation system, and
central nervous system.

Depending on the severity and various predisposing
conditions, the initial insult (tissue trauma, infection) can
induce a systemic host response that is characterized by the
release of pro- and anti-inflammatory cytokines and meta-

bolites (e.g., reactive oxygen (ROS) and nitrogen species
(NOS)), activation of plasmatic cascade systems, such as
the complement and the coagulation systems, and the
appearance of acute phase proteins as well as hormonal and
neuronal mediators [11–13]. Imbalanced systemic immune
responses can ultimately lead to accumulation of leukocytes,
disseminated intravascular coagulation (DIC), and microcir-
culatory dysfunction with subsequent apoptosis and necrosis
of parenchymal cells, finally resulting in the development of
MOF [12, 14, 15].

As a central entity of innate immunity, the complement
system is immediately activated after trauma or infection
in order to control the replication of intruding pathogens.
In humans, the plasma levels of complement activation
products rise early, are persistently elevated in patients after
thermal injury, trauma, and sepsis, and correlate with the
severity of injury and inversely with the outcome [16–22].
It is well established that activation of the complement
cascade alters functional responses of neutrophils (PMN)
in the course of systemic inflammation and contributes to
the development of organ failure [15, 23]. In experimental
sepsis, the blockade of complement anaphylatoxin C5a vir-
tually prevented the appearance of MOF and improved the
outcome [24–26]. Previous studies strongly suggest a mutual
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crosstalk between the complement and the coagulation
system [27–30]. Due to the complex nature of plasmatic
cascades and their interconnections, the role and regulations
of the complement system, especially in states of disease, are
still inadequately understood.

This article is sought to provide insights into the
pathogenesis of multiorgan failure associated with systemic
inflammation with particular focus on the role of the
complement system. Furthermore, potential therapeutic
strategies targeting the complement cascade to prevent the
development of MOF as well as possible future research
directions are addressed.

2. Pathways of Complement Activation

The complement system can be activated via four different
pathways, the classical, the alternative, and the lectin pathway
[31–33]. All three pathways lead to the assembly of the
C3 convertase which cleaves C3 into C3a and C3b [31,
32]. Incorporation of C3b into the C3 convertase results
in formation of the C5 convertase, which cleaves C5 into
C5a and C5b. The split products C3a and C5a act as
potent anaphylatoxins. C3b is an important opsonic factor,
while C5b initiates the formation the membrane attack
complex (C5b-9). In addition, various non-complement
serine proteases seem to cleave complement components
into biologically active complement products with variable
efficacy [34]. In particular, thrombin has been found to
function as a C5-convertase that does not require the
presence of C3 or C3b [28]. Moreover, proteases from PMN
and macrophages can cleave C5 as well [35, 36].

There is evidence that all three complement activation
pathways are activated in SIRS and sepsis. Interestingly, it has
been demonstrated that during the course of sepsis alterna-
tive pathway activation occurs earlier than activation of the
classical pathway [37]. Based on their distinct mechanisms
and kinetics of activation, it has been hypothesized that
classical pathway activation in sepsis plays a crucial role in the
clearance of pathogenic factors, while the alternative pathway
is thought to be essential for fighting against infections
by invading microorganisms [38]. Although the knowledge
about the underlying mechanisms is limited, recent reports
suggest a particular role of mannose-binding lectin (MBL)
and the lectin pathway in the development of MOF. In sterile
systemic inflammation (systemic inflammatory response
syndrome, SIRS), patients with functional MBL deficiency
due to MBL consumption did not develop MOF unless MBL
was reconstituted by transfusion of fresh frozen plasma [39].
In contrast, septic patients with MBL depletion showed sig-
nificantly higher sequential organ failure assessment (SOFA)
scores, whereas functional MBL levels and activity in sepsis
were associated with moderate SOFA scores and better
prognosis [40], suggesting that MBL might be essential for
defence against infections on the one hand, but might also
harm the host and contribute to the development of MOF on
the other hand. Therefore, as indicated by this dual function
of the lectin pathway, the role of the complement system in
systemic inflammation sometimes is referred to as a double-
edged sword.

