Research Article

Dirichlet and Neumann Problems Related to Nonlinear Elliptic Systems: Solvability, Multiple Solutions, Solutions with Positive Components

Luisa Toscano and Speranza Toscano

Department of Mathematics and Applications, "R. Caccioppoli.," University of Naples "Federico II", Via Claudio 21, 80125 Naples, Italy

Correspondence should be addressed to Luisa Toscano, luisatoscano@libero.it

Received 1 February 2012; Accepted 2 April 2012

Academic Editor: D. O'Regan

Copyright © 2012 L. Toscano and S. Toscano. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We study the solvability of Dirichlet and Neumann problems for different classes of nonlinear elliptic systems depending on parameters and with nonmonotone operators, using existence theorems related to a general system of variational equations in a reflexive Banach space. We also point out some regularity properties and the sign of the found solutions components. We often prove the existence of at least two different solutions with positive components.

1. Introduction

In this paper, we present some significant applications of the results got in [1] to Dirichlet problems (Section 2) of the type:

$$
- \operatorname{div}(A_i(x, u_1, \dots, u_n, \nabla u_1, \dots, \nabla u_n))
$$

= $\lambda_i b_i |u_i|^{p-2} u_i + d_i(x, u_1, \dots, u_n, \nabla u_1, \dots, \nabla u_n) + f_i \quad \text{in } \Omega,$
 $u_i = 0 \quad \text{on } \partial \Omega \quad \text{as } i = 1, \dots, n,$ (1.1)

and to Neumann problems (Section 3) of the type:

$$
- \operatorname{div}(A_i(x, u_1, \dots, u_n, \nabla u_1, \dots, \nabla u_n))
$$

= $\lambda_i b_i |u_i|^{p-2} u_i + d_i(x, u_1, \dots, u_n, \nabla u_1, \dots, \nabla u_n) + f_i$ in Ω ,

$$
A_i(x, u_1, \dots, u_n, \nabla u_1, \dots, \nabla u_n) \cdot \nu
$$

= $\mu_i \hat{b}_i |u_i|^{p-2} u_i + \hat{d}_i(x, u_1, \dots, u_n, \nabla u_1, \dots, \nabla u_n) + \hat{f}_i$ on $\partial \Omega$ as $i = 1, \dots, n$, (1.2)

where *n* \ge 1, λ_i , μ_i are real parameters, Ω is a bounded connected open set of R^N with regular boundary *∂*Ω, and *ν* is the outward orthogonal unitary vector to *∂*Ω.

The study deals with the solvability of the problems, the existence of multiple solutions with all the components not identically equal to zero and, in the homogeneous case, the existence of solutions with positive components, bounded and locally Hölderian with their first derivatives. It is suitable to recall the problem studied in $[1]$ with some notations and hypotheses.

Let W_1, \ldots, W_n real reflexive Banach spaces $(n \geq 1)$. Let W be the product space $X_{\ell=1}^n W_{\ell}$. Let $\|\cdot\|$ be the norm on *W*, $\|\cdot\|_*$ the norm on *W*^{*} (dual space of *W*), and $\langle \cdot, \cdot \rangle$ *e* (resp. $\langle \langle \cdot, \cdot \rangle \rangle$) the duality between W^*_{ℓ} (dual space of W_{ℓ}) and W_{ℓ} (resp. W^* and W). Let us denote by "∂" Fréchet differential operator and by " $\partial_{u_{\ell}}$ " Fréchet differential operator with respect to u_{ℓ} . Let $A \neq 0$ and $D_j \neq 0$ ($j = 1, ..., m; m \geq 1$) be real functionals defined in *W*, B_{ℓ} and B_{ℓ} ($\ell = 1, ..., n$) real functionals defined in W_{ℓ} satisfying the conditions:

- (i_{11}) *A* is lower weakly semicontinuous in *W* and $C^1(W \setminus \{0\})$, B_{ℓ} and \widehat{B}_{ℓ} are weakly continuous in W_{ℓ} and $C^1(W_{\ell})$, $\exists p > 1 : A(tv) = t^p A(v)$ for all $t \ge 0$ and for all $v \in W$, $B_\ell(tv_\ell) = t^p B_\ell(v_\ell)$ and $\hat{B}_{\ell}(t v_{\ell}) = t^p \hat{B}_{\ell}(v_{\ell})$ for all $t \ge 0$ and for all $v_{\ell} \in W_{\ell}$;
- *(i*₁₂) *D_j* is weakly continuous in *W* and *C*¹(*W* \setminus {0}), ∃*q_j* > 1 : $D_j(tv) = t^{q_j}D_j(v)$ for all $t \ge 0$ and for all $v \in W, 1 < q_1 < \cdots < q_m$ if $m > 1$.

Let $F = (F_1, \ldots, F_n)$ with $F_\ell \in W_\ell^*$, λ_ℓ and $\mu_\ell \in R$; let us consider the following problem.

Problem (P). Find $u = (u_1, \ldots, u_n) \in W \setminus \{0\}$ such that

$$
\langle \partial_{u_i} A(u), v_i \rangle_i = \lambda_i \langle \partial B_i(u_i), v_i \rangle_i + \mu_i \langle \partial \widehat{B}_i(u_i), v_i \rangle_i + \sum_{j=1}^m \langle \partial_{u_i} D_j(u), v_i \rangle_i + \langle F_i, v_i \rangle_i
$$
\n
$$
\forall i \in \{1, ..., n\}, \quad \forall v_i \in W_i.
$$
\n(1.3)

Obviously Problem (P) means to find the critical points $u \in W \setminus \{0\}$ of the Euler functional:

$$
E(v) = A(v) - \sum_{\ell=1}^{n} \left[\lambda_{\ell} B_{\ell}(v_{\ell}) + \mu_{\ell} \widehat{B}_{\ell}(v_{\ell}) \right] - \sum_{j=1}^{m} D_{j}(v) - \langle \langle F, v \rangle \rangle \quad \forall v = (v_{1}, \dots, v_{n}) \in W,
$$
\n(1.4)

where $\langle \langle F, v \rangle \rangle = \sum_{\ell=1}^n \langle F_\ell, v_\ell \rangle_\ell$.

Let us set

$$
H_{\lambda\mu}(v) = A(v) - \sum_{\ell=1}^{n} \left[\lambda_{\ell} B_{\ell}(v_{\ell}) + \mu_{\ell} \hat{B}_{\ell}(v_{\ell}) \right]
$$

\n
$$
\forall v = (v_1, ..., v_n) \in W, \quad \forall \lambda = (\lambda_1, ..., \lambda_n), \quad \mu = (\mu_1, ..., \mu_n) \in R^n,
$$

\n
$$
S_{\lambda\mu} = \{v \in W : H_{\lambda\mu}(v) = 1\}, \quad V_{\lambda\mu}^- = \{v \in W : H_{\lambda\mu}(v) < 0\}, \quad \text{as } m_1 = 1, ..., m
$$

\n
$$
V^+(D_{m_1}, ..., D_m) = \left\{v \in W : \sum_{j=m_1}^{m} D_j(v) > 0\right\},
$$

\n
$$
S^+(D_1, ..., D_m) = \left\{v \in W : \sum_{j=1}^{m} D_j(v) = 1\right\},
$$

\n
$$
S(D_j) = \{v \in W : D_j(v) = -1\}, \quad V^+(F) = \{v \in W : \langle \langle F, v \rangle \rangle > 0\}.
$$
\n
$$
(1.5)
$$

About Problem (P), using Lagrange multipliers and the "fibering method," different existence theorems have been proved in $[1]$. They base on one of the following hypotheses:

 $(i_{13}) \exists c(\lambda, \mu) > 0 : ||v||^p \le c(\lambda, \mu) H_{\lambda \mu}(v)$ for all $v \in W$; $(i_{14}) \exists c(\lambda, \mu) > 0 : ||v||^p \le c(\lambda, \mu) H_{\lambda\mu}(v)$ for all $v \in V^+(D_m)$ (if $V^+(D_m) \neq \emptyset$); *i*¹⁵) ∃*m*₁ ∈ {1,...,*m*} : *V*_{$^{\text{2}}$} ∩ *S(D_{m*₁}) is not empty and bounded in W.

Remark 1.1. In this paper, we use some existence theorems ([1], Theorems 2.1, 2.2, 3.1, and 3.2), in which as $n > 1$, in relation to a set $\mathfrak{F} \subseteq S_{\lambda\mu}$, we suppose

 (i_{16}^h) for each $v = (v_1, \ldots, v_n) \in \mathfrak{F}$ with $v_h = 0$, there exist $\overline{v}_h \in W_h \setminus \{0\}$ and the real functions ϕ_1, \ldots, ϕ_n such that $\phi_h \in C^0([0,1]) \cap C^1([0,1])$ and $\phi_h(1) = 0$, $\phi_{\ell} \in C^1([0,1])$ and $\phi_{\ell}(1) = 1$ as $\ell \neq h$, $v(s) = (\phi_1(s)v_1, \ldots, \phi_h(s)\overline{v}_h, \ldots, \phi_n(s)v_n) \in \mathfrak{F}$ for all $s \in [s_0, 1]$ $(0 \le s_0 < 1)$, $\lim_{s \to 1^-} (d/ds) D_j(v(s)) < +\infty$ for all $j \in$ {1,..., *m*}, $\lim_{s \to 1^-}$ *d*/*ds*) $D_i(v(s)) = -\infty$ for some *j* ∈ {1,..., *m*}.

The condition (i_{16}^h) assures that for the solutions $u = (u_1, \ldots, u_n)$ of Problem (P), found with the method used in the recalled theorems, we have $u_h \neq 0$ if $F_h \equiv 0$.

Before showing Dirichlet problems (including the problem studied in [2] by Drábek and Pohozaev when $n = 1$ and $m = 1$) we give Propositions 2.2–2.6 which show some cases in which hypotheses *i*13−*i*15 hold. These propositions are based on the comparison between the parameters *λi* with suitable eigenvalues connected to *p*-Laplacian. About Neumann problems (including the one studied in [3] by Pohozaev and Véron when $n = 1$) the same question is solved by Propositions 3.1–3.5 in which the parameters λ_i and μ_i have compared with zero. Finally, the results in Appendix are very useful: Propositions A.1 and A.2 in order to get condition (i_{16}^h) , Propositions A.3 and A.4 to get qualitative properties of the solutions and the positive sign of the components of the found solutions.

2. Dirichlet Problems

Let $\Omega \subseteq R^N$ be an open, bounded, connected and $C^{2,\beta}$ set with $0 < \beta \leq 1$. Let $|\cdot|_N$ the Lebesgue measure on \overline{R}^N , $1 < p < \infty$, $\tilde{p} = Np/(N-p)$ if $N > p$, $\tilde{p} = \infty$ otherwise.

Let us assume

$$
W = \left(W_0^{1,p}(\Omega)\right)^n (n \ge 1) \quad \text{with } \|v\| = \left(\sum_{\ell=1}^n \int_{\Omega} |\nabla v_{\ell}|^p dx\right)^{1/p} \quad \forall v = (v_1, \dots, v_n) \in W,
$$

$$
B_{\ell}(v_{\ell}) = p^{-1} \int_{\Omega} b_{\ell} |v_{\ell}|^p dx \quad \forall v_{\ell} \in W_0^{1,p}(\Omega) \quad \text{where } b_{\ell} \in L^{\infty}(\Omega) \setminus \{0\}, \ b_{\ell} \ge 0, \widehat{B}_{\ell} \equiv 0.
$$
\n(2.1)

Moreover we consider the functionals A (as in (i_{11})) such that

$$
\exists \tilde{c} > 0 : A(v) \ge p^{-1} \tilde{c} ||v||^p \quad \forall v \in W. \tag{2.2}
$$

Let us use the notation H_λ *(S_{* $_\lambda$ *}* and *V*_{$_\lambda$}, resp.) instead of $H_{\lambda\mu}$ *(S_{* $\lambda\mu$ *}* and *V*_{$\lambda\mu'$}, resp.).

As $\ell = 1,...,n$ let λ_{ℓ}^{*} and $u_{\ell'}^{*}$ respectively, the first eigenvalue and the first eigenfunction of the problem:

$$
u_{\ell} \in W_0^{1,p}(\Omega) : -\tilde{c} \operatorname{div} \left(|\nabla u_{\ell}|^{p-2} \nabla u_{\ell} \right) = \theta b_{\ell} |u_{\ell}|^{p-2} u_{\ell} \quad \text{in } \Omega.
$$
 (2.3)

Let us remember that $[4]$

 $u^*_{\ell} \in C^{1,\alpha_{\ell}}(\overline{\Omega})$ with $0 < \alpha_{\ell} < 1, u^*_{\ell} > 0$ in $\Omega;$ $\lambda_{\ell}^{*} = \tilde{c} \int_{\Omega} |\nabla u_{\ell}^{*}|^{p} dx / \int_{\Omega} b_{\ell} |u_{\ell}^{*}|^{p} dx = \min \{ \tilde{c} \int_{\Omega} |\nabla v_{\ell}|^{p} dx / \int_{\Omega} b_{\ell} |v_{\ell}|^{p} dx : \int_{\Omega} b_{\ell} |v_{\ell}|^{p} dx >$ 0};

 λ^*_{ℓ} is simple, that is, each eigenfunction of (2.3) related to λ^*_{ℓ} is of the type $c_{\ell}u_{\ell}^*$ with $c_{\ell} \in R \setminus \{0\};$

 λ_{ℓ}^{*} is isolate, that is, there exists *a* > 0 such that λ_{ℓ}^{*} is the only eigenvalue of (2.3) belonging to $]0, a[$.

Remark 2.1. About the results related to problem (2.3), it is sufficient to suppose $b_{\ell} \in L^{\infty}(\Omega)$ and $b_\ell^+ = \max\{b_\ell, 0\} \neq 0$ as $\ell = 1, \ldots, n$. This holds also for the results of this section if we limit to consider only the parameters $\lambda_1, \ldots, \lambda_n$ nonnegative.

Let us start by presenting some sufficient conditions such that (i_{13}) , (i_{14}) , and (i_{15}) hold. Using the variational characterization of λ^*_{ℓ} it is easy to verify the following proposition.

Proposition 2.2. *If* $\lambda_{\ell} < \lambda_{\ell}^{*}$ *for all* $\ell \in \{1, ..., n\}$ *, then* (*i*₁₃*) holds. Consequently,* (*i*₁₄*) holds when* $V^+(D_m) \neq \emptyset$.

When $\lambda_{\ell} \geq \lambda_{\ell}^*$ for some $\ell \in \{1, ..., n\}$, it is possible to fulfil (i_{14}) with an additional condition on D_m . Let $I = \{1, \ldots, n\}$. For any $I^* \subseteq I$ let

$$
V^* = \{ v = (v_1, \dots, v_n) \in W : v_\ell \equiv 0 \text{ if } \ell \in I \setminus I^*,
$$

$$
v_\ell = c_\ell u_\ell^* \text{ if } \ell \in I^* \text{ with } c_\ell \in R \text{ and } c_\ell \neq 0 \text{ for some } \ell \},
$$
 (2.4)

and let us suppose

*(i*₂₁) There exists *I*[∗] ⊆ *I* : *D_m*(*v*) < 0 for all $v ∈ V^*$.

Proposition 2.3. Let (i_{21}) holds with $I^* \neq I$. Let $V^+(D_m) \neq \emptyset$. If we fix the parameters set $(\lambda_\ell)_{\ell \in I \setminus I'}$ *with* $\lambda_{\ell} < \lambda_{\ell}^{*}$, then there exists $\delta^{*} > 0$ such that (i_{14}) also holds for any $(\lambda_{\ell})_{\ell \in I^{*}} \in X_{\ell \in I^{*}}[\lambda_{\ell}^{*}, \lambda_{\ell}^{*} + \delta^{*}].$

Proof. Arguing by contradiction, for any $k \in \mathbb{N}$ there exist $(\lambda_{\ell}^{k})_{\ell \in I^*} \in X_{\ell \in I^*}[\lambda_{\ell'}^*, \lambda_{\ell}^* + k^{-1}]$ and $v^k = (v_1^k, \ldots, v_n^k) \in V^+(D_m)$ such that

$$
A(v^k) - p^{-1} \sum_{\ell \in I \setminus I^*} \lambda_\ell \int_{\Omega} b_\ell |v_\ell|^p dx - p^{-1} \sum_{\ell \in I^*} \lambda_\ell^k \int_{\Omega} b_\ell |v_\ell^k|^p dx \leq k^{-1} \|v^k\|^p. \tag{2.5}
$$

Set $w^k = ||v^k||^{-1}v^k$, we have

$$
D_m(w^k) > 0,
$$
\n
$$
\tilde{c} \sum_{\ell \in I \setminus I^*} \int_{\Omega} \left| \nabla w_{\ell}^k \right|^p dx - \sum_{\ell \in I \setminus I^*} \lambda_{\ell} \int_{\Omega} b_{\ell} \left| w_{\ell}^k \right|^p dx + \tilde{c} \sum_{\ell \in I^*} \int_{\Omega} \left| \nabla w_{\ell}^k \right|^p dx - \sum_{\ell \in I^*} \lambda_{\ell}^k \int_{\Omega} b_{\ell} \left| w_{\ell}^k \right|^p dx < p k^{-1},
$$
\n(2.6)

moreover, since $\|w^k\| = 1$, there exists $w \in W$ such that (within a subsequence)

$$
w^{k} \longrightarrow w \text{ weakly in } W, \qquad w^{k} \longrightarrow w \text{ strongly in } (L^{p}(\Omega))^{n}.
$$
 (2.7)

Taking into account that D_m is weakly continuous in *W*, from (2.6) as $k \to +\infty$ we get

$$
D_m(w) \ge 0,
$$
\n
$$
\sum_{\ell \in I \setminus I^*} \left[\tilde{c} \int_{\Omega} |\nabla w_{\ell}|^p dx - \lambda_{\ell} \int_{\Omega} b_{\ell} |w_{\ell}|^p dx \right] + \sum_{\ell \in I^*} \left[\tilde{c} \int_{\Omega} |\nabla w_{\ell}|^p dx - \lambda_{\ell}^* \int_{\Omega} b_{\ell} |w_{\ell}|^p dx \right] \le 0.
$$
\n(2.9)

Since

$$
w_{\ell} \neq 0 \Longrightarrow \tilde{c} \int_{\Omega} |\nabla w_{\ell}|^{p} dx - \lambda_{\ell} \int_{\Omega} b_{\ell} |w_{\ell}|^{p} dx > 0,
$$

$$
\tilde{c} \int_{\Omega} |\nabla w_{\ell}|^{p} dx - \lambda_{\ell}^{*} \int_{\Omega} b_{\ell} |w_{\ell}|^{p} dx \ge 0,
$$
\n(2.10)

from 2.9, we deduce that

$$
w_{\ell} \equiv 0 \quad \forall \ell \in I \setminus I^*, \quad \forall \ell \in I^* \exists c_{\ell} \in R : w_{\ell} = c_{\ell} u_{\ell}^*.
$$

Let us add that $c_{\ell} \neq 0$ for some $\ell \in I^*$, since if $c_{\ell} = 0$ for all $\ell \in I^*$ we have the contradiction $\tilde{c} = \tilde{c} \lim_{k \to +\infty} ||w^k||^p = 0$. Then $w \in V^*$, and consequently $D_m(w) < 0$ from (i_{21}) . This last inequality contradicts (2.8) inequality contradicts (2.8). \Box

In the same way the following propositions can be proved.

Proposition 2.4. *Let* (i_{21}) *holds with* $I^* = I$ *. Let* $V^+(D_m) \neq \emptyset$ *. Then, there exists* $\delta^* > 0$ *such that* (i_{14}) also holds for any $(\lambda_{\ell})_{\ell \in I} \in X_{\ell \in I}[\lambda_{\ell}^*, \lambda_{\ell}^* + \delta^*].$

Let us pass to (i_{15}) and suppose

*i*₂₂) there exist *I*[∗] ⊆ *I* and m_1 ∈ {1,...,*m*} such that $D_{m_1}(v)$ < 0 and $A(v)$ = $\widetilde{c}p^{-1}\sum_{\ell\in I^*}\int_{\Omega}|\nabla v_{\ell}|^p dx$ for any $v\in V^*$.