3. Dysfunction of the Central Nervous System

Historically, the central nervous system (CNS) was defined
as an “immunological privileged organ” because of its
separation from peripheral circulation by the blood-brain
barrier (BBB). However, it became evident that the CNS is
a rich source of inflammatory mediators and complement
proteins can be produced by neurons, astrocytes, microglia,
and oligodendroglia [41–43]. Severe trauma and sepsis are
associated with systemic inflammation that can lead to
blood-brain barrier (BBB) dysfunction and cerebral edema,
regardless of the presence of traumatic brain injury (TBI)
[44]. The breakdown of the BBB is considered to be a key
event in the development of septic encephalopathy, while
the cellular and molecular mechanisms of sepsis-induced
brain damage are still vastly unknown [45]. Interestingly,
the direct contact between blood and cerebrospinal fluid
leads to complement activation, and the extent of intrathecal
complement activation is associated with BBB dysfunction
[46]. In addition, intracerebral complement levels increase
under pathological conditions due to leakage of serum-
derived complement proteins into the subarachnoidal space
after breach of the BBB as well as increased complement
biosynthesis in the CNS [47]. C1q, C3a, and C5a contribute
to intracranial inflammation by induction of BBB damage
and increase in vascular permeability [47, 48]. Blood-
derived leukocytes, predominantly PMN, are then able to
transmigrate into the CNS and release proteases and free
radicals resulting in tissue damage (Figure 1) [47, 49]. In line
with this, in experimental sepsis blockade of C5a attenuated
pathophysiological changes that are typically associated with
septic encephalopathy [50]. C3 and its derivates seem to
play a central role in the pathogenesis of CNS dysfunction.
Accumulation of C3 fragments is related to neuronal cell
death and intracerebral PMN infiltration [51]. Previous
studies suggested that the alternative pathway activation is
a leading mechanism for neuronal cell death after closed
head injury [52, 53]. C5a can induce neuronal apoptosis
via the interaction with its receptor (C5aR), which is
abundantly expressed on various cell types in the CNS
[54, 55]. Finally, inactivation of the complement regulatory
proteins on neurons during inflammation pave the road
for complement-mediated lysis of homologous cells by the
membrane attack complex [56]. Despite the unambiguous
involvement in various pathological mechanisms, the role
of the complement system in the pathogenesis of CNS
dysfunction appears to be a double-edged sword since it has
been reported that C3a as well as C5a also may mediate
neuroprotective and neuroregenerative effects [57, 58].

4. Respiratory Failure

Respiratory failure or acute respiratory distress syndrome
(ARDS) represents a frequent complication after burn injury,
multisystem trauma, shock, and systemic inflammation
[59–61]. Although the liver represents the main source
for the production of complement proteins, virtually all
complement proteins can be locally produced in the lung
by type II alveolar pneumocytes, alveolar macrophages,
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Figure 1: Summarizing illustration on the effects of excessive complement activation on various organ systems and the development of organ
failure. For details see text. MBL: mannose-binding lectin, CNS: central nervous system, BBB: blood brain barrier, PMN: polymorphonuclear
neutrophils, ARDS: acute respiratory distress syndrome, ATIII: antithrombin III, RES: reticuloendothelial system, GFR: glomerular filtration
rate, ATN: acute tubular necrosis, FX: coagulation factor X, FII: coagulation factor II, TF: tissue factor, DIC: disseminated intravascular
coagulation.

and lung fibroblasts [62–64]. While the total pulmonary
complement protein concentration is at comparable levels
as found in serum, its activity in normal lung is markedly
reduced which is attributed to the ability of surfactant
protein A (SPA) to inhibit complement [65, 66]. In various
studies, patients with ARDS showed evidence for robust
complement activation, the extent of which correlated with
the degree and outcome of ARDS [67, 68]. In particular,
the complement anaphylatoxin C5a and the MAC are in the
focus of ARDS pathophysiology, but also elevated levels of
C3a and C4a have been linked to the development of ARDS

[68–72]. C5a promotes inflammation by causing extensive
influx of activated PMN into lung tissue and the alveolar
space and by enhancement of the early cytokine response
(reviewed in [72, 73]). However, only little is known about
the local regulation of complement activation. Besides, the
complement inhibitory function of SPA, C1 inhibitor, which
inhibits classical pathway activation, has been detected in
human bronchoalveolar lavage fluids [65, 66]. Lung activity
of both, surfactant protein and C1 inhibitor, is significantly
reduced in patients with trauma-related ARDS [74, 75].
Beside complement activation, ARDS is accompanied by
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tissue factor generation and widespread pulmonary fibrin
deposition [76, 77]. Here, antithrombin III (ATIII), which
inhibits activated proteases including thrombin, seems to
play a central role since ATIII levels inversely correlate
with the outcome in the setting of sepsis, and ATIII has
been shown to block the thrombin pathway of complement
activation in a murine model of acute lung injury (Figure 1)
[28, 78, 79]. In conclusion, systemic inflammation provokes
local imbalances of the complement and the coagulation
cascade shifting the lung equilibrium to a proinflammatory
and procoagulant state, which then stimulates accumulated
leukocytes to locally release cytokines, enzymes, and radicals
that promote the classical features of ARDS.