Proposition 2.5. *If* (i_{22}) holds with $I^* \neq I$, then

$$
V_{\lambda}^{-} \cap S(D_{m_{1}}) \neq \emptyset \quad \forall (\lambda_{\ell})_{\ell \in I} \quad with \ (\lambda_{\ell})_{\ell \in I^{*}} \in \underset{\ell \in I^{*}}{\times} [\lambda_{\ell}^{*}, +\infty \left[\ \langle \ (\lambda_{\ell}^{*})_{\ell \in I^{*}} \right]. \tag{2.12}
$$

Moreover, if we fix the parameters set $(\lambda_\ell)_{\ell \in I\setminus I^*}$ *with* $\lambda_\ell < \lambda_{\ell'}^*$ *then there exists* $\delta^* > 0$ *such that*

$$
V_{\lambda}^{-} \cap S(D_{m_{1}}) \text{ is bounded in } W \quad \forall (\lambda_{\ell})_{\ell \in I^{*}} \in \underset{\ell \in I^{*}}{\times} \left[\lambda_{\ell}^{*}, \lambda_{\ell}^{*} + \delta^{*} \right[\setminus \left\{ \left(\lambda_{\ell}^{*} \right)_{\ell \in I^{*}} \right\}.
$$
 (2.13)

Proof. Let us prove (2.12). Let $v \in V^*$ with $v_\ell = u_\ell^*$ if $\ell \in I^*$, then $D_{m_1}(v) < 0$. Let $w =$ $|D_{m_1}(v)|^{-1\setminus q_{m_1}}v$, we have

$$
D_{m_1}(w) = |D_{m_1}(v)|^{-1} D_{m_1}(v) = -1,
$$

\n
$$
H_{\lambda}(w) = p^{-1} \sum_{\ell \in I^*} \left[\tilde{c} \int_{\Omega} |\nabla w_{\ell}|^p dx - \lambda_{\ell} \int_{\Omega} b_{\ell} |w_{\ell}|^p dx \right] < 0.
$$
\n(2.14)

Let us prove (2.13). Arguing by contradiction, for any $k \in \mathbb{N}$ there exist $(\lambda^k_{\ell})_{\ell \in I^*} \in$ $X_{\ell \in I^*}[\lambda_{\ell}^*, \lambda_{\ell}^* + k^{-1}]$ with $(\lambda_{\ell}^k)_{\ell \in I^*} \neq (\lambda_{\ell}^*)_{\ell \in I^*}$ and $(v^{k,h})_{h \in \mathbb{N}} \subseteq V_{\lambda^k} \cap S(D_{m_1})$, where $\lambda_{\ell}^k = \lambda_{\ell}$ if $ℓ ∈ I \setminus I^*$, such that

$$
\sup_{h \in \mathbb{N}} \left\| v^{k,h} \right\| = +\infty. \tag{2.15}
$$

Relation (2.15) implies that there exists $(h_k)_{k \in \mathbb{N}} \subseteq \mathbb{N}$ strictly increasing such that

$$
\delta_k = \left\| v^{k, h_k} \right\| \longrightarrow +\infty \quad \text{as } k \longrightarrow +\infty. \tag{2.16}
$$

Let $w^k = \delta_k^{-1} v^{k,h_k}$, we have

$$
\sum_{\ell \in I \setminus I^*} \left[\tilde{c} \int_{\Omega} \left| \nabla w_{\ell}^k \right|^p dx - \lambda_{\ell} \int_{\Omega} b_{\ell} \left| w_{\ell}^k \right|^p dx \right] + \sum_{\ell \in I^*} \left[\tilde{c} \int_{\Omega} \left| \nabla w_{\ell}^k \right|^p dx - \lambda_{\ell}^k \int_{\Omega} b_{\ell} \left| w^k \right|^p dx \right] < 0,
$$

$$
D_{m_1}(w^k) = -\delta_k^{-q_{m_1}},
$$

 $\exists w \in W : (\text{within a subsequence}) \ w^k \longrightarrow w \text{ weakly in } W, w^k \longrightarrow w \text{ strongly in } (L^p(\Omega))^n.$ (2.17)

Then, as $k \rightarrow +\infty$ we get

$$
\sum_{\ell \in I \setminus I^*} \left[\tilde{c} \int_{\Omega} |\nabla w_{\ell}|^p dx - \lambda_{\ell} \int_{\Omega} b_{\ell} |w_{\ell}|^p dx \right] + \sum_{\ell \in I^*} \left[\tilde{c} \int_{\Omega} |\nabla w_{\ell}|^p dx - \lambda_{\ell}^* \int_{\Omega} b_{\ell} |w_{\ell}|^p dx \right] \le 0,
$$
\n(2.18)
\n
$$
D_{m_1}(w) = 0.
$$

From (2.18), we get that *w* ∈ *V*[∗]. Then since (*i*₂₂) inequality *D_{m*1}(*w*) < 0 holds, which contradicts (2.19). □ contradicts (2.19) .

Proposition 2.6. *If* (i_{22}) holds with $I^* = I$, then

$$
V_{\lambda}^{-} \cap S(D_{m_{1}}) \neq \emptyset \quad \forall \lambda = (\lambda_{\ell})_{\ell \in I} \in \underset{\ell \in I}{X} \left[\lambda_{\ell'}^{*} + \infty \right[\setminus \left\{ (\lambda_{\ell}^{*})_{\ell \in I} \right\},\
$$

$$
\exists \delta^{*} > 0 : V_{\lambda}^{-} \cap S(D_{m_{1}}) \text{ is bounded in } W \quad \forall \lambda = (\lambda_{\ell})_{\ell \in I} \in \underset{\ell \in I}{X} \left[\lambda_{\ell'}^{*} , \lambda_{\ell}^{*} + \delta^{*} \right[\setminus \left\{ (\lambda_{\ell}^{*})_{\ell \in I} \right\}.\tag{2.20}
$$

The proof as in Proposition 2.5.

Remark 2.7. The applications we now show, except the first one, deal with systems with *n >* 1 equations. We consider the functionals *A* with $\tilde{c} = 1$, and we suppose $b_{\ell} \in L^{\infty}(\Omega) \setminus \{0\}$, $b_{\ell} \ge 0$.

Application 2.8. Let $n = 1$. Let us consider the problem

$$
-\operatorname{div}\left(|\nabla u|^{p-2}\nabla u\right) = \lambda_1 b_1 |u|^{p-2} u + \sum_{j=1}^m d_j |u|^{q_j-2} u \quad \text{in } \Omega, \quad u = 0 \text{ on } \partial\Omega,
$$
 (2.21)

where

$$
p < q_1 < \tilde{p}, \quad d_1 \in L^{\infty}(\Omega) \setminus \{0\} \quad \text{if } m = 1,
$$

\n
$$
p < q_1 < \dots < q_m < \tilde{p}, \quad d_j \in L^{\infty}(\Omega) \setminus \{0\} \quad \text{as } j = 1, \dots, m,
$$

\n
$$
d_j \le 0 \quad \text{as } j = 1, \dots, m - 1 \quad \text{if } m > 1.
$$
\n(2.22)

Evidently

$$
A(v) = p^{-1} \int_{\Omega} |\nabla v|^p dx, \quad D_j(v) = q_j^{-1} \int_{\Omega} d_j |v|^{q_j} dx \quad \forall v \in W.
$$
 (2.23)

Let us advance the conditions:

$$
d_m^+ \neq 0 \quad (\Longrightarrow V^+(D_m) \neq \emptyset), \tag{2.24}
$$

$$
\int_{\Omega} d_m(u_1^*)^{q_m} dx < 0 \quad (\Longrightarrow D_m(c_1u_1^*) < 0 \,\forall c_1 \in R \setminus \{0\}). \tag{2.25}
$$

Let us note that (Propositions 2.2, 2.4, and 2.6)

$$
(2.24) \Longrightarrow ((i_{14}) \text{ holds if } \lambda_1 < \lambda_1^*),
$$
\n
$$
(2.24) \text{ and } (2.25) \Longrightarrow (\exists \delta_1^* > 0 : (i_{14}) \text{ holds if } \lambda_1 < \lambda_1^* + \delta_1^*),
$$
\n
$$
(2.25) \Longrightarrow (\exists \delta_2^* > 0 : (i_{15}) \text{ holds if } \lambda_1 \in \left] \lambda_1^*, \lambda_1^* + \delta_2^* \right].
$$
\n
$$
(2.26)
$$

Proposition 2.9 (see [1], Theorems 2.1, 2.2, 4.1, and 4.2; Remarks 2.1, 2.3, 4.1, and 4.4; Proposition A.3; [5, 6]). Under assumptions (2.22) we have:

- (i) *When* (2.24) *holds, with* $\lambda_1 < \lambda_1^*$ [resp. (2.24) *and* (2.25) *hold, with* $\lambda_1 < \lambda_1^* + \delta_1^*$] *problem* (2.21) *has at least two weak solutions* u^0 *and* $-u^0$ ($u^0 = \tau^0 v^0, \tau^0 = \text{const.} > 0, v^0 \in$ $S_{\lambda_1} \cap V^+(D_m)$, and it results in $u^0 \in L^{\infty}(\Omega) \cap C_{loc}^{1,a^0}(\Omega)$, $u^0 > 0$;
- (ii) *When* (2.25) *holds, with* $\lambda_1 \in]\lambda_1^*, \lambda_1^* + \delta_2^*[$ *problem* (2.21) *has at least two weak solutions u* and $-\overline{u}$ ($\overline{u} = \overline{\tau} \overline{v}$, $\overline{\tau} = const. > 0$, $\overline{v} \in V_{\lambda_1}^- \cap S(D_m)$), and it results in $\overline{u} \in L^{\infty}(\Omega) \cap I$ $C_{\ell o c}^{1,\overline{\alpha}}(\Omega), \overline{u} > 0.$

Consequently, when (2.24) *and* (2.25) *hold, with* $\lambda_1 \in]\lambda_1^*, \lambda_1^* + \min\{\delta_1^*, \delta_2^*\}$ *problem* (2.21) *has at least four different weak solutions.*

Remark 2.10. Our results include the ones of Drábek and Pohozaev [2] when $m = 1$.

Application 2.11. Let us consider the system:

$$
-\operatorname{div}\left(|\nabla u_i|^{p-2}\nabla u_i\right) = \lambda_i b_i |u_i|^{p-2} u_i + \left|\sum_{\ell=1}^n d_\ell u_\ell\right|^{q_1-2} \left(\sum_{\ell=1}^n d_\ell u_\ell\right) d_i - \tilde{d}_i |u_i|^{q_1-2} u_i \quad \text{in } \Omega, \tag{2.27}
$$
\n
$$
u_i = 0 \quad \text{on } \partial\Omega \quad \text{as } i = 1, \dots, n,
$$

where

$$
1 < q_1 < \tilde{p}, \quad q_1 \neq p, \qquad d_{\ell}, \tilde{d}_{\ell} \in L^{\infty}(\Omega), \quad d_{\ell}, \tilde{d}_{\ell} > 0.
$$
 (2.28)

System (2.27) is included among Problem (P) with:

$$
A(v) = p^{-1} \sum_{\ell=1}^{n} \int_{\Omega} |\nabla v_{\ell}|^{p} dx,
$$

\n
$$
D_{1}(v) = q_{1}^{-1} \left[\int_{\Omega} \left| \sum_{\ell=1}^{n} d_{\ell} v_{\ell} \right|^{q_{1}} dx - \sum_{\ell=1}^{n} \int_{\Omega} \tilde{d}_{\ell} |v_{\ell}|^{q_{1}} dx \right] \quad \forall v = (v_{1}, \dots, v_{n}) \in W.
$$
\n
$$
(2.29)
$$

Let us advance the conditions (compatible):

$$
d_{\ell}^{q_1} < \tilde{d}_{\ell} \quad \forall \ell \in \{1, \ldots, n\} \, (\Longrightarrow D_1(0, \ldots, c_i u_i^*, \ldots, 0) < 0 \text{ as } i = 1, \ldots, n, \ c_i \in R \setminus \{0\}), \tag{2.30}
$$

there exist $\Omega^+ \subseteq \Omega$ and a constant $\tilde{c}_j > 0$ such that $|\Omega^+|_N > 0$ and

$$
\left(\sum_{\ell \neq j} d_{\ell} + \tilde{c}_j d_j\right)^{q_1} > \sum_{\ell \neq j} \tilde{d}_{\ell} + \tilde{c}_j^{q_1} \tilde{d}_j \quad \text{in } \Omega^+ \iff V^+(D_1) \neq \emptyset \text{ (Proposition A.1)}\text{)}.
$$

Then (Propositions 2.2, 2.3, and 2.5)

$$
(2.31) \Longrightarrow ((i_{14}) \text{ holds if } \lambda_{\ell} < \lambda_{\ell}^* \ \forall \ell \in \{1, \dots, n\}), \tag{2.32}
$$

and set $i \in \{1, \ldots, n\}$

$$
(2.30) \text{ and } (2.31) \Longrightarrow \text{(with } \lambda_{\ell} < \lambda_{\ell}^* \ \forall \ell \neq i \ \exists \delta_1^* > 0 \ : (i_{14}) \text{ holds if } \lambda_i < \lambda_i^* + \delta_1^* \text{)},\tag{2.33}
$$

$$
(2.30) \Longrightarrow \text{(with } \lambda_{\ell} < \lambda_{\ell}^* \ \forall \ell \neq i \ \exists \delta_2^* > 0 : (i_{15}) \text{ holds if } \lambda_i \in \left] \lambda_i^*, \lambda_i^* + \delta_2^* \right]. \tag{2.34}
$$

Taking into account that $D_1(v_1,\ldots,v_n) \leq D_1(|v_1|,\ldots,|v_n|)$ and $D_1(-v) = D_1(v)$, from ([1], Theorem 2.1, Remark 2.1, and Theorem 4.1) we get the following proposition.

Proposition 2.12. *Under assumptions* (2.28) *we have:*

- i *When* 2.31 *holds, (*2.30 *and* 2.31 *hold resp.), choosing λ*1*,...,λn as in* 2.32 *(resp.* (2.33)) system (2.27) has at least two weak solutions u^0 and $-u^0$ with $u^0_\ell \geq 0$ as $\ell =$ $1, \ldots, n$ $(u^0 = \tau^0 v^0, \tau_0 = const. > 0, v^0 \in S_\lambda \cap V^+(D_1)$;
- ii *When* 2.30 *holds, choosing λ*1*,...,λn as in* 2.34 *system* 2.27 *has at least two weak solutions* \overline{u} *and* $-\overline{u}$ ($\overline{u} = \overline{\tau} \overline{v}$, $\overline{\tau} = const. > 0$, $\overline{v} \in V_{\lambda}^{-} \cap S(D_{1})$).

Consequently, when (2.30) *and* (2.31) *hold, with* $\lambda_{\ell} < \lambda_{\ell}^*$ *for all* $\ell \neq i$ *and* $\lambda_i \in]\lambda_i^*, \lambda_i^*$ min{*δ*[∗] 1*, δ*[∗] ²} *system* 2.27 *has at least four different weak solutions.*

The following proposition is obvious.

Proposition 2.13. *The following relations hold:*

$$
u_i^0 \neq 0 \quad as \quad i = 1, \dots, n,
$$

\n
$$
\exists h, k \in \{1, \dots, n\} : \overline{u}_h \neq 0, \overline{u}_k \neq 0.
$$
\n(2.35)

Proposition 2.14. *If* $p < q_1$ *, then as* $i = 1, \ldots, n$ *:*

$$
u_i^0 \in L^{\infty}(\Omega) \cap C_{\ell_{0c}}^{1,\alpha_i^0}(\Omega), \quad u_i^0 > 0.
$$
 (2.36)

Proof. It is easy to prove that

$$
\sum_{i=1}^{n} \int_{\Omega} \left| \nabla u_{i}^{0} \right|^{p-2} \nabla u_{i}^{0} \cdot \nabla v_{i} dx \leq \int_{\Omega} g \left(\sum_{i=1}^{n} u_{i}^{0} \right)^{p-1} \left(\sum_{i=1}^{n} v_{i} \right) dx
$$
\n
$$
\forall v = (v_{1}, \dots, v_{n}) \in \left(W_{0}^{1, p}(\Omega) \cap L^{\infty}(\Omega) \right)^{n} \text{ with } v_{i} \geq 0,
$$
\n(2.37)

where $g \in L^{q_1/(q_1-p)}(\Omega)$. Then (Proposition A.3) $u_i^0 \in L^{\infty}(\Omega)$ and consequently [5] $u_i^0 \in$ $C^{1,\alpha_i^0}_{\ell \infty}(\Omega)$.

Let us note that u_i^0 is a weak supersolution to the equation:

$$
-\operatorname{div}\left(|\nabla u_i|^{p-2}\nabla u_i\right) = \lambda_i b_i |u_i|^{p-2} u_i - \tilde{d}_i |u_i|^{q-2} u_i \quad \text{in } \Omega.
$$
 (2.38)

Then, since (2.35), it must be [6] $u_i^0 > 0$.

Let us continue the analysis of system (2.27) under the condition:

$$
\left(\sum_{\ell \neq i} d_{\ell}\right)^{q_1} < \min\left\{\tilde{d}_1, \ldots, \tilde{d}_n\right\} \quad \forall i \in \{1, \ldots, n\},\tag{2.39}
$$

then

 $D_1(c_1u_1^*,...,c_nu_n^*)$ < 0 $\forall (c_1,...,c_n) \in \mathbb{R}^n \setminus \{0\}$ with $c_i = 0$ for at least one $i \in \{1,...,n\}$ *.* (2.40)

Hence (Proposition 2.5) if $I^* \subseteq I$ and $I^* \neq I$:

$$
(2.39) \Longrightarrow \left(\text{as }\lambda_{\ell} < \lambda_{\ell}^* \,\forall \ell \in I \setminus I^* \,\exists \delta^* > 0 : (i_{15}) \text{ holds if } (\lambda_{\ell})_{\ell \in I^*} \in \underset{\ell \in I^*}{X} [\lambda_{\ell}^*, \lambda_{\ell}^* + \delta^* \big[\setminus (\lambda_{\ell}^*)_{\ell \in I^*} \big].\tag{2.41}
$$

Proposition 2.15. *Under assumptions* (2.28) *and* (2.39), *choosing* $\lambda_1, \ldots, \lambda_n$ *as in* (2.41) *system* (2.27) *has at least two weak solutions* \overline{u} *and* $-\overline{u}$ ($\overline{u} = \overline{\tau} \overline{v}$, $\overline{\tau} = const. > 0$, $\overline{v} \in V_{\lambda}^- \cap S(D_1)$) *with* $\overline{u}_i \neq 0$ *as* $i = 1, \ldots, n$ *.*

 \Box

Proof. Thanks to ([1], Theorem 4.1), there exists $\overline{v} \in V_\lambda^- \cap S(D_1)$ such that

$$
H_{\lambda}(\overline{v}) = \inf \{ H_{\lambda}(v) : v \in V_{\lambda}^{-} \cap S(D_{1}) \} = \underline{e}, \quad \overline{u} = \overline{\tau} \overline{v} \text{ is a weak solution of system (2.27)},
$$
\n(2.42)

where $\overline{\tau} = (-pq_1^{-1} \underline{e})^{1/(q_1 - p)}$.

Reasoning by contradiction, let, for example, $\overline{u}_1 \equiv 0$. Since $-1 = D_1(\overline{v}) \le D_1(0, |\overline{v}_2|)$, \ldots , $|\overline{v}_n|$) and from (2.39) $D_1(0, |\overline{v}_2|, \ldots, |\overline{v}_n|) < 0$, setting $\delta = |D_1(0, |\overline{v}_2|, \ldots, |\overline{v}_n|)|^{-1/q_1}$ we have

$$
D_1(0,\delta|\overline{v}_2|,\ldots,\delta|\overline{v}_n|) = -1, \qquad H_\lambda(0,\delta|\overline{v}_2|,\ldots,\delta|\overline{v}_n|) = \delta^p H_\lambda(\overline{v}) \le H_\lambda(\overline{v}), \tag{2.43}
$$

then $H_{\lambda}(0, \delta|\overline{v}_2|, \ldots, \delta|\overline{v}_n|) = H_{\lambda}(\overline{v})$. This implies that ([1], see the proof of Theorem 4.1) $(0, \overline{\tau} \delta | \overline{v}_2 |, \ldots, \overline{\tau} \delta | \overline{v}_n|)$ is a weak solution of system (2.27). Then $(\sum_{\ell=2}^n d_\ell | \overline{v}_\ell |)^{q_1-1} \equiv 0$ from which $\overline{u}_{\ell} \equiv 0$ too as $\ell = 2, \ldots, n$.

Condition (2.39) holds in particular when

$$
\left(\sum_{\ell=1}^n d_\ell\right)^{q_1} < \min\left\{\tilde{d}_1,\ldots,\tilde{d}_n\right\}.
$$
\n(2.44)

Proposition 2.16. *Replacing in Proposition 2.15 (2.39) with (2.44), it is right to say that* $\overline{u_i} \ge 0$ *and* $\overline{u}_i \neq 0$ *as* $i = 1, \ldots, n$ *. Consequently, if* $p < q_1$

$$
\overline{u}_i \in L^{\infty}(\Omega) \cap C_{\ell_{OC}}^{1,\overline{a}_i}(\Omega), \quad \overline{u}_i > 0 \text{ as } i = 1,\dots, n. \tag{2.45}
$$

Proof. Set $\delta = |D_1(|\overline{v}_1|, \ldots, |\overline{v}_n|)|^{-1/q_1}$, as in Proposition 2.15 $(\overline{\tau} \delta |\overline{v}_1|, \ldots, \overline{\tau} \delta |\overline{v}_n|)$ is a weak solution to system (2.27) .

Let us add that since (2.44) \Rightarrow *D*₁(*c*₁*u*[∗]₁,...,*c*_{*n*}*u*[∗]_{*n*}) < 0 for all (*c*₁,...,*c*_{*n*}) ∈ *R*^{*n*} \ {0}, there exists (Proposition 2.6) $\delta^{**} > 0$ such that

$$
(i_{15}) holds if (\lambda_{\ell})_{\ell \in I} \in \overset{n}{X} \left[\lambda_{\ell'}^*, \lambda_{\ell}^* + \delta^{**} \right[\setminus \{ (\lambda_{\ell}^*)_{\ell \in I} \}. \tag{2.46}
$$

Then the existence of \overline{u} is assured also choosing $\lambda_1, \ldots, \lambda_n$ as in (2.46), and the conclusions of Proposition 2.16 hold. \Box

Application 2.17. Let us set

$$
\lambda_1 = \dots = \lambda_n = \overline{\lambda}, \quad b_1 = \dots = b_n = b \quad \text{(then } \lambda_1^* = \dots = \lambda_n^* = \lambda^*, u_1^* = \dots = u_n^* = u^*),
$$
\n
$$
A(v) = p^{-1} \sum_{\ell=1}^n \int_{\Omega} |\nabla v_{\ell}|^p dx, \quad D_1(v) = q_1^{-1} \int_{\Omega} d_1 \left(\sum_{\ell=1}^n |v_{\ell}|^r \right)^{q_1/r} dx, \quad \forall v = (v_1, \dots, v_n) \in W,
$$
\n(2.47)

where

$$
1 < \gamma < q_1 < \tilde{p}, \quad q_1 \neq p, d_1 \in L^{\infty}(\Omega). \tag{2.48}
$$

Let us consider the system:

$$
-\operatorname{div}\left(|\nabla u_i|^{p-2}\nabla u_i\right) = \overline{\lambda}b|u_i|^{p-2}u_i + d_1\left(\sum_{\ell=1}^n|u_\ell|^{\gamma}\right)^{(q_1/\gamma)-1}|u_i|^{\gamma-2}u_i \quad \text{in } \Omega, \tag{2.49}
$$

$$
u_i = 0 \quad \text{on } \partial\Omega \quad \text{as } i = 1, ..., n.
$$

We advance the conditions

$$
d_1^+ \not\equiv 0 \quad (\Longrightarrow V^+(D_1) \not\equiv \emptyset), \tag{2.50}
$$

$$
\int_{\Omega} d_1(u^*)^{q_1} dx < 0 \quad (\Longrightarrow D_1(c_1u^*, \dots, c_nu^*) < 0 \ \forall (c_1, \dots, c_n) \in R^n \setminus \{0\}). \tag{2.51}
$$

Therefore,

$$
(2.50) \Longrightarrow ((i_{14}) \text{ holds if } \overline{\lambda} < \lambda^*) \quad \text{(Proposition 2.2)},
$$
\n
$$
(2.50) \text{ and } (2.51) \Longrightarrow (\exists \delta_1^* > 0 : (i_{14}) \text{ holds if } \overline{\lambda} < \lambda^* + \delta_1^* \text{)} \quad \text{(Proposition 2.4)}, \tag{2.52}
$$
\n
$$
(2.51) \Longrightarrow (\exists \delta_2^* > 0 : (i_{15}) \text{ holds if } \overline{\lambda} \in \left] \lambda^*, \lambda^* + \delta_2^* \right[\text{Proposition 2.6)}.
$$

Then $([1]$, Theorems 2.1 and 4.1, and Remarks 2.1 and 4.1).

Proposition 2.18. *Under assumption* (2.48), we have:

- (i) *When* (2.50) *holds,* ((2.50) *and* (2.51) *hold resp.),* if $\overline{\lambda} < \lambda^*$ (resp. $\overline{\lambda} < \lambda^* + \delta_1^*$) system (2.49) has at least two weak solutions u^0 and $-u^0$ with $u^0_\ell \geq 0$ as $\ell = 1, \ldots, n$ $(u^0 =$ $\tau^0 v^0$, $\tau_0 = const. > 0, v^0 \in S_\lambda \cap V^+(D_1)$;
- (ii) *When* (2.51) *holds*, *if* $\overline{\lambda} \in]\lambda^*, \lambda^* + \delta_2^*[$ *system* (2.49) *has at least two weak solutions* \overline{u} *and* $-\overline{u}$ *with* $\overline{u}_{\ell} \ge 0$ *as* $\ell = 1, ..., n$ $(\overline{u} = \overline{\tau} \overline{v}, \overline{\tau} = const. > 0, \overline{v} \in V_{\lambda}^{-} \cap S(D_{1})).$

Consequently, when (2.50) *and* (2.51) *hold, with* $\overline{\lambda} \in]\lambda^*, \lambda^* + \min{\{\delta_1^*, \delta_2^*\}}[$ *system* (2.49) *has at least four different weak solutions.*

In order to establish some properties of u^0 and \overline{u} it is useful to recall that ([1], Theorems 2.1 and 4.1

$$
D_1(v^0) = \sup \{ D_1(v) : v \in S_\lambda \cap V^+(D_1) \} = \overline{e}, \qquad \tau^0 = \left(q_1 p^{-1} \overline{e} \right)^{1/(p-q_1)}, \tag{2.53}
$$

$$
H_{\lambda}(\overline{v}) = \inf \{ H_{\lambda}(v) : v \in V_{\lambda}^{-} \cap S(D_1) \} = \underline{e}, \qquad \overline{\tau} = \left(-pq_1^{-1}\underline{e} \right)^{1/(q_1 - p)}.
$$
 (2.54)

Proposition 2.19. When $p < q_1$, we have

$$
u_i^0 \in L^{\infty}(\Omega) \cap C_{\ell_{OC}}^{1,\alpha_i^0}(\Omega),\tag{2.55}
$$

besides

$$
u_i^0 \neq 0 \quad \forall i \in \{1, \dots, n\} \text{ if } \gamma < p. \tag{2.56}
$$

Proof. The relation $u_i^0 \in L^\infty(\Omega)$ comes from Proposition A.3. Then [5] $u_i^0 \in C_{\ell_{\text{OC}}}^{1, \alpha_i^0}(\Omega)$. About (2.56) , it is sufficiently $(Remark 1.1)$ to prove that

$$
\left(i_{16}^{h}\right) \text{ holds} \quad \forall h \in \{1, \dots, n\} \text{ with } \mathfrak{F} = S_{\lambda} \cap V^{+}(D_{1}). \tag{2.57}
$$

Let $v = (v_1, \ldots, v_n) \in S_\lambda \cap V^+(D_1)$ with $v_h \equiv 0$. Since

$$
v \in V^+(D_1) \Longrightarrow \left(\exists \text{ a compact set } \mathbb{K} \subseteq \Omega : |\mathbb{K}|_N > 0, d_1 > 0 \text{ and } \psi = \sum_{\ell \neq h} |\nu_\ell|^{\gamma} > 0 \text{ in } \mathbb{K} \right),\tag{2.58}
$$

let (Proposition A.1) $(\varphi_{\varepsilon})_{0<\varepsilon<\varepsilon_0}\subseteq C_0^{\infty}(\Omega)$ with $0\leq\varphi_{\varepsilon}\leq 1$ such that

$$
\varphi_{\varepsilon} \longrightarrow \chi \text{ strongly in } L^{s}(\Omega), \quad \int_{\Omega} |\nabla \varphi_{\varepsilon}|^{s} dx \longrightarrow +\infty \quad \text{as } \varepsilon \longrightarrow 0^{+} \forall s \in [1, +\infty[, \tag{2.59}
$$

where χ is the characteristic function of $\mathbb{K}.$ Set ε such that

$$
\int_{\Omega} d_1 \psi^{(q_1/\gamma)-1} \varphi_{\varepsilon}^{\gamma} dx > 0, \qquad \delta = p^{-1} \left[\int_{\Omega} |\nabla \varphi_{\varepsilon}|^p dx - \overline{\lambda} \int_{\Omega} b \varphi_{\varepsilon}^p dx \right] > 0, \qquad (2.60)
$$

with $v(s) = (s^{1/p}v_1, \ldots, (1-s)^{1/p}\delta^{-1/p}\varphi_s, \ldots, s^{1/p}v_n)$ it results in

$$
H_{\lambda}(v(s)) = \delta^{-1}(1-s)p^{-1}\left[\int_{\Omega} |\nabla \varphi_{\varepsilon}|^{p} dx - \overline{\lambda} \int_{\Omega} b\varphi_{\varepsilon}^{p} dx\right] + sH_{\lambda}(v) = 1 \quad \forall s \in [0,1],
$$
\n
$$
\exists s \in [0,1], \quad D_{\lambda}(v(s)) > 0, \quad \forall s \in [s,1], \quad \lim_{n \to \infty} \frac{d}{D_{\lambda}(v(s))} = \infty
$$
\n(2.61)

$$
\exists s_0 \in [0,1]: D_1(v(s)) > 0 \quad \forall s \in [s_0,1], \qquad \lim_{s \to 1^{-}} \frac{d}{ds} D_1(v(s)) = -\infty.
$$

Proposition 2.20. When $p < q_1$, we have

$$
\overline{u}_i \in L^{\infty}(\Omega) \cap C_{\ell_{0c}}^{1,\overline{\alpha}_i}(\Omega),\tag{2.62}
$$

$$
\overline{u}_i > 0 \quad \forall i \in \{1, \dots, n\} \text{ if } p < \gamma. \tag{2.63}
$$

Proof. We can get (2.62) from Proposition A.3 and [5].

About (2.63), it is sufficiently [6] to prove that $\overline{u}_i \neq 0$ as $i = 1, ..., n$. Reasoning by contradiction, let, for example, $\overline{v}_1 \equiv 0$. We note that

$$
\overline{v} \in V_{\lambda}^{-} \Longrightarrow \left(\exists \ell \in \{2,\ldots,n\}: \int_{\Omega} |\nabla \overline{v}_{\ell}|^{p} dx - \overline{\lambda} \int_{\Omega} b \overline{v}_{\ell}^{p} dx < 0\right).
$$
 (2.64)

Let us suppose $\ell = 2$ and set $v(s) = ((1-s)^{1/\gamma} \overline{v}_2, s^{1/\gamma} \overline{v}_2, \overline{v}_3, \ldots, \overline{v}_n)$. Then

$$
D_1(v(s)) = -1 \quad \forall s \in [0,1], \quad \exists s_0 \in [0,1[: H_\lambda(v(s)) < 0 \quad \forall s \in [s_0,1],
$$
\n
$$
\lim_{s \to 1^{-}} \frac{d}{ds} H_\lambda(v(s)) = +\infty. \tag{2.65}
$$

Set $s_1 \in [s_0, 1]$ such that $(d/ds)H_\lambda(v(s)) > 0$ for all $s \in [s_1, 1]$ and taking into account (2.54), we get the contradiction:

$$
H_{\lambda}(\overline{v}) \le H_{\lambda}(v(s)) < H_{\lambda}(\overline{v}) \quad \forall s \in [s_1, 1]. \tag{2.66}
$$

 \Box

Proposition 2.21. *When* $\gamma = p < q_1$ *, we allow that as* $i = 1, \ldots, n$ *:*

$$
u_i^0 > 0, \qquad \overline{u}_i > 0. \tag{2.67}
$$

Proof. The assumption $\gamma = p$ implies that

$$
\forall v = (v_1, \dots, v_n) \in W \setminus \{0\} \quad \text{with } v_h \equiv 0 \text{ for some } h \in \{1, \dots, n\},
$$

$$
\exists \tilde{v} = (\tilde{v}_1, \dots, \tilde{v}_n) \in W : \tilde{v}_\ell \not\equiv 0 \quad \text{as } \ell = 1, \dots, n, \qquad H_\lambda(\tilde{v}) = H_\lambda(v), \qquad D_1(\tilde{v}) = D_1(v).
$$
\n(2.68)

Let, for example, $v_1 \equiv 0$ and $v_2 \not\equiv 0$. Set $s \in]0,1[$ and $v_1^1 = (1-s)^{1/p}v_2$, $v_2^1 = s^{1/p}v_2$, $v_\ell^1 = v_\ell$ as $l > 2$, with $v^1 = (v_1^1, \ldots, v_n^1)$, we have

$$
H_{\lambda}(v^{1})=H_{\lambda}(v), \qquad D_{1}(v^{1})=D_{1}(v). \qquad (2.69)
$$

If $v_3 \equiv 0$, set $v_1^2 = (1-s)^{1/p} v_1^1$, $v_3^2 = s^{1/p} v_1^1$, $v_\ell^2 = v_\ell^1$ as $\ell \in \{1, ..., n\} \setminus \{1, 3\}$, with $v^2 =$ (v_1^2, \ldots, v_n^2) , it results in

$$
H_{\lambda}(v^2) = H_{\lambda}(v), \qquad D_1(v^2) = D_1(v). \tag{2.70}
$$

This method let us to find \tilde{v} .

Then, if $v_h^0 \equiv 0$ (resp. $\overline{v}_h \equiv 0$) for some $h \in \{1, ..., n\}$, with \tilde{v}^0 (resp. \overline{v}) as in (2.68) we have from (2.53) (resp. (2.54)) $D_1(\tilde{v}^0) = \overline{e}$ (resp. $H_\lambda(\tilde{\overline{v}}) = \underline{e}$). Consequently ([1], see the proof of Theorem 2.1 (resp. Theorem 4.1)) $\tilde{u}^0 = \tau^0 \tilde{v}^0$ (resp. $\tilde{\bar{u}} = \bar{\tau} \tilde{\bar{v}}$) is a weak solution of system (2.49). Therefore [6] $\tilde{u}^0 > 0$ (resp. $\tilde{\bar{u}} > 0$) as $i = 1, ..., n$. (2.49). Therefore [6] $\tilde{u}_i^0 > 0$ (resp. $\tilde{u}_i > 0$) as $i = 1, ..., n$.

Application 2.22. Let us assume $λ$ _{*e*}, b _{*e*}, and *A* as in Application 2.17,

$$
D_j(v) = q_j^{-1} \int_{\Omega} d_j \left(\sum_{\ell=1}^n |v_{\ell}|^{Y_j} \right)^{q_j/\gamma_j} dx \quad \forall v = (v_1, \dots, v_n) \in W \quad \text{as } j = 1, \dots, m,
$$
 (2.71)

where

$$
p < q_1 < \dots < q_m < \widetilde{p}, \quad 1 < \gamma_j < q_j, \quad d_m \in L^{\infty}(\Omega),
$$

\n
$$
d_j \in L^{\infty}(\Omega) \setminus \{0\}, \quad d_j \le 0 \text{ if } j = 1, \dots, m - 1.
$$
\n(2.72)

Let us consider the system:

$$
-\operatorname{div}\left(|\nabla u_i|^{p-2}\nabla u_i\right) = \overline{\lambda}b|u_i|^{p-2}u_i + \sum_{j=1}^m d_j \left(\sum_{\ell=1}^n |u_\ell|^{\gamma_j}\right)^{(q_j/\gamma_j)-1}|u_i|^{\gamma_j-2}u_i \quad \text{in } \Omega,\tag{2.73}
$$
\n
$$
u_i = 0 \quad \text{on } \partial\Omega \quad \text{as } i = 1, \dots, n,
$$

under almost one of the conditions:

$$
d_m^+ \neq 0, \qquad \int_{\Omega} d_m(u^*)^{q_m} dx < 0. \tag{2.74}
$$

By using some results $(1, 1)$, Theorems 2.2 and 4.2, and Remarks 2.3 and 4.4), we can advance a proposition similar to Proposition 2.18 replacing in particular $V^+(D_1)$ with $V^+(D_m)$ and $S(D_1)$ with $S(D_m)$.

Thanks to Proposition A.3 and a result of [5], for the solutions u^0 and \overline{u} to system 2.73, we have

$$
u_i^0 \in L^{\infty}(\Omega) \cap C_{\ell_{\text{OC}}}^{1,\alpha_i^0}(\Omega), \qquad \overline{u}_i \in L^{\infty}(\Omega) \cap C_{\ell_{\text{OC}}}^{1,\overline{\alpha}_i}(\Omega). \tag{2.75}
$$

We continue to analyze the properties of u^0 and \overline{u} . To this aim we recall that ([1], Theorems 2.2 and 4.2), set for each *v* ∈ *V*⁺(*D_m*) (resp. *v* ∈ *V*_{$λ$}[−] ∩ *S*(*D_m*)) $\psi(t, v) = pt^{p-1}H_λ(v) - \sum_{i=1}^{m} q_i t^{q_i-1}D_i(v)$, we have: *m*_{j=1} $q_j t^{q_j-1} D_j(v)$, we have:

$$
\exists | t(v) > 0 : \psi(t(v), v) = 0, \qquad \frac{\partial \psi}{\partial t}(t(v), v) \neq 0. \tag{2.76}
$$

Besides with $\widetilde{E}(v) = (t(v))^p H_\lambda(v) - \sum_{j=1}^m (t(v))^{q_j} D_j(v)$, it results in

$$
\widetilde{\widetilde{E}}\left(v^{0}\right) = \inf\left\{\widetilde{\widetilde{E}}(v) : v \in S_{\lambda} \cap V^{+}(D_{m})\right\}, \qquad \tau^{0} = t\left(v^{0}\right), \tag{2.77}
$$

$$
\widetilde{\tilde{E}}(\overline{v}) = \inf \left\{ \widetilde{\tilde{E}}(v) : v \in V_{\lambda}^{-} \cap S(D_{m}) \right\}, \qquad \overline{\tau} = t(\overline{v}). \tag{2.78}
$$

Proposition 2.23. *When* $\gamma_m < p \leq \gamma_j$ *as* $j = 1, \ldots, m-1$ *, then*

$$
u_i^0 \neq 0 \quad \forall i \in \{1, \dots, n\}.
$$
\n
$$
(2.79)
$$

Proof. It is sufficiently (Remark 1.1) to prove that

 $\left(i_{16}^h\right)$ holds $\forall h \in \{1, ..., n\}$ with $\mathfrak{F} = S_\lambda \cap V^+(D_m)$. (2.80)

Let $v = (v_1, \ldots, v_n) \in S_\lambda \cap V^+(D_m)$ with $v_h \equiv 0$. As in Proposition 2.19, it is possible to find $\overline{v}_h \in C_0^{\infty}(\Omega) \setminus \{0\}$ such that with $v(s) = (s^{1/p}v_1, \ldots, (1-s)^{1/p} \overline{v}_h, \ldots, s^{1/p}v_n)$, it results in

$$
H_{\lambda}(v(s)) = 1 \quad \forall s \in [0,1], \qquad D_{m}(v(s)) > 0 \quad \forall s \in [s_{0},1] \ (0 \le s_{0} < 1),
$$

$$
\lim_{s \to 1^{-}} \frac{d}{ds} D_{j}(v(s)) \in R \quad \text{as } j = 1, ..., m-1, \qquad \lim_{s \to 1^{-}} \frac{d}{ds} D_{m}(v(s)) = -\infty.
$$
 (2.81)

Proposition 2.24. *When* $p < \gamma_m \leq \gamma_j$ *as* $j = 1, \ldots, m - 1$ *, then*

$$
\overline{u}_i > 0 \quad \forall i \in \{1, \dots, n\}.
$$
\n
$$
(2.82)
$$

Proof. It is sufficiently [6] to prove that $\overline{u}_i \neq 0$ for all $i \in \{1, ..., n\}$. Reasoning by contradiction, let, for example, $\overline{v}_1 \equiv 0$ and $\overline{v}_2 \not\equiv 0$ such that

$$
\int_{\Omega} |\nabla \overline{v}_2|^p dx - \overline{\lambda} \int_{\Omega} b \overline{v}_2^p dx < 0.
$$
 (2.83)

Since

$$
t(\overline{v}) > 0,
$$
 $\psi(t(\overline{v}), \overline{v}) = 0,$ $\frac{\partial \psi}{\partial t}(t(\overline{v}), \overline{v}) \neq 0,$ (2.84)

there exist an open ball \widetilde{B} of *W* with centre \overline{v} included in V_{λ}^- and a unique functional $t^*(v)$ belongs to $C^1(\widetilde{B})$ such that

$$
t^*(v) > 0, \quad \psi(t^*(v), v) = 0 \quad \forall v \in \widetilde{B}.\tag{2.85}
$$

Then, the functional

$$
E^*(v) = (t^*(v))^p H_\lambda(v) - \sum_{j=1}^m (t^*(v))^{q_j} D_j(v) \quad \forall v \in \widetilde{B}
$$
 (2.86)

belongs to $C^1(\widetilde{B})$ *,* and we have

$$
t(v) = t^*(v) \quad \forall v \in \widetilde{B} \cap S(D_m). \tag{2.87}
$$

Then, for (2.78)

$$
E^*(\overline{v}) = \inf \Big\{ E^*(v) : v \in \widetilde{B} \cap S(D_m) \Big\}.
$$
 (2.88)

Now, let us remark that with $v(s) = ((1-s)^{1/\gamma_m}\overline{v}_2, s^{1/\gamma_m}\overline{v}_2, \overline{v}_3, \ldots, \overline{v}_n)$, it results in

$$
D_m(v(s)) = -1 \quad \forall s \in [0,1], \qquad \exists s_0 \in [0,1[: v(s) \in \tilde{B} \quad \forall s \in [s_0,1],\n\lim_{s \to 1^{-}} \frac{d}{ds} H_{\lambda}(v(s)) = +\infty, \qquad \lim_{s \to 1^{-}} \frac{d}{ds} D_{j}(v(s)) \in R \quad \text{as } j = 1, ..., m - 1.
$$
\n(2.89)

Then, since

$$
\frac{d}{ds}E^*(v(s)) = (t^*(v(s)))^p \frac{d}{ds}H_\lambda(v(s)) - \sum_{j=1}^m (t^*(v(s)))^{q_j} \frac{d}{ds}D_j(v(s)) \quad \forall s \in [s_0, 1[, \quad (2.90)
$$

we have $\lim_{s\to 1^-} (d/ds)E^*(v(s)) = +\infty$. Consequently,

$$
\exists s_1 \in [s_0, 1]: \frac{d}{ds} E^*(v(s)) > 0 \quad \forall s \in [s_1, 1[, \tag{2.91}
$$

from which we get the contradiction:

$$
E^*(\overline{v}) \le E^*(v(s)) < E^*(\overline{v}) \quad \forall s \in [s_1, 1]. \tag{2.92}
$$

 \Box

Proposition 2.25. *When* $p = \gamma_1 = \cdots = \gamma_m$ *, we allow that*

$$
u_i^0 > 0, \quad \overline{u}_i > 0 \quad \forall i \in \{1, \dots, n\}.
$$
 (2.93)