5. Cardiac Dysfunction

Heart dysfunction during inflammatory states shows a
biphasic process with an early hyperdynamic phase followed
by a pivotal hypodynamic phase [80]. Hallmarks of the
hypodynamic phase are decreased cardiac output, reduced
microvascular flow, and increased peripheral vascular resis-
tance with rising plasma levels of catecholamines. It has
been suggested that these changes initiate the vicious circle
of multiorgan failure due to compromised organ perfusion,
decreased oxygen and nutrient supply, and ischemia [81].
Various myocardial depressant factors that collectively trig-
ger cardiac contractility deficits in systemic inflammation
have been described, but no single agent responsible for
myocardial dysfunction could be identified [81–87]. In
previous reports, complement activation has been linked
to hemodynamic depression, but the mechanisms by which
complement activation products might cause dysfunction
of cardiomyocytes remain to be defined in detail [81, 88,
89]. In experimental studies, C5a has been demonstrated
to induce cardiac dysfunction with impaired cardiomyocyte
contractility, which could be restored by blockade of C5a [90,
91]. But it is far from certain if C5a-C5aR interaction directly
causes cellular alterations in cardiomyocytes that lead to
impaired calcium handling, oxygen and ATP depletion, and
loss of mitochondria with energy deficit [92, 93]. Recent
research suggests that C5a causes the local release of car-
diosuppressive cytokines and chemokines in cardiomyocytes
eventually leading to cardiac dysfunction [94]. But it is
also conceivable that complement anaphylatoxins contribute
to induce “hibernation” in cardiomyocytes as it occurs in
the response of the myocardium to ischemia [95]. In the
ischemic heart, it is a common observation that the induc-
tion of contractile dysfunction by C5a is not a direct effect
but rather involves secondary production of mediators (e.g.,
arachidonic acid metabolites), which then act on target cells
(Figure 1) [96]. Further, predominantly the classical and the
alternative pathway are activated upon myocardial ischemia.
Treatment with C1 inhibitor or soluble complement receptor
1 has cardioprotective effects by suppression of adhesion
molecule expression (p-selectin, ICAM-1), blockade of C3
deposition and its activity on cardiomyocytes, and by anti-
apoptotic activity [97–100]. However, it remains to be
evaluated whether similar events de facto occur in cardiac
dysfunction during systemic inflammation.

6. Hepatic Failure

The liver represents the “major production facility” for
most complement proteins found in the blood compartment
except C1q, factor D, and properdin [101]. Because of
its integral role in metabolism and host defense, the liver
plays a key role in the initiation of MODS [102, 103].
Enhanced interaction of leukocytes with hepatic endothelial
cells and hepatic microperfusion disorders are fundamental
contributors to liver failure during sepsis [104]. Like in
other organs, complement activation products are gener-
ated among other inflammatory mediators during systemic
inflammation, which initiate a cascade of intracellular events
in target cells leading to upregulation of adhesion molecules
(ICAM-1, VCAM-1) on hepatic epithelial cells, increase of
vascular permeability, and priming and influx of leukocytes
[104, 105]. Treatment with C1 inhibitor reduced VCAM
expression and hepatic leukocyte adhesion in experimental
acute hepatic failure, even after delayed injection [104].
Besides this mechanism, PMN mediate parenchymal damage
after accumulation in sinusoids, which does not depend on
cellular adhesion molecules [106]. The liver is not only the
main source of complement proteins but is also constantly
exposed to complement-activating pathogens via the portal
venous system [107, 108]. Immune complexes, anaphyla-
toxins, and activated complement components are cleared
from circulation by the reticuloendothelial system lining the
sinusoids without being detriment to hepatic function [101].
However, the efficiency of the reticuloendothelial system
does not suffice to protect the liver. Therefore, hepatocytes
are endowed with a unique mechanism to protect themselves
from complement-induced cytotoxicity [107]. It is intriguing
that this protection is not dependent on the complement
regulatory proteins on the cell surface [107]. Instead, the
inurement of hepatocytes to complement and its activated
products requires the integrity of the PI3K/Akt pathway
[107]. In turn, the PI3K/Akt pathway supposedly controls
C5a-mediated effects in PMN and monocytes [109]. In
experimental sepsis, anti-C5a treatment circumvented the
development of MOF and attenuated markers of acute
hepatic failure (e.g., bilirubin, ALT, AST, LDH) (Figure 1)
[24]. Thus, it is tempting to speculate that under conditions,
in which C5a is systemically generated, impairment of
the PI3K/Akt pathway may lead to increased susceptibility
for complement-mediated cytotoxicity of hepatocytes and
subsequent organ failure. On the other hand, a potential role
for C5a in tissue repair has been suggested [73].