Proof. We reason as in Proposition 2.21, taking into account (2.77) and (2.78) ([1], see proofs of Theorems 2.2 and 4.2). \Box *Application 2.26.* Let for each $v = (v_1, \ldots, v_n) \in W$:

$$
A(v) = p^{-1} \sum_{\ell=1}^{n} \int_{\Omega} |\nabla v_{\ell}|^{p} dx, \qquad D_{j}(v) = -\prod_{\ell=1}^{n} \int_{\Omega} |v_{\ell}|^{q_{j\ell}} dx \quad \text{as } j = 1, ..., m-1 \ (m \ge 2),
$$

$$
D_{m}(v) = q_{m}^{-1} \left[\int_{\Omega} \left(\sum_{\ell=1}^{n} d_{\ell} |v_{\ell}|^{r} \right)^{q_{m}/r} dx - \sum_{\ell=1}^{n} \int_{\Omega} \widetilde{d}_{\ell} |v_{\ell}|^{q_{m}} dx \right],
$$
(2.94)

where

$$
1 < \gamma < p \le q_{j\ell}, \quad \sum_{\ell=1}^{n} q_{j\ell} = q_j < q_m < \tilde{p}, \quad q_1 < \dots < q_{m-1},
$$

$$
d_{\ell}, \tilde{d}_{\ell} \in L^{\infty}(\Omega), \quad d_{\ell}, \tilde{d}_{\ell} > 0.
$$
 (2.95)

Let us consider the system:

$$
-\operatorname{div}\left(|\nabla u_i|^{p-2}\nabla u_i\right) = \lambda_i b_i |u_i|^{p-2} u_i - \sum_{j=1}^{m-1} \left(q_{ji} \prod_{\ell \neq i} \int_{\Omega} |u_{\ell}|^{q_{j\ell}} dx \right) |u_i|^{q_{ji}-2} u_i
$$

+
$$
\left(\sum_{\ell=1}^n d_{\ell} |u_{\ell}|^{\gamma} \right)^{(q_m/\gamma)-1} d_i |u_i|^{\gamma-2} u_i - \tilde{d}_i |u_i|^{q_m-2} u_i \quad \text{in } \Omega,
$$

$$
u_i = 0 \quad \text{on } \partial\Omega \quad \text{as } i = 1, ..., n.
$$
 (2.96)

Let us introduce the conditions:

$$
\exists \Omega^+ \subseteq \Omega : |\Omega^+|_N > 0, \qquad d_{\overline{\ell}}^{q_m/\gamma} > \tilde{d}_{\overline{\ell}} \text{ in } \Omega^+ \text{ for some } \overline{\ell} \in \{1, \dots, n-1\} \iff V^+(D_m) \neq \emptyset,
$$
\n(2.97)

$$
d_n^{q_m/\gamma} < \widetilde{d}_n \quad \text{(} \Longrightarrow D_m(0,\ldots,0,c_n u_n^*) < 0 \,\,\forall c_n \in R \setminus \{0\}\text{)}.\tag{2.98}
$$

Then (Propositions 2.2, 2.3 and 2.5)

$$
(2.97) \Longrightarrow \text{(with } \lambda_{\ell} < \lambda_{\ell}^* \; \forall \ell \in \{1, \dots, n\} \; (i_{14}) \; \text{holds}), \tag{2.99}
$$

 (2.97) and $(2.98) \implies (with \lambda_{\ell} < \lambda_{\ell}^* \ \forall \ell \in \{1, ..., n-1\} \ \exists \delta_1^* > 0 : (i_{14}) \text{ holds if } \lambda_n < \lambda_n^* + \delta_1^*),$ (2.100)

$$
(2.98) \Longrightarrow \text{(with } \lambda_{\ell} < \lambda_{\ell}^* \ \forall \ell \in \{1, \dots, n-1\} \ \exists \delta_2^* > 0 : (i_{15}) \text{ holds if } \lambda_n \in \left] \lambda_n^* \lambda_n^* + \delta_2^* \right[\text{).} \tag{2.101}
$$

Since ([1], Theorems 2.2 and 4.2; Remarks 2.3 and 4.4), we get the following proposition.

Proposition 2.27. *Under assumption* (2.95) *we have:*

- (i) *When* (2.97) *holds* ((2.97) *and* (2.98) *hold, resp.), set* $\lambda_1, \ldots, \lambda_n$ *as in* (2.99) (*resp.* (2.100)) *system (2.96) has at least two weak solutions* u^0 *and* $-u^0$ *with* $u^0_\ell \geq 0$ *as* $\ell = 1, \ldots, n$ *(* $u^0 = 1$ $\tau^0 v^0$, $\tau^0 = const. > 0$, $v^0 \in S_\lambda \cap V^+(D_m))$;
- ii *When* 2.98 *holds, set λ*1*,...,λn as in* 2.101 *system* 2.96 *has at least two weak solutions* \overline{u} *and* $-\overline{u}$ *with* $\overline{u}_{\ell} \geq 0$ *as* $\ell = 1, ..., n$ ($\overline{u} = \overline{\tau} \overline{v}$, $\overline{\tau} = const. > 0$, $\overline{v} \in V_{\lambda}^{-} \cap S(D_m)$).

Consequently, when (2.97) *and* (2.98) *hold, with* $\lambda_{\ell} < \lambda_{\ell}^{*}$ *for all* $\ell \in \{1, ..., n-1\}$ *and* $\lambda_n \in]\lambda_n^*, \lambda_n^* + \min{\{\delta_1^*, \delta_2^*\}}[$ system (2.96) has at least four different weak solutions.

We remark that (Proposition A.3, [5]) as $i = 1, \ldots, n$:

$$
u_i^0 \in L^{\infty}(\Omega) \cap C_{\ell_{OC}}^{1, \alpha_i^0}(\Omega), \qquad \overline{u}_i \in L^{\infty}(\Omega) \cap C_{\ell_{OC}}^{1, \overline{\alpha}_i}(\Omega). \tag{2.102}
$$

Moreover, since u_i^0 (resp. \overline{u}_i) is a weak supersolution of the equation:

$$
-\operatorname{div}\left(|\nabla u_i|^{p-2}\nabla u_i\right)=\lambda_i b_i|u_i|^{p-2}u_i-\sum_{j=1}^{m-1}a_j q_{ji}|u_i|^{q_{ji}-2}u_i-\tilde{d}_i|u_i|^{q_m-2}u_i\quad\text{in }\Omega,\tag{2.103}
$$

where $a_j = \prod_{\ell \neq i} \int_{\Omega} (u_{\ell}^0)^{q_{j\ell}} dx$ (resp. $a_j = \prod_{\ell \neq i} \int_{\Omega} (\overline{u}_{\ell})^{q_{j\ell}} dx$), we have [6]

$$
u_i^0 > 0 \text{ if } u_i^0 \not\equiv 0 \text{ [resp. } \overline{u}_i > 0 \text{ if } \overline{u}_i \not\equiv 0 \text{]}.
$$
\n(2.104)

Proposition 2.28. *It results in*

$$
u_i^0 > 0 \quad \text{as } i = 1, \dots, n, \qquad \overline{u}_{\overline{\ell}} > 0. \tag{2.105}
$$

Proof. Since (2.104), we must show that

$$
u_i^0 \neq 0 \quad \text{as } i = 1, ..., n,
$$
 (2.106)

$$
\overline{u}_{\overline{\ell}} \neq 0. \tag{2.107}
$$

About (2.106), it is sufficient (Remark 1.1) to prove that

$$
\left(i_{16}^h\right) \text{ holds } \forall h \in \{1, \dots, n\} \quad \text{with } \mathfrak{F} = S_\lambda \cap V^+(D_m). \tag{2.108}
$$

Let $v = (v_1, \ldots, v_n) \in S_\lambda \cap V^+(D_m)$ with $v_h \equiv 0$. Let $\mathbb{K} \subseteq \Omega$ be a compact set such that

$$
|\mathbb{K}|_N > 0, \quad \psi = \sum_{\ell \neq h} d_{\ell} |v_{\ell}|^{\gamma} > 0 \quad \text{in } \mathbb{K}.
$$

From Proposition A.1, there exists $\varphi \in C_0^{\infty}(\Omega)$, with $0 \le \varphi \le 1$, such that

$$
\delta = p^{-1} \left[\int_{\Omega} |\nabla \varphi|^{p} dx - \lambda_{h} \int_{\Omega} b_{h} \varphi^{p} dx \right] > 0, \qquad \int_{\Omega} \varphi^{q_{m}/\gamma} d_{h} \varphi^{p} dx > 0.
$$
 (2.110)

Then, with $v(s) = (s^{1/p}v_1, \ldots, (1-s)^{1/p}\delta^{-1/p}\varphi, \ldots, s^{1/p}v_n)$, we have

$$
H_{\lambda}(v(s)) = 1 \quad \forall s \in [0,1], \qquad \exists s_0 \in [0,1[: D_m(v(s)) > 0 \quad \forall s \in [s_0,1],
$$

$$
\lim_{s \to 1^{-}} \frac{d}{ds} D_j(v(s)) \in]-\infty,0] \quad \text{as } j = 1, ..., m-1, \qquad \lim_{s \to 1^{-}} \frac{d}{ds} D_m(v(s)) = -\infty.
$$
 (2.111)

Let us prove (2.107) . We recall that $([1]$, Theorem 4.2):

$$
\widetilde{\tilde{E}}(\overline{v}) = \inf \left\{ \widetilde{\tilde{E}}(v) : v \in V_{\lambda}^{-} \cap S(D_{m}) \right\},\tag{2.112}
$$

where *E* as in Application 2.22. Reasoning by contradiction, let $\overline{v}_{\overline{\ell}} \equiv 0$. Then, $\overline{v}_{\ell} \neq 0$ for some $\ell \neq \overline{\ell}$ and consequently from (2.104) $\sum_{\ell \neq \overline{\ell}} d_{\ell} (\overline{v}_{\ell})^{\gamma} > 0$.

Let $\varphi \in C_0^{\infty}(\Omega)$, with $0 \leq \varphi \leq 1$, such that $\int_{\Omega} d_{\overline{\ell}}^{q_m/\gamma} \varphi^{q_m} dx > \int_{\Omega} \widetilde{d}_{\overline{\ell}} \varphi^{q_m} dx$. Let us consider the function:

$$
g(s,\tau) = D_m(\tau \overline{v}_1, ..., s\varphi, ..., \tau \overline{v}_n)
$$

\n
$$
= q_m^{-1} \left[\int_{\Omega} \left(s^{\gamma} d_{\overline{\ell}} \varphi^{\gamma} + \tau^{\gamma} \sum_{\ell \neq \overline{\ell}} d_{\ell} (\overline{v}_{\ell})^{\gamma} \right)^{q_m/\gamma} dx - s^{q_m} \int_{\Omega} \widetilde{d}_{\overline{\ell}} \varphi^{q_m} dx - \tau^{q_m} \sum_{\ell \neq \overline{\ell}} \int_{\Omega} \widetilde{d}_{\ell} (\overline{v}_{\ell})^{q_m} dx \right]
$$

\n
$$
\forall s \ge 0, \quad \forall \tau \ge 1.
$$
\n(2.113)

Since

$$
g(0,1) = -1, \qquad \frac{\partial g}{\partial s}(s,\tau) > 0 \quad \forall s > 0, \ \forall \tau \ge 1, \qquad g(0,\tau) = -\tau^{q_m} < -1 \quad \forall \tau > 1, \qquad (2.114)
$$

$$
\lim_{s \to +\infty} g(s,\tau) = +\infty \qquad \forall \tau \ge 1,
$$

we have

$$
\forall \tau \ge 1 \; \exists \; | \; s(\tau) \ge 0 \; (s(1) = 0, s(\tau) > 0 \; \text{for} \; \tau > 1) : g(s(\tau), \tau) = -1. \tag{2.115}
$$

We note that $\lim_{\tau \to 1^+} s(\tau) = 0$. In fact, if $\{\tau_n\} \subseteq]1$, $+\infty[$ and $\lim \tau_n = 1$, being $g(s(\tau_n), \tau_n) =$ −1, { $s(\tau_n)$ } is bounded (else (within a subsequence) lim $g(s(\tau_n), \tau_n) = +\infty$). Then (within a subsequence) $\lim s(\tau_n) = \omega$ with $g(\omega, 1) = 0$, from which $\omega = 0$.

We add that *s*(τ) belongs to $C^1(]1, +\infty[$), and its derivative has the form:

$$
s'(\tau) = -\frac{1}{(s(\tau))^{r-1}} \widetilde{g}(s(\tau), \tau) \quad \forall \tau > 1 \text{ with } \lim_{\tau \to 1^+} \widetilde{g}(s(\tau), \tau) \in]-\infty, 0[.
$$
 (2.116)

Hence, set $v(\tau) = (\tau \overline{v}_1, \ldots, s(\tau)\varphi, \ldots, \tau \overline{v}_n)$, it results in

$$
D_m(v(\tau)) = -1 \quad \forall \tau \ge 1, \qquad \lim_{\tau \to 1^+} \frac{d}{d\tau} H_\lambda(v(\tau)) = pH_\lambda(\overline{v}) < 0,
$$
\n
$$
\lim_{\tau \to 1^+} \frac{d}{d\tau} D_j(v(\tau)) = 0 \quad \text{as } j = 1, \dots, m-1.
$$
\n
$$
(2.117)
$$

As in Proposition 2.24, we introduce the open ball \tilde{B} with centre \overline{v} included in V_{λ}^- and the functionals $t^*(v)$ and $E^*(v)$ belonging to $C^1(\tilde{B})$. Chosen $\tau_0 > 1$ such that $v(\tau) \in \tilde{B}$ for all $\tau \in$ $[1, \tau_0]$, we have

$$
\frac{d}{d\tau}E^*(v(\tau)) = (t^*(v(\tau)))^p \frac{d}{d\tau} H_\lambda(v(\tau)) - \sum_{j=1}^{m-1} (t^*(v(\tau)))^{q_j} \frac{d}{d\tau} D_j(v(\tau)) \quad \forall \tau \in [1, \tau_0], \quad (2.118)
$$

and consequently $\lim_{\tau \to 1^+} (d/d\tau) E^*(v(\tau)) < 0$. Then, taking into account (2.112), with $\tau_1 \in$ $[1, \tau_0]$ such that $(d/d\tau)E^*(v(\tau)) < 0$ for all $\tau \in]1, \tau_1]$, we get the contradiction:

$$
E^*(\overline{v}) \le E^*(v(\tau)) < E^*(\overline{v}) \quad \forall \tau \in [1, \tau_1]. \tag{2.119}
$$

 \Box

Proposition 2.29. *If* $d_{\ell}^{q_m/\gamma} > \tilde{d}_{\ell}$ *as* $\ell = 1, ..., n - 1$ *, then*

$$
\overline{u}_{\ell} > 0 \quad \text{as } \ell = 1, \dots, n. \tag{2.120}
$$

Proof. In fact,

$$
\overline{u}_{\ell} > 0 \quad \text{as } \ell = 1, ..., n - 1 \quad (\text{Proposition 2.23}),
$$
\n
$$
\overline{u}_{n} \equiv 0 \Longrightarrow D_{m}(\overline{u}) > 0. \tag{2.121}
$$

Application 2.30. Let for each $v = (v_1, \ldots, v_n) \in W$:

$$
A(v) = p^{-1} \int_{\Omega} \left(\sum_{\ell=1}^{n} |\nabla v_{\ell}|^{r} \right)^{p/r} dx + \prod_{\ell=1}^{n} \int_{\Omega} |\nabla v_{\ell}|^{p_{\ell}} dx,
$$

\n
$$
D_{j}(v) = \int_{\Omega} \rho_{j} \left(\prod_{\ell=1}^{n} |v_{\ell}|^{q_{j\ell}} \right) dx \text{ as } j = 1, ..., m-1,
$$

\n
$$
D_{m}(v) = q_{m}^{-1} \left[\int_{\Omega} \left| \sum_{\ell=1}^{n} d_{\ell} v_{\ell} \right|^{q_{m}-1} \left(\sum_{\ell=1}^{n} d_{\ell} v_{\ell} \right) dx - \int_{\Omega} d|v_{n}|^{q_{m}} dx \right],
$$
\n(2.122)

where

$$
1 < \gamma < p, \ p_{\ell} > 1, \quad \sum_{\ell=1}^{n} p_{\ell} = p, \quad q_{j\ell} > 1, \quad \sum_{\ell=1}^{n} q_{j\ell} = q_j, \quad p < q_m, \ q_1 < \cdots < q_m < \widetilde{p},
$$

\n
$$
\rho_j \in L^{\infty}(\Omega) \setminus \{0\}, \quad \rho_j \le 0, d_{\ell}, d \in L^{\infty}(\Omega), \quad d_{\ell}(x) \ne 0 \text{ a.e. in } \Omega, d > 0.
$$
\n(2.123)

Let as $\ell = 1, ..., n$ $F_{\ell} \in W^{-1,p'}(\Omega)$ $(p' = p/(p-1))$. Let $\langle \langle F, v \rangle \rangle = \sum_{\ell=1}^{n} \langle F_{\ell}, v_{\ell} \rangle$ for all $v \in W$. Set $\eta_i = 0$ as $i = 1, \ldots, n - 1$ and $\eta_n = 1$, let us consider the system:

$$
-\operatorname{div}\left(\left[\left(\sum_{\ell=1}^{n}|\nabla u_{\ell}|^{r}\right)^{(p/\gamma)-1}|\nabla u_{i}|^{r-2} + p_{i}\left(\prod_{\ell\neq i}\int_{\Omega}|\nabla u_{\ell}|^{p_{\ell}}\right)|\nabla u_{i}|^{p_{i}-2}\right]\nabla u_{i}
$$
\n
$$
= \lambda_{i}b_{i}|u_{i}|^{p-2}u_{i} + \sum_{j=1}^{m-1}q_{ji}\rho_{j}\left(\prod_{\ell\neq i}|u_{\ell}|^{q_{j\ell}}\right)|u_{i}|^{q_{ji}-2}u_{i}
$$
\n
$$
+\left|\sum_{\ell=1}^{n}d_{\ell}u_{\ell}\right|^{q_{m}-1}d_{i} - \eta_{i}d|u_{n}|^{q_{m}-2}u_{n} + F_{i} \quad \text{in } \Omega,
$$
\n
$$
u_{i} = 0 \quad \text{on } \partial\Omega \quad \text{as } i = 1, ..., n,
$$
\n(11)

under at least one of the following conditions

$$
\exists \Omega^+ \subseteq \Omega : |\Omega^+|_N > 0, \quad d_\ell > 0 \quad \text{in } \Omega^+ \text{ for some } \ell \in \{1, \dots, n-1\} \iff V^+(D_m) \neq \emptyset), \tag{2.125}
$$
\n
$$
|d_n|^{q_m} < d \quad (\implies D_m(0, \dots, 0, c_n u_n^*) < 0 \ \forall c_n \in R \setminus \{0\}). \tag{2.126}
$$

Evidently, about the validity of (i_{14}) we choose $\lambda_1, \ldots, \lambda_n$ as in Application 2.26.

Proposition 2.31 (see [1], Theorem 3.2). *Under assumptions* (2.123), (2.125) ((2.125) and (2.126) , resp.), if $F \neq 0$ and $||F||_*$ is sufficiently small, for $\lambda_1, \ldots, \lambda_n$ as in (2.99) (resp. (2.100)) system (2.124) *has at least one weak solution* \tilde{u} $(\tilde{u} = \tilde{\tau} \tilde{v}, \tilde{\tau} = const. > 0, \ \tilde{v} \in S_{\lambda} \cap V^+(D_m)).$

Let us note that

$$
\widetilde{u}_h \neq 0 \text{ even if } F_h \equiv 0 \text{ since } (F_h \equiv 0, \ \widetilde{u}_h \equiv 0) \Longrightarrow \sum_{\ell=1}^n d_\ell \widetilde{u}_\ell \equiv 0 \Longrightarrow D_m(\widetilde{u}) \le 0. \tag{2.127}
$$

Application 2.32. Let $\lambda_1 = \cdots = \lambda_n = 0$, and for each $v = (v_1, \ldots, v_n) \in W$:

$$
A(v) = p^{-1} \int_{\Omega} \left[\sum_{\ell=1}^{n} (|\nabla v_{\ell}|^{\gamma} + a|v_{\ell}|^{\gamma}) \right]^{p/\gamma} dx,
$$

\n
$$
D_j(v) = q_j^{-1} \int_{\Omega} d_j \left(\sum_{\ell=1}^{n} |v_{\ell}|^{\gamma_j} \right)^{q_j/\gamma_j} dx \text{ as } j = 1, ..., m, \text{ with } m > 2,
$$
\n(2.128)

under one of the following assumptions:

$$
a \in L^{\infty}(\Omega), \quad a \ge 0, \qquad d_j \in L^{\infty}(\Omega) \setminus \{0\} \quad \text{with } d_1 \le 0, \ d_j \ge 0 \text{ as } j \ge 2,
$$

$$
1 < \gamma_j < \gamma < p < q_2 < \cdots < q_m < \tilde{p} \quad \text{as } j \ge 2, \ \gamma \le \gamma_1 < q_1 < q_2;
$$

(2.129)

$$
a \in L^{\infty}(\Omega), \quad a \ge 0, \quad \text{as } j = 1, \dots, m \quad d_j \in L^{\infty}(\Omega) \setminus \{0\}, \quad d_j \ge 0,
$$

$$
1 < \gamma_j < \gamma < p < q_1 < \dots < q_m < \tilde{p}.
$$

(2.130)

Set *F* as in Application 2.30. Let us consider the system:

$$
- \operatorname{div} \left(\left[\sum_{\ell=1}^{n} \left(|\nabla u_{\ell}|^{r} + a |u_{\ell}|^{r} \right) \right]^{(p/\gamma)-1} |\nabla u_{i}|^{r-2} \nabla u_{i} \right) = - \left[\sum_{\ell=1}^{n} \left(|\nabla u_{\ell}|^{r} + a |u_{\ell}|^{r} \right) \right]^{(p/\gamma)-1} a |u_{i}|^{r-2} u_{i} + \sum_{j=1}^{m} d_{j} \left(\sum_{\ell=1}^{n} |u_{\ell}|^{r_{j}} \right)^{(q_{j}/\gamma_{j})-1} |u_{i}|^{r_{j}-2} u_{i} + F_{i} \quad \text{in } \Omega, u_{i} = 0 \quad \text{on } \partial \Omega \quad \text{as } i = 1, ..., n. \tag{2.131}
$$

Let us verify that

$$
(2.129) \left[\text{resp. } (2.130)\right] \Longrightarrow \left(\begin{pmatrix} i^h_{16} \\ h^{16} \end{pmatrix} \text{ holds } \forall h \in \{1, \dots, n\} \text{ with } \mathfrak{F} = S_{\lambda} \cap V^+(D_2, \dots, D_m) \right]
$$
\n
$$
\left[\text{resp. } \mathfrak{F} = S_{\lambda} \cap V^+(D_1, \dots, D_m)\right].
$$
\n
$$
(2.132)
$$

Let *v* = $(v_1,...,v_n)$ ∈ $\tilde{\mathfrak{F}}$ with, for example, $v_1 \equiv 0$. Let $j_0 \in \{2,...,m\}$ (resp. $j_0 \in$ $\{1,\ldots,m\}$ and $\ell_0 \in \{2,\ldots,m\}$ such that $d_{j_0}v_{\ell_0} \neq 0$. Let us suppose $\ell_0 = 2$ and set $v(s) =$ $((1-s)^{1/\gamma}v_2, s^{1/\gamma}v_2, v_3, \ldots, v_n)$. Then,

$$
A(v(s)) = 1 \quad \forall s \in [0,1], \qquad \exists s_0 \in [0,1[: D_{j_0}(v(s)) > 0 \quad \forall s \in [s_0,1],
$$

$$
\lim_{s \to 1^{-}} \frac{d}{ds} D_{j_0}(v(s)) = -\infty, \quad \lim_{s \to 1^{-}} \frac{d}{ds} D_j(v(s)) < +\infty \quad \text{as } j \neq j_0.
$$
 (2.133)

Proposition 2.33. *Under assumption* (2.129) *(resp.* (2.130) *), system* (2.131) *with* $F \equiv 0$ *has at least two weak solutions* u^0 *and* $-u^0$ *, and we have as* $i = 1, \ldots, n$ *:*

$$
u_i^0 \in L^{\infty}(\Omega), \quad u_i^0 \ge 0, u_i^0 \ne 0.
$$
\n(2.134)

Consequently,

$$
a \equiv 0 \Longrightarrow u_i^0 \in C_{\ell o c}^{1, \alpha_i^0}(\Omega), \quad a \equiv 0 \text{ and } (2.129) \text{ holds with } p \leq \gamma_1 \text{ [resp. (2.130) holds]} \Longrightarrow u_i^0 > 0. \tag{2.135}
$$

Proof. The statement is due to ([1], Theorem 2.2, Remark 2.3), [5], Proposition A.3, [6]. \Box

Proposition 2.34 (see [1], Theorems 3.1, 3.2). *Under assumption* (2.129) (resp. (2.130)), *system* (2.131) *with* $F \neq 0$ *and* $||F||_*$ *sufficiently small has at least two different weak solutions* u^1 and u^2 $(u^i = \tau^i v^i, \tau^i = const. > 0, v^1 \in V^+(F) \cap S_\lambda, v^2 \in S_\lambda \cap V^+(D_2, \ldots, D_m)$ [resp. $v^2 \in S_\lambda$] $S_{\lambda} \cap V^+(D_1, \ldots, D_m)]$, and we have $u_h^2 \neq 0$ even if $F_h \equiv 0$.

Remark 2.35. If $\bigcup_{j=2}^{m} \{x \in \Omega : d_j(x) > 0\}$ [resp. $\bigcup_{j=1}^{m} \{x \in \Omega : d_j(x) > 0\}$] = Ω (within a set with measure equal to zero), with the same reasoning used about (2.132), we get that

$$
\begin{pmatrix} i_{16}^h \end{pmatrix} \text{ holds} \quad \forall h \in \{1, \dots, n\} \quad \text{with } \mathfrak{F} = V^+(F) \cap S_\lambda,\tag{2.136}
$$

hence, $u_h^1 \neq 0$ even if $F_h \equiv 0$.

3. Neumann Problems

Let $\Omega \subseteq R^N$ be an open, bounded, and connected $C^{0,1}$ set. Let $|\cdot|_N$, *p* and \tilde{p} as in Section 2, σ the measure on *∂*Ω*, ν* the outward unit normal to *∂*Ω*,* $\hat{p} = (N-1)p/(N-p)$ if $p < N$ *,* $\hat{p} = \infty$ if

$p \geq N$. Let us assume

$$
W = \left(W^{1,p}(\Omega)\right)^n (n \ge 1) \quad \text{with } \|v\| = \left(\sum_{\ell=1}^n \int_{\Omega} \left[|\nabla v_{\ell}|^p + |v_{\ell}|^p\right] dx\right)^{1/p} \quad \forall v = (v_1, \dots, v_n) \in W,
$$

$$
B_{\ell}(v_{\ell}) = p^{-1} \int_{\Omega} b_{\ell} |v_{\ell}|^p dx \quad \forall v_{\ell} \in W^{1,p}(\Omega), \quad \text{where } b_{\ell} \in L^{\infty}(\Omega) \setminus \{0\},
$$

$$
\widehat{B}_{\ell}(v_{\ell}) = p^{-1} \int_{\partial\Omega} \widehat{b}_{\ell} |v_{\ell}|^p d\sigma \quad \forall v_{\ell} \in W^{1,p}(\Omega), \quad \text{where } \widehat{b}_{\ell} \in L^{\infty}(\partial\Omega) \setminus \{0\}.
$$
(3.1)

We note that for each $v_{\ell} \in W^{1,p}(\Omega)$ we set $\gamma_0(v_{\ell}) = v_{\ell}$ where γ_0 is the trace operator from *W*¹,*p*</sup>(Ω) into *W*^{1−(1/*p*),*p*}(∂Ω). Morever we consider the functionals *A* (as in (i_{11})) such that

$$
\exists \tilde{c} > 0 : A(v) \ge p^{-1} \tilde{c} \sum_{\ell=1}^{n} \int_{\Omega} |\nabla v_{\ell}|^{p} dx \quad \forall v \in W.
$$
 (3.2)

It is easy to verify the following.

Proposition 3.1. Let b_{ℓ} , $b_{\ell} \ge 0$ as $\ell = 1, \ldots, n$. Then,

$$
(i_{13}) holds if \lambda_{\ell}, \mu_{\ell} \le 0, \quad \lambda_{\ell} + \mu_{\ell} < 0 \quad \text{as } \ell = 1, \dots, n. \tag{3.3}
$$

Let us set *I* = {1,...,*n*} and for each $I^* \subseteq I$

$$
C^* = \{c = (c_1, \dots, c_n) \in \mathbb{R}^n : c_{\ell} = 0 \text{ if } \ell \in I \setminus I^*, \ c_{\ell} \neq 0 \text{ for some } \ell \in I^*\}. \tag{3.4}
$$

Let us introduce the conditions:

- *(i*₃₁) there exists *I*[∗] ⊆ *I* : *D_m*(*c*) < 0 for all *c* ∈ C^* ;
- *(i₃₂)* there exist *I*[∗] ⊆ *I* and m_1 ∈ {1,..., m } : $D_{m_1}(c)$ < 0 and $A(c) = 0$ for all $c \in C^*$.

Proposition 3.2. Let (i_{31}) holds with $I^* \neq I$. Let $V^+(D_m) \neq \emptyset$. Let b_{ℓ} , $\hat{b}_{\ell} \geq 0$ as $\ell \in I \setminus I^*$. Then with λ_{ℓ} , $\mu_{\ell} \leq 0$ and $\lambda_{\ell} + \mu_{\ell} < 0$ as $\ell \in I \setminus I^* \exists \delta^* > 0$: (i_{14}) holds if $|\lambda_{\ell}|, |\mu_{\ell}| \leq \delta^*$ as $\ell \in I^*$.

Proof. Reasoning by contradiction, for each $k \in \mathbb{N}$ there exist $\lambda_{\ell}^{k}, \mu_{\ell}^{k} \in [-k^{-1}, k^{-1}]$, with $\ell \in I^*$, and $v^k = (v_1^k, \ldots, v_n^k) \in V^+(D_m)$ such that

$$
\left\|v^{k}\right\|^{p} > k\left\{A\left(v^{k}\right) - \sum_{\ell \in I \setminus I^{*}} p^{-1} \left[\lambda_{\ell} \int_{\Omega} b_{\ell} \left|v_{\ell}^{k}\right|^{p} dx + \mu_{\ell} \int_{\partial \Omega} \hat{b}_{\ell} \left|v_{\ell}^{k}\right|^{p} d\sigma\right] - \sum_{\ell \in I^{*}} p^{-1} \left[\lambda_{\ell}^{k} \int_{\Omega} b_{\ell} \left|v_{\ell}^{k}\right|^{p} dx + \mu_{\ell}^{k} \int_{\partial \Omega} \hat{b}_{\ell} \left|v_{\ell}^{k}\right|^{p} d\sigma\right]\right\},
$$
\n(3.5)

then, set $w^k = ||v^k||^{-1}v^k$, we have

$$
D_{m}\left(w^{k}\right) > 0, \quad p^{-1}\left\{\tilde{c}\sum_{\ell=1}^{n}\int_{\Omega}\left|\nabla w_{\ell}^{k}\right|^{p}dx - \sum_{\ell\in I\backslash I^{*}}\left[\lambda_{\ell}\int_{\Omega}b_{\ell}\left|w_{\ell}^{k}\right|^{p}dx + \mu_{\ell}\int_{\partial\Omega}\hat{b}_{\ell}\left|w_{\ell}^{k}\right|^{p}d\sigma\right]\right\}
$$
\n
$$
< k^{-1} + \sum_{\ell\in I^{*}}p^{-1}\left[\lambda_{\ell}^{k}\int_{\Omega}b_{\ell}\left|w_{\ell}^{k}\right|^{p}dx + \mu_{\ell}^{k}\int_{\partial\Omega}\hat{b}_{\ell}\left|w_{\ell}^{k}\right|^{p}d\sigma\right].
$$
\n(3.6)

Since $\|w^k\| = 1$, there exists $w \in W$ such that (within a subsequence)

 $w^k \rightarrow w$ weakly in *W,* $w^k \rightarrow w$ strongly in $(L^p(\Omega))^n$, $w^k \rightarrow w$ strongly in $(L^p(\partial \Omega))^n$. (3.7)

Consequently, from (3.6), passing to limit as $k \to +\infty$, we get

$$
D_m(w) \ge 0, \qquad \sum_{\ell=1}^n \int_{\Omega} |\nabla w_{\ell}|^p dx = 0, \qquad \sum_{\ell \in I \setminus I^*} \left[\lambda_{\ell} \int_{\Omega} b_{\ell} |w_{\ell}|^p dx + \mu_{\ell} \int_{\partial \Omega} \hat{b}_{\ell} |w_{\ell}|^p d\sigma \right] = 0,
$$
\n(3.8)

from which $w = 0$, and then the contradiction $0 = \lim_{k \to +\infty} ||w^k|| = 1$. \Box **Proposition 3.3.** *Let* (i_{31}) holds with $I^* = I$. *Let* $V^+(D_m) \neq \emptyset$. *Then,*

$$
\exists \delta^* > 0 : (i_{14}) \text{ holds if } |\lambda_{\ell}|, |\mu_{\ell}| \le \delta^* \quad \text{as } \ell = 1, \dots, n. \tag{3.9}
$$

The proof as in Proposition 3.2.

Proposition 3.4. *Let* (*i*₃₂*) holds with* $I^* \neq I$ *. Let* $\int_{\Omega} b_{\ell} dx$, $\int_{\partial \Omega} \hat{b}_{\ell} d\sigma > 0$ *as* $\ell \in I^*$ *. Then,*

$$
V_{\lambda\mu}^{-} \cap S(D_{m_1}) \neq \emptyset \quad \forall (\lambda_{\ell}, \ \mu_{\ell})_{\ell \in I} \ \text{with} \ \lambda_{\ell}, \ \mu_{\ell} \geq 0 \ \forall \ell \in I^*, \quad \lambda_{\ell} + \mu_{\ell} > 0 \quad \text{for some} \ \ell \in I^*.
$$
\n
$$
(3.10)
$$

Moreover, if b_{ℓ} , $\hat{b}_{\ell} \ge 0$ *as* $\ell \in I \setminus I^*$, we have

with
$$
\lambda_e
$$
, $\mu_e \le 0$ and $\lambda_e + \mu_e < 0$ as $e \in I \setminus I^* \exists \delta^* > 0$: (i_{15}) holds
if λ_e , $\mu_e \in [0, \delta^*] \forall e \in I^*$ and $\lambda_e + \mu_e > 0$ for some $e \in I^*$.

Proof. The first statement is evident. Let us prove the second one. Reasoning by contradiction, for each $k \in \mathbb{N}$ there exist $\lambda_{\ell}^k, \mu_{\ell}^k \in [0, k^{-1}]$, with $\ell \in I^*$ and $\lambda_{\ell}^k + \mu_{\ell}^k > 0$ for some $\ell \in I^*$, and a sequence $(v^{k,h})_{h\in\mathbb{N}}$ such that

$$
\left(v^{k,h}\right)_{h\in\mathbb{N}}\subseteq V_{\lambda^k\mu^k}^{-}\cap S(D_{m_1})\quad \left(\lambda^k_{\ell}=\lambda_{\ell},\ \mu^k_{\ell}=\mu_{\ell} \text{ as } \ell\in I\setminus I^*\right),\quad \sup_h\left\|v^{k,h}\right\|=+\infty.\tag{3.11}
$$

Let $\{h_k\} \subseteq \mathbb{N}$ be a strictly increasing sequence such that $\|v^{k,h_k}\| \to +\infty$ as $k \to +\infty$. Let $w^k = ||v^{k,h_k}||^{-1}v^{k,h_k}$. Then, $D_{m_1}(w^k) = -||v^{k,h_k}||^{-q_{m_1}}$ and

$$
p^{-1}\left\{\tilde{c}\sum_{\ell=1}^{n}\int_{\Omega}\left|\nabla w_{\ell}^{k}\right|^{p}dx-\sum_{\ell\in I\backslash I^{*}}\left[\lambda_{\ell}\int_{\Omega}b_{\ell}\left|w_{\ell}^{k}\right|^{p}dx+\mu_{\ell}\int_{\partial\Omega}\hat{b}_{\ell}\left|w_{\ell}^{k}\right|^{p}d\sigma\right]\right\}
$$
\n
$$
< p^{-1}\sum_{\ell\in I^{*}}\left[\lambda_{\ell}^{k}\int_{\Omega}b_{\ell}\left|w_{\ell}^{k}\right|^{p}dx+\mu_{\ell}^{k}\int_{\partial\Omega}\hat{b}_{\ell}\left|w_{\ell}^{k}\right|^{p}d\sigma\right],
$$
\n(3.12)

moreover, there exists $w \in W$ such that (within a subsequence)

$$
w^{k} \longrightarrow w \text{ weakly in } W, \qquad w^{k} \longrightarrow w \text{ strongly in } (L^{p}(\Omega))^{n},
$$

$$
w^{k} \longrightarrow w \text{ strongly in } (L^{p}(\partial \Omega))^{n}.
$$
(3.13)

Consequently,

$$
D_{m_1}(w) = 0, \qquad \sum_{\ell=1}^n \int_{\Omega} |\nabla w_{\ell}|^p dx = 0, \qquad \sum_{\ell \in I \setminus I^*} \left[\lambda_{\ell} \int_{\Omega} b_{\ell} |w_{\ell}|^p dx + \mu_{\ell} \int_{\partial \Omega} \hat{b}_{\ell} |w_{\ell}|^p d\sigma \right] = 0,
$$
\n(3.14)

then $w = 0$, and the contradiction $0 = \lim_{k \to +\infty} ||w^k|| = 1$.

Proposition 3.5. *Let* (i_{32}) holds with $I^* = I$. *Let* $\int_{\Omega} b_{\ell} dx$, $\int_{\partial \Omega} \hat{b}_{\ell} d\sigma > 0$ as $\ell = 1, ..., n$. Then,

$$
V_{\lambda\mu}^{-} \cap S(D_{m_1}) \neq \emptyset \quad \text{if } \lambda_{\ell}, \ \mu_{\ell} \geq 0 \quad \forall \ell \in I \quad \text{and} \quad \lambda_{\ell} + \mu_{\ell} > 0 \quad \text{for some } \ell \in I,
$$
\n
$$
\exists \delta^* > 0 : (i_{15}) \text{ holds} \quad \text{if } \lambda_{\ell}, \mu_{\ell} \in [0, \delta^*] \quad \forall \ell \in I \quad \text{and} \quad \lambda_{\ell} + \mu_{\ell} > 0 \quad \text{for some } \ell \in I. \tag{3.15}
$$

The proof as in Proposition 3.4.

Remark 3.6. It is suitable to make some clarifications.

- (i) The assumption " b_{ℓ} , $b_{\ell} \ge 0$ " (see Propositions 3.1, 3.2, and 3.4) can be replaced by *"b*_{*e*}, *b*_{*e*} do not change sign." In this case we can choose λ *e* and μ *e* such that λ *ebe* \le $0, \mu_{\ell} b_{\ell} \leq 0$ and $|\lambda_{\ell}| + |\mu_{\ell}| > 0$.
- (ii) The assumption " $\int_{\Omega} b_{\ell} dx$, $\int_{\partial \Omega} b_{\ell} d\sigma > 0$ " (see Propositions 3.4 and 3.5) can be replaced by " $\int_{\Omega} b_{\ell} dx$, $\int_{\partial \Omega} b_{\ell} d\sigma \neq 0$ ". In this case, we can choose λ_{ℓ} and μ_{ℓ} such that $\lambda_{\ell} \int_{\Omega} b_{\ell} dx$, $\mu_{\ell} \int_{\partial \Omega} \hat{b}_{\ell} d\sigma \ge 0$ and $|\lambda_{\ell}| + |\mu_{\ell}| > 0$ for some ℓ , with $|\lambda_{\ell}|, |\mu_{\ell}| \le \delta^*$ instead of $\lambda_{\ell}, \mu_{\ell} \in [0, \delta^*]$.
- (iii) When for each $\ell \in \{1, ..., n\}$ *b*_{ℓ}, *b*_{ℓ} do not change sign, then the conclusion of the Proposition 3.2 [resp. Proposition 3.3] holds even if $\lambda_{\ell}b_{\ell}, \mu_{\ell}\hat{b}_{\ell} \leq 0$ and $|\lambda_{\ell}| + |\mu_{\ell}| > \delta^*$ as $l \in I^*$ (resp. as $l = 1, \ldots, n$).

In order to simplify the presentation of the applications, we suppose in the next $b_{\ell} \in L^{\infty}(\Omega) \setminus \{0\}$ and $\widehat{b}_{\ell} \in L^{\infty}(\partial \Omega) \setminus \{0\}$, while the additional assumptions on $b_{\ell}, \widehat{b}_{\ell}$ and

 \Box

the assumptions on $\int_{\Omega} b_{\ell} dx$, $\int_{\partial \Omega} b_{\ell} d\sigma$ (the same of Propositions 3.1, 3.2, 3.4, and 3.5) will be pointed out case by case.

Passing to the applications (with $n > 1$), we recall that in [3] Pohozaev and Véron in the case $n = 1$ have studied the Neumann problem:

$$
-\operatorname{div}\left(|\nabla u|^{p-2}\nabla u\right) = \lambda b(x)|u|^{p-2}u + c(x)|u|^{s-2}u + a(x)|u|^{q-2}u \quad \text{in } \Omega,
$$

$$
|\nabla u|^{p-2}\frac{\partial u}{\partial v} = k(x)|u|^{r-2}u \quad \text{on } \partial\Omega.
$$
 (3.16)

The existence theorems proved by these authors can be got by using some results of $(1]$, Theorems 2.1, 2.2, 4.1, and 4.2; Remarks 2.1, 2.3, 4.1, and 4.4, Propositions 3.3 and 3.5.