7. Renal Failure

Acute renal failure (ARF) is hallmarked by abrupt decline in
glomerular filtration and acute tubular necrosis in associa-
tion with the appearance of multiple inflammatory medi-
ators [110–112]. In sepsis, ARF occurs already at modest
levels of hypotension suggesting that other mechanisms than
ischemia are involved [110]. Like in parenchymal cells of lung
and brain, complement proteins can be locally produced by
renal cells, such as proximal tubular cells, in vitro and in
vivo [113, 114]. In the case of C3, there is evidence that
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its renal production even contributes to the circulating C3
pool [115]. Proximal tubular cells are capable of activating
the alternative pathway, terminating in the binding of MAC
to the cell surface [116]. In this context, it is of particular
interest that the luminal brush border lacks complement
regulatory proteins on the cell surface [117]. Under certain
circumstances, paucity of protection against complement-
mediated cell lysis predisposes to tubular damage due to
the luminal deposition of filtered complement components
[118]. The deposition of C3 and C4 is well established in
glomerular disease, but only C3 deposition, and no evidence
for C4 deposition, along tubules could be found in acute
tubular necrosis after renal ischemia/reperfusion injury,
indicating that the alternative pathway is the predominant
complement activation pathway for the development of
acute tubular necrosis [118]. However, suppression of C3
activation failed to affect the degree of ARF in a murine
model of systemic inflammation, although C3 synthesis was
upregulated, resulting in basolateral tubular C3 deposition
[110]. In disagreement with these authors’ conclusion,
this does not necessarily mean that complement is not
responsible for ARF in the setting of systemic inflammation
since it is now known that the downstream complement
cascade can be activated despite the absence of C3 [28].
In contrast, the occurrence of ARF could be clearly linked
to the generation of C5a during experimental sepsis, and
parameters of ARF (creatinine, urine output, glomerular
filtration rate, proteinuria) as well as morphological changes
of podocytes were greatly attenuated by anti-C5a treatment
[24]. Beyond their local inflammatory and chemotactic
features, C3a and C5a have vascular effects that contribute
to changes in renal hemodynamics in ARF (Figure 1) [119].
Taken together, the complement system represents a key
effector of ARF by a variety of mechanisms, which affect
renal perfusion and glomerular filtration as well as tubular
function.

8. Dysregulation of the Coagulation System

The coagulation system and the complement system are
both proteolytic cascades composed of serine proteases
that share structural characteristics. As descendants of a
common ancestor, both systems can be basically activated
by similar stimuli [120, 121]. Trauma and tissue injury
often cause damage of the vasculature and subsequent
bleeding, which is also associated with the risk of infection by
intruding microorganisms [11]. Activation of both cascades
is intended to occur locally under thorough regulations,
but under certain circumstances, loss of control can lead
to systemic activation with harmful consequences for the
host [29]. Disseminated intravascular coagulation (DIC)
represents a frequent complication after trauma, systemic
inflammation, and sepsis [122, 123]. After the initial phase
of hypercoagulability with intra- and extravascular fibrin
clots, consumption of coagulation factors and dysfunction of
thrombocytes can lead to hemorrhagic diasthesis and diffuse
bleeding [79, 122, 123]. Intravascular fibrin clots are finally
responsible for impaired microcirculation and hypoxic cel-
lular damage [79]. Trauma, thermal injury, and infection

predispose to thrombosis and the development of DIC and
trigger the inflammatory response including complement
activation, which, in turn, can trigger coagulation and vice
versa [121, 123]. As mentioned above, thrombin is capable
of cleaving C5, resulting in the generation of C5a. This
concept of a direct crosstalk between central components of
the complement and coagulation cascades is corroborated
by the findings of elevated thrombin-antithrombin (TAT)
complexes in the clinical and experimental setting of multiple
injury [34]. Beside the C5-convertase activity of thrombin,
various factors of the coagulation and fibrinolysis system,
including FXa, FXIIa, plasmin, and kallikrein, can cleave
complement components or their fragments [28, 124–
126]. On the other hand, the inflammatory response and
the complement system in particular amplify coagulation
by modification of phospholipid membranes required for
the initiation of the tissue factor (TF) pathway, activation
of platelets, and upregulation of TF expression [121].
Specifically, activation of C5 can increase TF expression on
leukocytes and blockade of C5a-ameliorated DIC in a rodent
model of sepsis [27, 127]. The procoagulant activities of
complement are aggravated by inhibition of anticoagulant
mechanisms, such as complex formation of C4b-binding
protein with protein S (PS), which results in a loss of PS
cofactor activity for activated protein C (APC) [128]. In turn,
the protein C anticoagulant pathway does not only function
as a regulator of the coagulation cascade by degradation
of FVa and FVIIIa, but also dampens the inflammatory
response [121, 129]. Traditionally, complement and coagu-
lation were described as separate cascades, only linked by the
ability of FXIIa to activate the classical complement pathway
[124]. However, it becomes now more and more evident that
the convergence between both systems extends beyond the
biochemical nature of serine proteases, and multiple mutual
interconnections form a highly complex network (Figure 1)
[29, 30, 34]. Understanding the interplay is important to
breach the vicious circle of systemic inflammation in order
to be able prevent life-threatening complications.

9. Conclusions

Based upon the current understanding, the general role of
complement in the pathogenesis of MOF can be concep-
tualized as follows: After trauma, burn, or severe tissue
injury, systemic intravascular activation of the complement
system with apparent loss over the control mechanisms
occurs. Complement activation products trigger a cascade
of cellular events in endothelial cells resulting in upregu-
lation of adhesion molecules, release of proinflammatory
mediators, and increased vascular permeability. Leukocytes
are attracted by complement anaphylatoxins to transmi-
grate into parenchyma of various organs after adhesion
to endothelial cells and extravasation. Activated leukocytes
release inflammatory mediators, enzymes, and free radicals
that harm parenchymal cells. Local production and acti-
vation of complement proteins in combination with loss
of protection against complement-mediated lysis aggravate
the degree of tissue injury. Interaction with the coagulation
cascade causes disseminated intravascular coagulation and
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compromised microcirculation, which then augments organ
dysfunction by ischemia. All events of this vicious circle
finally merge into apoptosis and necrosis of parenchymal
cells with the development of multiple organ dysfunction
syndrome. The complement anaphylatoxins C5a and C3a
not only trigger the inflammatory response but also directly
alter cellular functions of parenchymal cells as well as
leukocytes by interaction with their specific receptors, which
are abundantly expressed on numerous cell types. However,
the organ-specific mechanisms and intracellular events that
follow receptor binding, such as mitogen-activated protein
kinase (MAPK) pathways, remain to be evaluated in future
studies. As outlined above in the description of cardiac
dysfunction, organ failure might reflect a cellular resting
state, also described as hibernation, as a response to a proin-
flammatory environment with uncoupling of the respiratory
chain and mitochondrial dysfunction. However, it is not clear
yet if and to which extent complement activation contributes
to the pathophysiology of hibernation in human cells.

Since complement activation occurs as a rapid event after
the initial insult, it appears auspicious to use intervention in
the complement system as a therapeutic approach in order to
prevent the development of MOF. Strategies to inhibit com-
plement include (i) the application of endogenous comple-
ment inhibitors (C1 inhibitor, soluble complement receptor-
1) [130], (ii) administration of antibodies or antagonists
which block key proteins (C3, C5) of the complement cas-
cade or neutralize complement-derived anaphylatoxins (C3a,
C5a) [25, 131], and (iii) interference of C5a, C3a interaction
with their receptors by receptor-specific antagonists [26].
In addition, upregulation or incorporation of membrane-
bound complement-regulatory proteins could protect organs
from complement-mediated cytotoxicity. Protection against
complement-mediated inflammatory tissue damage could be
achieved in various experimental settings. However, total
blockade of the complement cascade might impair the
capability to clear invaded pathogens and increase the risk
of infection. Therefore, targeting the complement system in
inflammation should rather aim to balance or control its
activation with suppression of the harmful effects, but with-
out detriment of the protective and reparative complement
functions.
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