Application 3.7. Let for each $v = (v_1, \ldots, v_n) \in W$:

$$
A(v) = p^{-1} \sum_{\ell=1}^n \int_{\Omega} |\nabla v_{\ell}|^p dx, \qquad D_1(v) = q_1^{-1} \left[\int_{\partial \Omega} \left(\sum_{\ell=1}^n d_{\ell} |v_{\ell}|^{\gamma} \right)^{q_1/\gamma} d\sigma - \sum_{\ell=1}^n \int_{\partial \Omega} \widehat{d}_{\ell} |v_{\ell}|^{q_1} d\sigma \right],
$$
\n(3.17)

where

$$
1 < \gamma < q_1 < \hat{p}, \quad q_1 \neq p, \qquad d_{\ell}, \hat{d}_{\ell} \in L^{\infty}(\partial \Omega), \quad d_{\ell}, \hat{d}_{\ell} > 0.
$$
 (3.18)

Let us consider the system:

$$
-\operatorname{div}\left(|\nabla u_i|^{p-2}\nabla u_i\right) = \lambda_i b_i |u_i|^{p-2} u_i \quad \text{in } \Omega,
$$

$$
|\nabla u_i|^{p-2} \frac{\partial u_i}{\partial \nu} = \mu_i \hat{b}_i |u_i|^{p-2} u_i + \left(\sum_{\ell=1}^n d_\ell |u_\ell|^{\gamma}\right)^{(q_1/\gamma)-1} d_i |u_i|^{\gamma-2} u_i
$$

$$
-\hat{d}_i |u_i|^{q_1-2} u_i \quad \text{on } \partial \Omega \text{ as } i = 1, ..., n.
$$
 (3.19)

Let us introduce the conditions:

$$
\int_{\partial\Omega} \left(\sum_{\ell=1}^n d_\ell \right)^{q_1/\gamma} d\sigma < \int_{\partial\Omega} \hat{d} \, d\sigma \quad \left(\hat{d} = \min \left\{ \hat{d}_1, \dots, \hat{d}_n \right\} \right), \tag{3.20}
$$

$$
\exists \Gamma \subseteq \partial \Omega : \sigma(\Gamma) > 0, \qquad \left(\sum_{\ell=1}^n d_\ell\right)^{q_1/\gamma} > \sum_{\ell=1}^n \hat{d}_\ell \quad \text{on } \Gamma,\tag{3.21}
$$

$$
\int_{\Omega} b_{\ell} dx > 0, \quad \int_{\partial \Omega} \hat{b}_{\ell} d\sigma > 0 \quad \text{as } \ell = 1, ..., n. \tag{3.22}
$$

Evidently $(3.20) \Rightarrow D_1(c) < 0$ for all $c \in \mathbb{R}^n \setminus \{0\}$. Moreover $(3.21) \Rightarrow V^+(D_1) \neq \emptyset$ (Proposition A.2). Hence (Propositions 3.3 and 3.5)

(3.20) and (3.21)
\n
$$
\implies (\exists \delta_1^* > 0 : (i_{14}) \text{ holds if } |\lambda_{\ell}|, |\mu_{\ell}| \le \delta_1^* \ \forall \ell \in \{1, ..., n\}),
$$
\n(3.20) and (3.22)
\n
$$
\implies (\exists \delta_2^* > 0 \ (i_{15}) \text{ holds if } \lambda_{\ell}, \mu_{\ell} \in [0, \ \delta_2^*] \ \forall \ell \in \{1, ..., n\}, \ \lambda_{\ell} + \mu_{\ell} > 0 \text{ for some } \ell).
$$
\n(3.24)

Proposition 3.8 (see $([1]$, Theorems 2.1 and 4.1; Remarks 2.1 and 4.1); Proposition A.4; $[5, 6]$. *Under assumption* 3.18*, we have:*

(i) When (3.20) and (3.21) hold, with λ_{ℓ} , μ_{ℓ} as in (3.23) system (3.19) has at least two weak *solutions* u^0 *and* $-u^0$ $(u^0 = \tau^0 v^0, \tau^0 = const. > 0, v^0 \in S_{\lambda\mu} \cap V^+(D_1)$, *and it results in*

$$
u_i^0 \in L^{\infty}(\Omega) \cap C_{\ell_{OC}}^{1, \alpha_i^0}(\Omega), \quad u_i^0 \ge 0 \text{ as } i = 1, \dots, n, \ u_i^0 > 0 \text{ if } u_i^0 \ne 0; \tag{3.25}
$$

ii *When* 3.20 *and* 3.22 *hold, with λ, μ as in* 3.24 *system* 3.19 *has at least two weak solutions* \overline{u} *and* $-\overline{u}$ ($\overline{u} = \overline{\tau} \overline{v}$, $\overline{\tau}$ = const. > 0, $\overline{v} \in V^-_{\lambda\mu} \cap S(D_1)$), and it results in

$$
\overline{u}_i \in L^{\infty}(\Omega) \cap C_{\ell_{OC}}^{1,\overline{\alpha}_i}(\Omega), \quad \overline{u}_i \ge 0 \text{ as } i = 1,\dots, n, \overline{u}_i > 0 \text{ if } \overline{u}_i \ne 0. \tag{3.26}
$$

Consequently, when (3.20)–(3.22) *hold, with* λ_{ℓ} , μ_{ℓ} *as in* (3.24) *and* $\min\{\delta^*_1, \delta^*_2\}$ *instead of* δ^*_2 *system* 3.19 *has at least four different weak solutions.*

Proposition 3.9. *If* $\gamma < p < q_1$ *, then* $u_i^0 > 0$ *as* $i = 1, \ldots n$ *.*

Proof. It is sufficient (Remark 1.1) to verify that

$$
\left(i_{16}^{h}\right) \text{ holds as } h = 1, \dots, n \quad \text{with } \mathfrak{F} = S_{\lambda\mu} \cap V^{+}(D_{1}). \tag{3.27}
$$

Let $v = (v_1, \ldots, v_n) \in V^+(D_1) \cap S_{\lambda \mu}$. Let, for example, $v_1 \equiv 0$. Since $\int_{\partial\Omega}$ ($\sum_{\ell \neq 1} d_{\ell} |v_{\ell}|^{\gamma}$)^{*q*}1^{/γ}*dσ* > 0, there exists Γ⁺ ⊆ ∂Ω such that

$$
\sigma(\Gamma^+) > 0, \qquad \sum_{\ell \neq 1} d_{\ell} |v_{\ell}|^{\gamma} > 0 \quad \text{ on } \Gamma^+.
$$
 (3.28)

Let $K \subseteq \Omega$ a compact set and Ω' an open set such that

$$
|\mathbb{K}|_N > 0, \quad \mathbb{K} \subseteq \Omega', \quad \overline{\Omega'} \subseteq \Omega. \tag{3.29}
$$

Since Propositions A.1 and A.2, there exist a compact set $\hat{\Gamma}^+ \subseteq \Gamma^+$, with $\sigma(\hat{\Gamma}^+) > 0$, and $(\varphi_{1\epsilon})_{0<\epsilon<\epsilon_0}$, $(\varphi_{2\epsilon})_{0<\epsilon<\epsilon_0} \subseteq C_0^{\infty}(R^N)$ such that

$$
0 \le \varphi_{1\varepsilon} \le 1, \quad \text{supp } \varphi_{1\varepsilon} \subseteq \Omega', \quad \varphi_{1\varepsilon} \longrightarrow \chi \text{ strongly in } L^{s}(\Omega)
$$
\n
$$
\int_{\Omega} |\nabla \varphi_{1\varepsilon}|^{s} dx \longrightarrow +\infty \quad \text{as } \varepsilon \longrightarrow 0^{+} \quad \forall s \in [1, +\infty[,
$$
\n
$$
0 \le \varphi_{2\varepsilon} \le 1, \quad \text{supp } \varphi_{2\varepsilon} \subseteq R^{N} \setminus \overline{\Omega}, \quad \varphi_{2\varepsilon} \longrightarrow \hat{\chi} \text{ strongly in } L^{s}(\partial\Omega),
$$
\n
$$
\int_{\Omega} \varphi_{2\varepsilon}^{s} dx \longrightarrow 0 \quad \text{as } \varepsilon \longrightarrow 0^{+} \quad \forall s \in [1, +\infty[,
$$
\n(3.30)

where χ (resp. $\hat{\chi}$) is the characteristic function of K (resp. $\hat{\Gamma}^+$). Let us choose ε such that

$$
\delta = p^{-1} \left[\int_{\Omega} |\nabla \varphi_{\varepsilon}|^p dx - \lambda_1 \int_{\Omega} b_1 \varphi_{\varepsilon}^p dx - \mu_1 \int_{\partial \Omega} \hat{b}_1 \varphi_{\varepsilon}^p d\sigma \right] > 0,
$$

$$
\int_{\partial \Omega} \left(\sum_{\ell \neq 1} d_{\ell} |\varphi_{\ell}|^r \right)^{(q_1/r)-1} d_1 \varphi_{\varepsilon}^{\gamma} d\sigma > 0 \quad (\varphi_{\varepsilon} = \varphi_{1\varepsilon} + \varphi_{2\varepsilon}),
$$
 (3.31)

and we set $v(s) = ((1-s)^{1/p} \delta^{-1/p} \varphi_{\varepsilon}, s^{1/p} v_2, \ldots, s^{1/p} v_n)$. Then,

$$
H_{\lambda\mu}(v(s)) = 1 \quad \forall s \in [0,1], \quad \exists s_0 \in [0,1[: D_1(v(s)) > 0 \quad \forall s \in [s_0,1],
$$

$$
\lim_{s \to 1^{-}} \frac{d}{ds} D_1(v(s)) = -\infty.
$$
\n(3.32)

Proposition 3.10. *If*

$$
d_{\ell}^{q_1/\gamma} < \hat{d}_{\ell} \quad \text{as } \ell = 1, \dots, n,\tag{3.33}
$$

$$
\lambda_{\ell} + \mu_{\ell} > 0 \quad \text{as } \ell = 1, \dots, n,
$$
\n(3.34)

then $\overline{u_i} > 0$ *as* $i = 1, \ldots, n$.

Proof. We recall that ([1], Theorem 4.1)

$$
H_{\lambda\mu}(\overline{v}) = \inf \Big\{ H_{\lambda\mu}(v) : \ v \in V_{\lambda\mu}^- \cap S(D_1) \Big\}.
$$
 (3.35)

Reasoning by contradiction let, for example, $\overline{v}_1 \equiv 0$. As $c_1 = \text{const.} > 0$ and $g(s,\tau) = D_1(sc_1, \tau\overline{v}_2,\ldots,\tau\overline{v}_n) = q_1^{-1} \left[\int_{\partial\Omega} (d_1s^{\gamma}c_1^{\gamma} + \tau^{\gamma}\sum_{\ell\neq 1} d_{\ell}(\overline{v}_{\ell})^{\gamma}\right)^{q_1\backslash\gamma} d\sigma - s^{q_1}c_1^{q_1}$ ^{*q*1}</sup> *∫*_{∂Ω} *d*₁*dσ* − $\tau^{q_1} \sum_{\ell \neq 1} \int_{\partial \Omega} \hat{d}_{\ell} (\overline{v}_{\ell})^{q_1} d\sigma$ for all $s, \tau \geq 0$, we have $g(0, \tau) = -\tau^{q_1} > -1$ for all $\tau \in]0,1[$ and since (3.33) $\lim_{s\to+\infty} g(s,\tau) = -\infty$ for all $\tau \ge 0$. Then for all $\tau \in]0,1[$, it is possible to choose *s*(τ) > 0 such that $g(s(\tau), \tau) = -1$. Let us add that there exist $s_0 > 0$ and $\tau_0 \in]0,1[$ such that $(\partial g/\partial s)(s,\tau) > 0$ for all $(s,\tau) \in]0,s_0[x]\tau_0,1[$.

Let now $\{\tau_n\} \subseteq \mathcal{F}_0$, 1 and lim $\tau_n = 1$. Since $g(s(\tau_n), \tau_n) = -1$, $\{s(\tau_n)\}\$ is necessarily bounded. Then (within a subsequence) lim $s(\tau_n) = \omega \geq s_0$. Consequently, from the inequality:

$$
H_{\lambda\mu}(\overline{v}) \le H_{\lambda\mu}(v(\tau_n)), \quad \text{where } v(\tau_n) = (s(\tau_n)c_1, \tau_n\overline{v}_2, \dots, \tau_n\overline{v}_n) \in V_{\lambda\mu}^-\cap S(D_1), \tag{3.36}
$$

as $n \rightarrow +\infty$ and from (3.34), we get the contradiction:

$$
H_{\lambda\mu}(\overline{v}) \le -p^{-1}\omega^p c_1^p \left(\lambda_1 \int_{\Omega} b_1 dx + \mu_1 \int_{\partial\Omega} \widehat{b}_1 d\sigma\right) + H_{\lambda\mu}(\overline{v}) < H_{\lambda\mu}(\overline{v}).\tag{3.37}
$$

Remark 3.11. Let us note that the conditions (3.20), (3.21), and (3.33) are compatible. *Application 3.12.* Let for each $v = (v_1, \ldots, v_n) \in W$:

$$
A(v) = p^{-1} \left[\sum_{\ell=1}^{n-1} \int_{\Omega} |\nabla v_{\ell}|^p dx + \int_{\Omega} \left(|\nabla v_n|^{\gamma} + \int_{\partial \Omega} |v_n|^{\gamma} d\sigma \right)^{p/\gamma} dx \right],
$$

\n
$$
D_1(v) = q_1^{-1} \left[\sum_{\ell=1}^{n-1} \int_{\Omega} \rho_{\ell} |v_{\ell} + v_n|^{q_1-1} (v_{\ell} + v_n) dx - \sum_{\ell=1}^n \int_{\partial \Omega} \widehat{d}_{\ell} |v_{\ell}|^{q_1} d\sigma \right],
$$
\n(3.38)

where

$$
1 < \gamma < p, \quad 1 < q_1 < \hat{p}, \quad q_1 \neq p, \quad \rho_{\ell} \in L^{\infty}(\Omega), \quad \rho_{\ell} > 0, \quad \hat{d}_{\ell} \in L^{\infty}(\partial \Omega), \quad \hat{d}_{\ell} > 0.
$$
\n(3.39)

Let us consider the system:

$$
-\operatorname{div}\left(|\nabla u_i|^{p-2}\nabla u_i\right) = \lambda_i b_i |u_i|^{p-2} u_i + \rho_i |u_i + u_n|^{q-1} \quad \text{in } \Omega \text{ as } i = 1, ..., n-1,
$$

\n
$$
-\operatorname{div}\left[\left(|\nabla u_n|^{\gamma} + \int_{\partial\Omega} |u_n|^{\gamma} d\sigma\right)^{(p/\gamma)-1} |\nabla u_n|^{\gamma-2} \nabla u_n\right] = \lambda_n b_n |u_n|^{p-2} u_n + \sum_{\ell=1}^{n-1} \rho_\ell |u_\ell + u_n|^{q-1} \quad \text{in } \Omega,
$$

\n
$$
|\nabla u_i|^{p-2} \frac{\partial u_i}{\partial \nu} = \mu_i \hat{b}_i |u_i|^{p-2} u_i - \hat{d}_i |u_i|^{q-2} u_i \quad \text{on } \partial\Omega \text{ as } i = 1, ..., n-1,
$$

\n
$$
\left(|\nabla u_n|^{\gamma} + \int_{\partial\Omega} |u_n|^{\gamma} d\sigma\right)^{(p/\gamma)-1} |\nabla u_n|^{\gamma-2} \frac{\partial u_n}{\partial \nu}
$$

\n
$$
= \mu_n \hat{b}_n |u_n|^{p-2} u_n - \left[\int_{\Omega} \left(|\nabla u_n|^{\gamma} + \int_{\partial\Omega} |u_n|^{\gamma} d\sigma\right)^{(p/\gamma)-1} dx\right] |u_n|^{\gamma-2} u_n
$$

\n
$$
- \hat{d}_n |u_n|^{q-2} u_n \quad \text{on } \partial\Omega.
$$

\n(3.40)

Pointing out that $V^+(D_1) \neq \emptyset$, we advance the conditions

$$
\int_{\Omega} \left(\sum_{\ell=1}^{n-1} \rho_{\ell} \right) dx < \int_{\partial \Omega} \hat{d} \, d\sigma \quad \left(\hat{d} = \min \left\{ \hat{d}_1, \dots, \hat{d}_n \right\} \right), \tag{3.41}
$$

$$
\int_{\Omega} b_{\ell} dx > 0, \quad \int_{\partial \Omega} \hat{b}_{\ell} d\sigma > 0 \quad \text{as } \ell = 1, \dots, n-1,
$$
\n(3.42)

$$
b_n \ge 0, \qquad \widehat{b}_n \ge 0. \tag{3.43}
$$

Taking into account that

$$
(3.41) \Longrightarrow D_1(c_1, \ldots, c_{n-1}, 0) < 0 \quad \forall (c_1, \ldots, c_{n-1}) \in R^{n-1} \setminus \{0\},\tag{3.44}
$$

we have (Propositions 3.2 and 3.4)

3*.*41 and 3*.*43 \Rightarrow (with $\lambda_n, \mu_n \leq 0, \lambda_n + \mu_n < 0 \exists \delta_1^* > 0$: (i_{14}) holds if $|\lambda_{\ell}|, |\mu_{\ell}| \leq \delta_1^*$ as $\ell = 1, \ldots, n-1$), (3.45)

$$
(3.41)–(3.43)
$$

\n
$$
\implies \text{(with } \lambda_n, \mu_n \le 0, \ \lambda_n + \mu_n < 0 \ \exists \delta_2^* > 0 : (i_{15}) \text{ holds}
$$

\n
$$
\text{if } \lambda_{\ell}, \mu_{\ell} \in [0, \delta_2^*] \text{ as } \ell = 1, \dots, n-1 \text{ and } \lambda_{\ell} + \mu_{\ell} > 0 \text{ for some } \ell \text{).}
$$
\n
$$
(3.46)
$$

Proposition 3.13 (see ([1], Theorems 2.1 and 4.1; Remark 2.1); Proposition A.4; [5, 6]). *Under assumption* 3.39*, we have*

(i) When (3.41) and (3.43) hold, with λ_{ℓ} , μ_{ℓ} as in (3.45) system (3.40) has at least one weak *solution* $u^0 (u^0 = \tau^0 v^0, \ \tau^0 = const. > 0, \ \ v^0 \in S_{\lambda \mu} \cap V^+(D_1)$, and it results in

$$
u_i^0 \in L^{\infty}(\Omega) \cap C_{\ell_{OC}}^{1, \alpha_i^0}(\Omega), \quad u_i^0 > 0 \text{ as } i = 1, ..., n-1,
$$

$$
u_n^0 \in L^{\infty}(\Omega), \quad u_n^0 \ge 0, \ u_n^0 \ne 0;
$$
 (3.47)

ii *When* 3.41*–*3.43 *hold, with λ, μ as in* 3.46 *system* 3.40 *has at least one weak solution* \overline{u} (\overline{u} = $\overline{\tau}$ \overline{v} , $\overline{\tau}$ = const. > 0, \overline{v} \in $V_{\lambda\mu}^{-} \cap S(D_1)$), and it results in $\overline{u}_i \neq 0$ as $i = 1, \ldots, n$.

Consequently, when (3.41)–(3.43) *hold, with* λ_{ℓ} , μ_{ℓ} *as in* (3.46) *and* $\min\{\delta_1^*,\delta_2^*\}$ *instead of δ*∗ ² *system* 3.40 *has at least two different weak solutions.*

About the properties of u_i^0 and \overline{u}_i expressed by Proposition 3.13, it is necessary to remark that if $u = (u_1, \ldots, u_n)$ is a nontrivial weak solution to system (3.40), then $u_i \neq 0$ as $i = 1, \ldots, n$. In fact,

$$
u_n \equiv 0 \Longrightarrow u_i \equiv 0 \quad \text{as } i = 1, \dots, n-1, \qquad u_i \equiv 0 \quad \text{for some } i \in \{1, \dots, n-1\} \Longrightarrow u_n \equiv 0. \tag{3.48}
$$

Application 3.14. Let $n = 2$ and for any $v = (v_1, v_2) \in W$:

$$
A(v) = p^{-1} \sum_{\ell=1}^{2} \int_{\Omega} |\nabla v_{\ell}|^{p} dx, \qquad D_{j}(v) = q_{j}^{-1} \int_{\Omega} \rho_{j} \left| \sum_{\ell=1}^{2} d_{j\ell} |v_{\ell}|^{r_{j}} \right|^{q_{j}/r_{j}} dx \quad \text{as } j = 1, ..., m-1,
$$

$$
D_{m}(v) = q_{m}^{-1} \int_{\partial\Omega} \rho_{m} \left(\sum_{\ell=1}^{2} |v_{\ell}|^{r_{m}} \right)^{q_{m}/r_{m}} d\sigma,
$$
(3.49)

where

$$
1 < \gamma_j < q_j \quad \text{as } j = 1, ..., m, \qquad p < q_1 < \dots < q_m < \hat{p}, \qquad \rho_j \in L^{\infty}(\Omega), \quad \rho_j < 0, d_{j\ell} \in L^{\infty}(\Omega) \setminus \{0\}, \qquad \rho_m \in L^{\infty}(\partial \Omega).
$$
 (3.50)

Let us consider the system:

$$
-\operatorname{div}\left(|\nabla u_i|^{p-2}\nabla u_i\right) = \lambda_i b_i |u_i|^{p-2} u_i
$$

+
$$
\sum_{j=1}^{m-1} \rho_j \left| \sum_{\ell=1}^2 d_{j\ell} |u_{\ell}|^{\gamma_j} \right|^{(q_j/\gamma_j)-2} \left(\sum_{\ell=1}^2 d_{j\ell} |u_{\ell}|^{\gamma_j} \right) d_{ji} |u_i|^{\gamma_j-2} u_i \quad \text{in } \Omega,
$$

$$
|\nabla u_i|^{p-2} \frac{\partial u_i}{\partial \nu} = \mu_i \hat{b}_i |u_i|^{p-2} u_i + \rho_m \left(\sum_{\ell=1}^2 |u_{\ell}|^{\gamma_m} \right)^{(q_m/\gamma_m)-1} |u_i|^{\gamma_m-2} u_i \quad \text{on } \partial \Omega \text{ as } i = 1, 2.
$$

(3.51)

Let us introduce the conditions:

$$
\rho_m^+ \neq 0 \quad (\Longrightarrow V^+(D_m) \neq \emptyset \text{ (Proposition A.2)}), \tag{3.52}
$$

$$
\int_{\partial\Omega} \rho_m d\sigma < 0 \quad \left(\Longrightarrow D_m(c_1, c_2) < 0 \ \forall (c_1, c_2) \in R^2 \setminus \{0\} \right), \tag{3.53}
$$

$$
\int_{\Omega} b_{\ell} dx > 0, \quad \int_{\partial \Omega} \hat{b}_{\ell} d\sigma > 0 \quad \text{as } \ell = 1, 2,
$$
\n(3.54)

we have (Propositions 3.3 and 3.5)

(3.52) and (3.53)
$$
\implies
$$
 ($\exists \delta_1^* > 0$: (i_{14}) holds if $|\lambda_{\ell}|, |\mu_{\ell}| \le \delta_1^*$ as $\ell = 1, 2$), (3.55)
(3.53) and (3.54)
 \implies ($\exists \delta_2^* > 0$: (i_{15}) holds if $\lambda_{\ell}, \mu_{\ell} \in [0, \delta_2^*]$ as $\ell = 1, 2, \lambda_{\ell} + \mu_{\ell} > 0$ for some ℓ). (3.56)

Proposition 3.15 (see $([1]$, Theorems 2.2 and 4.2; Remarks 2.3 and 4.4); Proposition A.4; [5]). *Under assumption* 3.50*, we have*

i *When* 3.52 *and* 3.53 *hold, with λ, μ as in* 3.55 *system* 3.51 *has at least two weak solutions* u^0 *and* $-u^0$ ($u^0 = \tau^0 v^0$, $\tau^0 = const. > 0$, $v^0 \in S_{\lambda\mu} \cap V^+(D_m)$), and it results *in*

$$
u_i^0 \in L^{\infty}(\Omega) \cap C_{\ell_{OC}}^{1, \alpha_i^0}(\Omega), \qquad u_i^0 \ge 0 \quad \text{as } i = 1, 2; \tag{3.57}
$$

ii *When* 3.53 *and* 3.54 *hold, with λ, μ as in* 3.56 *system* 3.51 *has at least two weak solutions* \overline{u} *and* $-\overline{u}$ ($\overline{u} = \overline{\tau} \overline{v}$, $\overline{\tau}$ = const. > 0, $\overline{v} \in V^-_{\lambda\mu} \cap S(D_m)$), and it results in

$$
\overline{u}_i \in L^{\infty}(\Omega) \cap C_{\ell_{OC}}^{1,\overline{\alpha}_i}(\Omega), \quad \overline{u}_i \ge 0 \quad \text{as } i = 1,2. \tag{3.58}
$$

Consequently, when (3.52)–(3.54) *hold, with* λ_{ℓ} , μ_{ℓ} *as in* (3.56), *and* $\min{\{\delta_1^*,\delta_2^*\}}$ *instead of δ*∗ ² *system* 3.51 *has at least four different weak solutions.*

Proposition 3.16. *Under the assumption* $p \le 2\gamma_j$ *and* $d_{j1} \cdot d_{j2} < 0$ *as* $j = 1, \ldots, m-1$ *, we have*

- (i) *if* $\gamma_{j_0} < p$ *for some* $j_0 \in \{1, ..., m\}$ *, then* $u_i^0 > 0$ *as* $i = 1, 2$ *;*
- (ii) *if* $\gamma_{j_0} < \gamma_m \le p$ *for some* $j_0 \in \{1, ..., m-1\}$ *, then* $\overline{u}_i > 0$ *as* $i = 1, 2$ *.*

Proof. First of all u_i^0 is a weak supersolution to the equation:

$$
-\operatorname{div}\left(\left|\nabla u_i\right|^{p-2} \nabla u_i\right) = \lambda_i b_i |u_i|^{p-2} u_i + \sum_{j=1}^{m-1} \rho_j \left| d_{j1} \left(u_1^0\right)^{\gamma_j} + d_{j2} \left(u_2^0\right)^{\gamma_j} \right|^{(q_j/\gamma_j)-2} d_{ji}^2 |u_i|^{2\gamma_j-2} u_i \quad \text{in } \Omega. \tag{3.59}
$$

Also, \overline{u}_i has a similar property. Then [6] it is sufficient to verify that

$$
u_i^0 \neq 0,\tag{3.60}
$$

$$
\overline{u}_i \neq 0. \tag{3.61}
$$

About (3.60) , let us prove (Remark 1.1) that

$$
\left(i_{16}^{h}\right) \text{ holds as } h = 1,2 \quad \text{with } \mathfrak{F} = S_{\lambda\mu} \cap V^{+}(D_{m}).\tag{3.62}
$$

Let $v = (v_1, v_2) \in V^+(D_m) \cap S_{\lambda\mu}$. Let, for example, $v_1 \equiv 0$. Let

$$
\mathbb{K} \subseteq \Omega \text{ a compact set}: |\mathbb{K}|_N > 0, v_2 \neq 0 \text{ in } \mathbb{K},
$$

$$
\Omega' \text{ an open set}: \mathbb{K} \subseteq \Omega', \quad \overline{\Omega'} \subseteq \Omega,
$$

$$
\Gamma \subseteq \partial\Omega : \sigma(\Gamma) > 0, \quad \rho_m|v_2| > 0 \quad \text{on } \Gamma.
$$
 (3.63)

Since Propositions A.1 and A.2, there exists $\varphi \in C_0^{\infty}(R^N)$, with $0 \le \varphi \le 1$ and supp $\varphi \subseteq$ $\Omega' \cup (R^N \setminus \overline{\Omega'})$, such that

$$
\int_{\Omega} \rho_j |d_{j2}|v_2|^{\gamma_j} \Big|^{(q_j/\gamma_j)-2} |v_2|^{\gamma_j} \varphi^{\gamma_j} d_{j1} d_{j2} dx > 0 \quad \text{as } j = 1, \dots, m-1, \qquad \int_{\partial \Omega} \rho_m |v_2|^{q_m - \gamma_m} \varphi^{\gamma_m} d\sigma > 0,
$$

$$
\delta = p^{-1} \left[\int_{\Omega} |\nabla \varphi|^p dx - \lambda_1 \int_{\Omega} b_1 \varphi^p dx - \mu_1 \int_{\partial \Omega} \hat{b}_1 \varphi^p d\sigma \right] > 0.
$$
(3.64)

Then with $v(s) = ((1-s)^{1/p} \delta^{-1/p} \varphi, s^{1/p} v_2)$, we have

$$
H_{\lambda\mu}(v(s)) = 1 \quad \forall s \in [0,1], \quad \exists s_0 \in [0,1[: D_m(v(s)) > 0 \quad \forall s \in [s_0,1],
$$

$$
\lim_{s \to 1^{-}} \frac{d}{ds} D_{j_0}(v(s)) = -\infty, \quad \lim_{s \to 1^{-}} \frac{d}{ds} D_{j}(v(s)) < +\infty \quad \text{as } j \neq j_0.
$$
 (3.65)

Passing to (3.61), let us introduce the function $\psi(t, v) = pt^{p-1}H_{\lambda\mu}(v) - \sum_{j=1}^{m} q_j t^{q_j-1}D_j(v)$, and let us remember that $([1]$, Theorem 4.2)

$$
\forall v \in V_{\lambda\mu}^{-} \cap S(D_m) \exists \mid t(v) > 0 : \psi(t(v), v) = 0,
$$

$$
\widetilde{\tilde{E}}(\overline{v}) = \inf \left\{ \widetilde{\tilde{E}}(v) : v \in V_{\lambda\mu}^{-} \cap S(D_m) \right\},
$$
\n(3.66)

where $\widetilde{E}(v) = (t(v))^p H_{\lambda \mu}(v) - \sum_{j=1}^m (t(v))^{q_j} D_j(v)$.

Reasoning by contradiction, let us set, for example, $\overline{v}_1 \equiv 0$ and set $v(s) =$ $((1-s)^{1/\gamma_m}\overline{v}_2, s^{1/\gamma_m}\overline{v}_2)$. Since

$$
D_m(v(s)) = -1 \quad \forall s \in [0,1], \qquad \exists s_0 \in [0,1[: H_{\lambda\mu}(v(s)) < 0 \quad \forall s \in [s_0,1],
$$

$$
\lim_{s \to 1^{-}} \frac{d}{ds} D_{j_0}(v(s)) = -\infty, \quad \lim_{s \to 1^{-}} \frac{d}{ds} D_j(v(s)) < +\infty \quad \text{as } j \in \{1, ..., m-1\} \setminus \{j_0\},
$$
 (3.67)

as in Proposition 2.24, we get the contradiction:

$$
\widetilde{\widetilde{E}}(\overline{v}) \le \widetilde{\widetilde{E}}(v(s)) < \widetilde{\widetilde{E}}(\overline{v}) \quad \forall s \in [s_1, 1[\ (s_0 \le s_1 < 1). \tag{3.68}
$$

Application 3.17. Let $n > 2$ and set for each $v = (v_1, \ldots, v_n) \in W$:

$$
A(v) = p^{-1} \sum_{\ell=1}^{n} \int_{\Omega} |\nabla v_{\ell}|^{p} dx,
$$

\n
$$
D_{j}(v) = q_{j}^{-1} \sum_{\ell=1}^{n} \int_{\Omega} \rho_{j} |d_{jj}| v_{j}|^{\gamma_{j}} + d_{j} \ell |v_{\ell}|^{\gamma_{j}} |q_{j}/\gamma_{j}} dx \text{ as } j = 1,...,n,
$$

\n
$$
D_{n+1}(v) = q_{n+1}^{-1} \int_{\partial \Omega} \rho_{n+1} \left(\sum_{\ell=1}^{n} |v_{\ell}|^{\gamma_{n+1}} \right)^{q_{n+1}/\gamma_{n+1}} d\sigma,
$$
\n(3.69)

where

$$
1 < \gamma_j < q_j \quad \text{as } j = 1, ..., n+1, \qquad p < q_1 < \dots < q_{n+1} < \hat{p}, \qquad \rho_j \in L^{\infty}(\Omega), \quad \rho_j < 0, \nd_{j\ell} \in L^{\infty}(\Omega) \setminus \{0\}, \qquad \rho_{n+1} \in L^{\infty}(\partial \Omega). \tag{3.70}
$$

Let us consider the system:

$$
-\operatorname{div}(|\nabla u_i|^{p-2}\nabla u_i) = \lambda_i b_i |u_i|^{p-2} u_i + \sum_{\ell \neq i} \rho_i |d_{ii}|u_i|^{\gamma_i} + d_{i\ell} |u_{\ell}|^{\gamma_i} |^{(q_i/\gamma_i)-2} (d_{ii}|u_i|^{\gamma_i} + d_{i\ell} |u_{\ell}|^{\gamma_i}) d_{ii}|u_i|^{\gamma_i-2} u_i
$$

+
$$
\sum_{j \neq i} \rho_j |d_{jj}|u_j|^{\gamma_j} + d_{ji}|u_i|^{\gamma_j} |^{(q_j/\gamma_j)-2} (d_{jj}|u_j|^{\gamma_j} + d_{ji}|u_i|^{\gamma_j}) d_{ji}|u_i|^{\gamma_j-2} u_i \text{ in } \Omega,
$$

$$
|\nabla u_i|^{p-2} \frac{\partial u_i}{\partial \nu} = \mu_i \hat{b}_i |u_i|^{p-2} u_i + \rho_{n+1} \left(\sum_{\ell=1}^n |u_{\ell}|^{\gamma_{n+1}} \right)^{(q_{n+1}/\gamma_{n+1})-1} |u_i|^{\gamma_{n+1}-2} u_i \text{ on } \partial \Omega \text{ as } i = 1, ..., n.
$$

(3.71)

Let us make the assumptions:

$$
\rho_{n+1}^+ \not\equiv 0, \qquad \int_{\partial \Omega} \rho_{n+1} d\sigma < 0, \qquad \int_{\Omega} b_\ell dx > 0, \quad \int_{\partial \Omega} \hat{b}_\ell d\sigma > 0 \quad \text{as } \ell = 1, \ldots, n. \tag{3.72}
$$

About Neumann's problem 3.71, we have an existence result similar to the one of Proposition 3.15 related to system (3.51). About the positive sign of the components of the weak solutions u^0 and \overline{u} to system (3.71), as in Proposition 3.16, we show.

Proposition 3.18. *Under the assumption* $p \le 2\gamma_i$ *as* $j = 1, \ldots, n$ *and* $d_{ij} \cdot d_{j\ell} < 0$ *as* $j, \ell \in \{1, \ldots, n\}$ *with* $l \neq j$ *, we have*

- (i) *if either* $\gamma_{n+1} < p$ *or* $\gamma_j < p$ *for all* $j \in \{1, ..., n\} \setminus \{j_0\}$ *for some j₀, then* $u_i^0 > 0$ *as* $i = 1, \ldots, n;$
- (ii) *if* $\gamma_i < \gamma_{n+1} \leq p$ *for all* $j \in \{1, \ldots, n\} \setminus \{j_0\}$ *for some j*₀*, then* $\overline{u}_i > 0$ *as* $i = 1, \ldots, n$ *.*

The following remark deals also with Application 3.14.

Remark 3.19. Making in (3.50) (resp. (3.70)) the change

$$
q_1 < \dots < q_m < p \quad [resp. \ q_1 < \dots < q_{n+1} < p], \tag{3.73}
$$

system (3.51) (resp. (3.71)) has at least the two weak solutions \overline{u} and $-\overline{u}$ ([1], Theorem 4.2; Remark 4.4). The components of \overline{u} keep the properties that Propositions 3.15 and 3.16 (Proposition 3.15 and Proposition 3.18 resp.) underline.

Application 3.20. Let for each $v = (v_1, \ldots, v_n) \in W$:

$$
A(v) = p^{-1} \sum_{\ell=1}^{n} \int_{\Omega} |\nabla v_{\ell}|^{p} dx,
$$

$$
D_{j}(v) = q_{j}^{-1} \int_{\partial \Omega} \rho_{j} |d_{j1}|v_{j}|^{r_{j}} + d_{j2}|v_{n}|^{r_{j}}|^{q_{j}/r_{j}} d\sigma \text{ as } j = 1,...,n-1,
$$
 (3.74)

$$
D_{n}(v) = \left(\int_{\partial \Omega} |v_{n}|^{\hat{y}_{n}} d\sigma\right) \left(\int_{\Omega} \rho_{n} |v_{n}|^{r_{n}} dx\right),
$$

where

$$
1 < \gamma_j < q_j < \hat{p} \text{ as } j = 1, ..., n-1, \qquad 1 < \gamma_n < \tilde{p}, \qquad 1 < \hat{\gamma}_n < \hat{p},
$$

\n
$$
p < q_1 < \dots < q_{n-1} < q_n = \gamma_n + \hat{\gamma}_n,
$$

\n
$$
\rho_j \in L^{\infty}(\partial \Omega), \quad \rho_j < 0, \qquad d_{j1}, d_{j2} \in L^{\infty}(\partial \Omega) \setminus \{0\}, \qquad \rho_n \in L^{\infty}(\Omega).
$$
\n(3.75)

Let us consider the system:

$$
-\operatorname{div} \left(|\nabla u_i|^{p-2} \nabla u_i \right) = \lambda_i b_i |u_i|^{p-2} \quad \text{in } \Omega \text{ as } i = 1, ..., n-1,
$$

\n
$$
-\operatorname{div} \left(|\nabla u_n|^{p-2} \nabla u_n \right) = \lambda_n b_n |u_n|^{p-2} u_n + \gamma_n \left(\int_{\partial \Omega} |u_n|^{\hat{y}_n} d\sigma \right) \rho_n |u_n|^{y_n-2} u_n \quad \text{in } \Omega,
$$

\n
$$
|\nabla u_i|^{p-2} \frac{\partial u_i}{\partial \nu} = \mu_i \hat{b}_i |u_i|^{p-2} u_i + \rho_i |d_{i1}| u_i|^{y_i} + d_{i2} |u_n|^{y_i} |^{(q_i/y_i)-2}
$$

\n
$$
\times (d_{i1}|u_i|^{y_i} + d_{i2}|u_n|^{y_i}) d_{i1}|u_i|^{y_i-2} u_i \quad \text{on } \partial \Omega \text{ as } i = 1, ..., n-1,
$$

\n
$$
|\nabla u_n|^{p-2} \frac{\partial u_n}{\partial \nu} = \mu_n \hat{b}_n |u_n|^{p-2} u_n + \sum_{j=1}^{n-1} \rho_j |d_{j1}| u_j|^{y_j} + d_{j2} |u_n|^{y_j} |^{(q_j/y_j)-2}
$$

\n
$$
\times (d_{j1}|u_j|^{y_j} + d_{j2}|u_n|^{y_j}) d_{j2}|u_n|^{y_j-2} u_n
$$

\n
$$
+ \hat{\gamma}_n \left(\int_{\Omega} \rho_n |u_n|^{y_n} dx \right) |u_n|^{y_n-2} u_n \quad \text{on } \partial \Omega.
$$

\n(2.

Let us introduce the conditions:

$$
\rho_n^+ \neq 0 \quad (\Longrightarrow V^+(D_n) \neq \emptyset \text{ (Propositions A.1 and A.2)}), \tag{3.77}
$$

$$
\int_{\Omega} \rho_n dx < 0 \quad (\Longrightarrow D_n(0, \dots, 0, c_n) < 0 \,\,\forall c_n \in \mathbb{R}^n \setminus \{0\}), \tag{3.78}
$$

$$
b_{\ell} \ge 0, \quad \tilde{b}_{\ell} \ge 0 \quad \text{as } \ell = 1, ..., n-1,
$$
 (3.79)

$$
\int_{\Omega} b_n dx > 0, \qquad \int_{\partial \Omega} \hat{b}_n d\sigma > 0. \tag{3.80}
$$

We have (Propositions 3.2 and 3.4)

$$
(3.77) - (3.79)
$$
\n
$$
\implies \text{(with } \lambda_{\ell}, \mu_{\ell} \le 0, \ \lambda_{\ell} + \mu_{\ell} < 0 \text{ as } \ell = 1, \dots, n - 1 \exists \delta_1^* > 0: \tag{3.81}
$$
\n
$$
(i_{14}) \text{ holds if } |\lambda_n|, |\mu_n| \le \delta_1^*),
$$
\n
$$
(3.78) - (3.80)
$$
\n
$$
\implies \text{(with } \lambda_{\ell}, \mu_{\ell} \le 0, \ \lambda_{\ell} + \mu_{\ell} < 0 \text{ as } \ell = 1, \dots, n - 1 \tag{3.82}
$$

$$
\exists \delta_2^* > 0 : (i_{15}) \text{ holds if } \lambda_n, \mu_n \in [0, \delta_2^*] \text{ and } \lambda_n + \mu_n > 0 \text{.}
$$

Proposition 3.21 (see $(1]$, Theorems 2.2 and 4.2; Remarks 2.3 and 4.4); Proposition A.4; $[5,$ 6. *Under assumption* 3.75*, we have*

i *When* 3.77*–*3.79 *hold, with λ, μ as in* 3.81*, system* 3.76 *has at least two weak solutions* u^0 *and* $-u^0$ ($u^0 = \tau^0 v^0$, $\tau^0 = const. > 0$, $v^0 \in S_{\lambda\mu} \cap V^+(D_n)$), and it results in $u_i^0 \geq 0$ (*i* = 1,...,*n*), $u_n^0 \neq 0$. If $\gamma_n < \hat{p}$, then

$$
u_i^0 \in L^{\infty}(\Omega) \cap C_{\ell_{OC}}^{1, \alpha_i^0}(\Omega) \quad (i = 1, \dots, n),
$$

$$
u_i^0 \neq 0 \implies u_i^0 > 0 \quad (i = 1, \dots, n-1);
$$
 (3.83)

ii *When* 3.78*–*3.80 *hold, with λ, μ as in* 3.82*, system* 3.76 *has at least two weak solutions* \overline{u} *and* $-\overline{u}$ (\overline{u} = $\overline{\tau v}$, $\overline{\tau}$ = const. > 0, \overline{v} \in $V_{\lambda\mu}^{-} \cap S(D_n)$), and it results in $\overline{u_i} \geq 0$ $(i = 1, \ldots, n)$, $\overline{u}_n \not\equiv 0$ *. If* $\gamma_n < \widehat{p}$ *, then*

$$
\overline{u}_i \in L^{\infty}(\Omega) \cap C_{\ell_{OC}}^{1, \overline{\alpha}_i}(\Omega) \quad (i = 1, ..., n),
$$

\n
$$
\overline{u}_i \neq 0 \Rightarrow \overline{u}_i > 0 \quad (i = 1, ..., n-1).
$$
\n(3.84)

Consequently, when (3.77)–(3.80) *hold, with* λ_ℓ , μ_ℓ *as in* (3.82), *and* $\min\{\delta_1^*,\delta_2^*\}$ *instead of* δ_2^* *system* (3.76) has at least four different weak solutions. Obviously, $u_n^0 > 0$ and $\overline{u}_n > 0$ if $p \leq \gamma_n < \widehat{p}$.

The following proposition gives a sufficient condition to

$$
u_i^0 > 0 \quad \text{as } i = 1, \dots, n-1,
$$
\n(3.85)

$$
\overline{u}_i > 0 \quad \text{as } i = 1, \dots, n-1. \tag{3.86}
$$

Proposition 3.22. *Let* $\gamma_n < \hat{p}$. If $\gamma_j < p$ and $d_{j1} \cdot d_{j2} < 0$ as $j = 1, \ldots, n-1$, then (3.85) and (3.86) hold *hold.*

Proof. Since

$$
(v_1, \ldots, v_n) \in V^+(D_n) \Longrightarrow (\exists \Gamma \subseteq \partial \Omega : \sigma(\Gamma) > 0, \ |v_n| > 0 \text{ on } \Gamma), \tag{3.87}
$$

using Propositions A.1 and A.2, we can verify that

$$
\begin{pmatrix} i_{16}^h \end{pmatrix} \text{ holds as } h = 1, \dots, n-1 \quad \text{with } \mathfrak{F} = S_{\lambda\mu} \cap V^+(D_n), \tag{3.88}
$$

from which (Remark 1.1) we get (3.85) .

Let us prove (3.86). Reasoning by contradiction, let us set, for example, $\overline{v}_1 \equiv 0$. If $v(s) = ((1-s)^{1/p}\overline{v}_n, \overline{v}_2, \ldots, \overline{v}_n)$, we have

$$
D_n(v(s)) = -1 \quad \forall s \in [0,1], \quad \exists s_0 \in [0,1[: H_{\lambda\mu}(v(s)) < 0 \quad \forall s \in [s_0,1],
$$
\n
$$
\lim_{s \to 1^{-}} \frac{d}{ds} D_1(v(s)) = -\infty. \tag{3.89}
$$

Then as in Proposition 3.16, we get a contradiction.

Remark 3.23. Making in (3.75) the change:

$$
1 < \gamma_j < q_j \quad \text{as } j = 1, \dots, n-1, \qquad 1 < \gamma_n, \qquad 1 < \widehat{\gamma}_n, \qquad q_1 < \dots < q_n = \gamma_n + \widehat{\gamma}_n < p,
$$
\n
$$
(3.90)
$$

system (3.76) has at least the two weak solutions \overline{u} and $-\overline{u}$ ([1], Theorem 4.2; Remark 4.4). The components of \overline{u} , all bounded, are locally Hölderian with their first derivatives. If d_{j1} · d_{j2} < 0 as $j = 1, ..., n - 1$, then (3.86) holds.

Application 3.24. Let for each $v = (v_1, \ldots, v_n) \in W$:

$$
A(v) = p^{-1} \sum_{\ell=1}^{n} \int_{\Omega} \left(|\nabla v_{\ell}|^{r} + \int_{\Omega} |v_{\ell}|^{r} dx \right)^{p/r} dx,
$$

$$
D_{j}(v) = q_{j}^{-1} \int_{\partial \Omega} \left(\sum_{\ell=1}^{n} |v_{\ell}|^{r} \right)^{q_{j}/r} d\sigma \text{ as } j = 1, ..., m-1, \quad D_{m}(v) = q_{m}^{-1} \int_{\Omega} \left(\sum_{\ell=1}^{n} |v_{\ell}|^{r} \right)^{q_{m}/r} dx,
$$
\n(3.91)

where

$$
1 < \gamma < q_1 < \dots < q_m < p. \tag{3.92}
$$

 \Box

Let us consider the system:

$$
-\operatorname{div}\left[\left(\left|\nabla u_{i}\right|^{Y}+\int_{\Omega}|u_{i}|^{Y}dx\right)^{(p/\gamma)-1}\left|\nabla u_{i}\right|^{Y-2}\nabla u_{i}\right]
$$
\n
$$
=\lambda_{i}b_{i}|u_{i}|^{p-2}u_{i}-\left(\int_{\Omega}\left(\left|\nabla u_{i}\right|^{Y}+\int_{\Omega}|u_{i}|^{Y}dx\right)^{(p/\gamma)-1}dx\right)|u_{i}|^{Y-2}u_{i}
$$
\n
$$
+\left(\sum_{\ell=1}^{n}|u_{\ell}|^{Y}\right)^{(q_{m}/\gamma)-1}|u_{i}|^{Y-2}u_{i} \text{ in } \Omega,
$$
\n
$$
\left(\left|\nabla u_{i}\right|^{Y}+\int_{\Omega}|u_{i}|^{Y}dx\right)^{(p/\gamma)-1}\left|\nabla u_{i}\right|^{Y-2}\frac{\partial u_{i}}{\partial v}
$$
\n
$$
=\mu_{i}\hat{b}_{i}|u_{i}|^{p-2}u_{i}+\sum_{j=1}^{m-1}\left(\sum_{\ell=1}^{n}|u_{\ell}|^{Y}\right)^{(q_{j}/\gamma)-1}|u_{i}|^{Y-2}u_{i} \text{ on } \partial\Omega \text{ as } i=1,\ldots n.
$$
\n(3.93)

We advance the condition:

$$
b_{\ell} \ge 0, \quad \tilde{b}_{\ell} \ge 0 \quad \text{as } \ell = 1, \dots n,
$$
\n
$$
(3.94)
$$

and we note that (Proposition 3.1)

$$
(3.94) \Longrightarrow ((i_{13}) \text{ holds if } \lambda_{\ell}, \mu_{\ell} \le 0, \ \lambda_{\ell} + \mu_{\ell} < 0 \quad \text{as } \ell = 1, \dots, n). \tag{3.95}
$$

Proposition 3.25. *Under conditions* (3.92) *and* (3.94), *with* λ _{*e*}, μ _{*e*} as in (3.95), system (3.93) *has at least two weak solutions* u^0 *and* $-u^0$ ($u^0 = \tau^0 v^0$, $\tau^0 = const. > 0$, $v^0 \in S^+(D_1,\ldots,D_m)$), and it *results in*

$$
u_i^0 \in L^{\infty}(\Omega)
$$
, $u_i^0 \ge 0$, $u_i^0 \ne 0$ as $i = 1,...,n$. (3.96)

Proof. We recall that ([1], Section 2), set $\psi(t, v) = pt^{p-1}H_{\lambda\mu}(v) - \sum_{j=1}^{m} q_j t^{q_j-1}D_j(v)$, we have

$$
\forall v \in V^+(D_1, \dots, D_m) \qquad \exists \mid t(v) > 0 : \varphi(t(v), v) = 0,
$$
\n
$$
\text{the functional } t(v) \text{ is } C^1 \text{ in } V^+(D_1, \dots, D_m). \tag{3.97}
$$

We introduce the functional $\widetilde{E}(v) = (t(v))^p H_{\lambda\mu}(v) - \sum_{j=1}^m (t(v))^{q_j} D_j(v)$ which is C^1 in $V^+(D_1,\ldots,D_m)$. We still remember that ([1], Theorem 2.3; Remark 2.5)

$$
\exists v^{0} \in S^{+}(D_{1},...,D_{m}), \text{ with } v_{i}^{0} \geq 0 \text{ as } i = 1,...,n, \text{ such that}
$$

$$
\widetilde{\tilde{E}}\left(v^{0}\right) = \inf\left\{\widetilde{\tilde{E}}(v): v \in S^{+}(D_{1},...,D_{m})\right\},\tag{3.98}
$$

$$
u^{0} = t\left(v^{0}\right)v^{0} \text{ is a weak solution to system (3.93).}
$$

The property $u_i^0 \in L^\infty(\Omega)$ is due to Proposition A.4. Let us verify that $u_i^0 \neq 0$ as $i =$ 1,...,n. Reasoning by contradiction, let us set, for example, $v_1^0 \equiv 0$ and $v_2^0 \neq 0$. As $v(s) =$ $((1-s)^{1/\gamma}v_2^0, s^{1/\gamma}v_2^0, v_3^0, \ldots, v_n^0)$, we have

$$
\sum_{j=1}^{m} D_j(v(s)) = 1 \quad \forall s \in [0, 1], \qquad \left[\frac{d}{ds} H_{\lambda \mu}(v(s))\right]_{s=1} > 0. \tag{3.99}
$$

Then, since $(d/ds)\tilde{E}(v(s)) = (t(v(s)))^p (d/ds)H_{\lambda\mu}(v(s))$, there exists $s_0 \in [0,1]$ such that $(d/ds)E(v(s)) > 0$ for all $s \in [s_0, 1]$, from which the contradiction:

$$
\widetilde{\widetilde{E}}\left(v^{0}\right) \leq \widetilde{\widetilde{E}}\left(v(s)\right) < \widetilde{\widetilde{E}}\left(v^{0}\right), \quad \forall s \in [s_{0}, 1].\tag{3.100}
$$

Application 3.26. Let for each $v = (v_1, \ldots, v_n) \in W$:

$$
A(v) = p^{-1} \sum_{\ell=1}^{n} \int_{\Omega} |\nabla v_{\ell}|^{p} dx, \qquad D_{1}(v) = q_{1}^{-1} \int_{\Omega} \rho \left| \sum_{\ell=1}^{n} d_{\ell} v_{\ell} \right|^{q_{1}} dx,
$$

$$
D_{2}(v) = \left(\int_{\Omega} \left[\sum_{\ell=1}^{n} \tilde{d}_{\ell} |v_{\ell}|^{r} \right] dx \right) \left(\int_{\partial \Omega} \rho \left[\sum_{\ell=1}^{n} \tilde{d}_{\ell} |v_{\ell}|^{r} \right] d\sigma \right),
$$
(3.101)

where

$$
1 < \gamma < \tilde{p}, \quad 1 < \hat{\gamma} < \hat{p}, \quad 1 < q_1 < \min{\{\tilde{p}, q_2 = \gamma + \hat{\gamma}\}},
$$

$$
p < q_2, \quad \rho, d_\ell \in L^\infty(\Omega) \setminus \{0\}, \quad \rho \le 0, \quad \rho d_\ell \ne 0
$$

$$
\text{as some } \ell, \tilde{d}_\ell \in L^\infty(\Omega) \setminus \{0\}, \quad \tilde{d}_\ell \ge 0, \quad \hat{\rho} \in L^\infty(\Omega) \setminus \{0\}, \quad \hat{d}_\ell = \text{const.} > 0. \tag{3.102}
$$

Let as $\ell = 1, ..., n$ $F_{\ell} = f_{\ell} + \hat{f}_{\ell}$, where $f_{\ell} \in L^{p'}(\Omega)$ $(p' = p/(p-1))$ and $\hat{f}_{\ell} \in (W^{1-(1/p), p}(\partial \Omega))^*$ (dual space of $W^{1-(1/p),p}(\partial\Omega)$). Let $\langle \langle F,v \rangle \rangle = \sum_{\ell=1}^n \langle F_\ell, v_\ell \rangle$ for all $v = (v_1, \ldots, v_n) \in W$. Let us consider the system:

$$
-\operatorname{div}\left(|\nabla u_i|^{p-2}\nabla u_i\right) = \lambda_i b_i |u_i|^{p-2} u_i + \rho \left|\sum_{\ell=1}^n d_\ell u_\ell\right|^{q_1-2} \left(\sum_{\ell=1}^n d_\ell u_\ell\right) d_i
$$

+ $\gamma \left(\int_{\partial\Omega} \widehat{\rho}\left[\sum_{\ell=1}^n \widehat{d}_\ell |u_\ell|^{\widehat{Y}}\right] d\sigma\right) \widetilde{d}_i |u_i|^{r-2} u_i + f_i \quad \text{in } \Omega,$

$$
|\nabla u_i|^{p-2} \frac{\partial u_i}{\partial \nu}
$$

= $\mu_i \widehat{b}_i |u_i|^{p-2} u_i + \widehat{\gamma} \left(\int_{\Omega} \left[\sum_{\ell=1}^n \widetilde{d}_\ell |u_\ell|^{\gamma}\right] dx\right) \widehat{\rho} \widehat{d}_i |u_i|^{\widehat{Y}-2} u_i + \widehat{f}_i \quad \text{on } \partial\Omega \text{ as } i = 1, ..., n.$ (3.103)

Let us introduce the conditions:

$$
(\hat{\rho})^+ \neq 0 \quad (\implies V^+(D_2) \neq \emptyset \text{ (Proposition A.1 and A.2)}),
$$

$$
\int_{\partial \Omega} \hat{\rho} \, d\sigma < 0 \quad (\implies D_2(c) < 0 \ \forall c \in R^n \setminus \{0\}), \tag{3.104}
$$

and let us note that (Proposition 3.3)

$$
(3.104) \Longrightarrow (\exists \delta^* > 0 : (i_{14}) \text{ holds if } |\lambda_{\ell}|, |\mu_{\ell}| \le \delta^* \text{ as } \ell = 1, \dots, n). \tag{3.105}
$$

Proposition 3.27. *Under assumptions* (3.102) *and* (3.104), *if* $F \neq 0$ *and* $||F||_*$ *is sufficiently small*, *then with* λ_{ℓ} , μ_{ℓ} *as in* (3.105), system (3.103) has at least one weak solution \tilde{u} ($\tilde{u} = \tilde{\tau}\tilde{v}$, $\tilde{\tau} = const.$ > $0, \tilde{v} \in S_{\lambda\mu} \cap V^+(D_2)$. When $\gamma < p \le q_1$, it results in

$$
\widetilde{u}_h \neq 0 \text{ even if } F_h \equiv 0. \tag{3.106}
$$

Proof. The existence of \tilde{u} is due to ([1], Theorem 3.2). About (3.106), it is sufficiently (Remark 1.1) to verify that

$$
\left(i_{16}^h\right) \text{ holds as } h = 1, \dots, n \quad \text{with } \mathfrak{F} = S_{\lambda\mu} \cap V^+(D_2). \tag{3.107}
$$

Let $v = (v_1, \ldots, v_n) \in V^+(D_2) \cap S_{\lambda\mu}$ with, for example, $v_1 \equiv 0$. Let $\psi = \sum_{\ell \neq 1} d_\ell v_\ell$. Let $\mathbb{K} \subseteq \Omega$ be a compact set having positive measure such that

$$
\tilde{d}_1 > 0 \text{ in } \mathbb{K} \text{ if } \rho d_1 \psi \equiv 0, \quad \text{either } \rho d_1 \psi > 0 \text{ in } \mathbb{K} \text{ or } \rho d_1 \psi < 0 \text{ in } \mathbb{K} \text{ if } \rho d_1 \psi \not\equiv 0. \tag{3.108}
$$

Proposition A.1 lets us choose $\varphi \in C_0^{\infty}(R^N)$ satisfying the following conditions:

$$
\delta = p^{-1} \left[\int_{\Omega} |\nabla \varphi|^{p} dx - \lambda_{1} \int_{\Omega} b_{1} |\varphi|^{p} dx \right] > 0, \qquad \int_{\Omega} \tilde{d}_{1} \varphi^{Y} dx > 0 \text{ if } \rho d_{1} \psi \equiv 0,
$$
\n
$$
\int_{\Omega} \rho d_{1} |\varphi|^{q_{1}-2} \varphi \varphi dx > 0 \text{ if } \rho d_{1} \psi \not\equiv 0.
$$
\n(3.109)

Then with $v(s) = ((1-s)^{1/p} \delta^{-1/p} \varphi, s^{1/p} v_2, \ldots, s^{1/p} v_n)$, we have

$$
H_{\lambda\mu}(v(s)) = 1 \quad \forall s \in [0,1], \qquad D_2(v(s)) > 0 \quad \forall s \in [s_0,1] \ (0 \le s_0 < 1),
$$

\n
$$
\lim_{s \to 1^{-}} \frac{d}{ds} D_1(v(s)) \in R, \quad \lim_{s \to 1^{-}} \frac{d}{ds} D_2(v(s)) = -\infty \quad \text{if } \rho d_1 \psi \equiv 0,
$$

\n
$$
\lim_{s \to 1^{-}} \frac{d}{ds} D_1(v(s)) = -\infty, \quad \lim_{s \to 1^{-}} \frac{d}{ds} D_2(v(s)) \in R \quad \text{if } \rho d_1 \psi \neq 0.
$$
\n(3.110)

Now we replace conditions (3.104) with the following:

$$
\hat{\rho} \ge 0, \qquad b_{\ell} \ge 0, \quad \hat{b}_{\ell} \ge 0 \quad \text{as } \ell = 1, \dots, n. \tag{3.111}
$$

Proposition 3.28. *Under assumptions* (3.102) *and* (3.111), *if* $F \neq 0$ *and* $||F||_*$ *is sufficiently small, then with* λ_{ℓ} , $\mu_{\ell} \le 0$ *and* $\lambda_{\ell} + \mu_{\ell} < 0$ *as* $\ell = 1,...,n$ *system* (3.103) *has at least two different weak* solution u^1 and u^2 ($u^i = \tau^i v^i$, $\tau^i = const. > 0, v^1 \in S_{\lambda\mu} \cap V^+(F)$, $v^2 \in S_{\lambda\mu} \cap V^+(D_2)$). When *γ<p* ≤ *q*1*, it results in*

$$
u_h^2 \neq 0 \text{ even if } F_h \equiv 0. \tag{3.112}
$$

Proof. The existence of u^1 and u^2 is due to ([1], Theorems 3.1, 3.2, and 3.3; Remark 3.1). Relation (3.112) is proved as in Proposition 3.27. \Box

Appendix

In this appendix, we present some results used previously. The first one is trivial. The second one is easy to prove. It is possible to show the third one and the fourth one with the technique developed by Drabek in ([7, Lemma 3.2]). The symbols *σ*, \hat{p} , and \tilde{p} are the same introduced in Soction 3 in Section 3.

Proposition A.1. Let Ω be an open set of R^N . Let $\mathbb{K} \subseteq \Omega$ be a compact set with $|\mathbb{K}|_N > 0$. If Ω' is an *open set such that* $K \subseteq \Omega' \subseteq \Omega$, then there exists a family of functions $(\varphi_{\varepsilon})_{0<\varepsilon<\varepsilon_0}\subseteq C_0^{\infty}(\Omega)$ such that

$$
0 \le \varphi_{\varepsilon} \le 1, \text{ supp } \varphi_{\varepsilon} \subseteq \Omega', \quad \varphi_{\varepsilon} \longrightarrow \chi \text{ strongly in } L^{s}(\Omega),
$$

$$
\int_{\Omega} |\nabla \varphi_{\varepsilon}|^{s} dx \longrightarrow +\infty \quad as \ \varepsilon \longrightarrow 0^{+} \ \forall s \in [1, +\infty[,
$$
 (A.1)

where χ is the characteristic function of K*.*

Proposition A.2. *Let* $\Omega \subseteq R^N$ *be an open, bounded, connected and* $C^{0,1}$ *set. Let U be an open neighborhood of* ∂Ω*.* If Γ is a subset of ∂Ω with $\sigma(\Gamma) > 0$, then there exist a compact set $\Gamma \subseteq \Gamma$ with $\sigma(\widehat{\Gamma}) > 0$ *and a family of functions* $(\varphi_{\varepsilon})_{0 < \varepsilon < \varepsilon_0} \subseteq C_0^{\infty}(R^N)$ *such that*

$$
0 \le \varphi_{\varepsilon} \le 1, \quad \text{supp } \varphi_{\varepsilon} \subseteq U, \quad \varphi_{\varepsilon} \longrightarrow \hat{\chi} \text{ strongly in } L^{s}(\partial \Omega),
$$

$$
\int_{R^{N}} \varphi_{\varepsilon}^{s} dx \longrightarrow 0 \quad \text{as } \varepsilon \longrightarrow 0^{+} \forall s \in [1, +\infty[,
$$
 (A.2)

 \hat{X} *is the characteristic function of* Γ *.*

Let Ω \subseteq R^N be an open, bounded, connected and $C^{0,1}$ set. Let as $i =$ $1, \ldots, n$ $A_i(x, \xi, η^1, \ldots, η^n)$ be a Caratheodory function into R^N defined for $x ∈ Ω$, for $ξ ∈ R^n$ and for $(\eta^1, \ldots, \eta^n) \in (R^N)^n$ such that

$$
A_i\left(x,\xi,\eta^1,\ldots,\eta^n\right)\cdot\eta^i\geq c_0\left|\eta^i\right|^p,\tag{A.3}
$$

where $1 < p < +\infty$, $c_0 = \text{const.} > 0$.

 \Box

Proposition A.3. Let $(u_1, \ldots, u_n) \in (W_0^{1,p}(\Omega))$ ^{*n*} with $u_i \geq 0$. If there exist $r \in [p, \tilde{p}]$ and $g \in L^{\tilde{p}}/(r-p)(Q)$ with $\alpha > 0$ such that $L^{r/(r-p)}(\Omega)$ *with* $g \ge 0$ *such that*

$$
\sum_{i=1}^{n} \int_{\Omega} A_i(x, u_1, \dots, u_n, \nabla u_1, \dots, \nabla u_n) \cdot \nabla v_i dx \le \int_{\Omega} g \left(\sum_{i=1}^{n} u_i \right)^{p-1} \left(\sum_{i=1}^{n} v_i \right) dx
$$
\n
$$
\forall (v_1, \dots, v_n) \in \left(W_0^{1,p}(\Omega) \cap L^{\infty}(\Omega) \right)^n \text{ with } v_i \ge 0,
$$
\n(A.4)

then $u_i \in L^\infty(\Omega)$ *as* $i = 1, \ldots n$ *.*

Proposition A.4. Let $(u_1, \ldots, u_n) \in (W^{1,p}(\Omega))^n$ with $u_i \geq 0$. If there exist $r \in]p, \hat{p}|, g \in L^p/(r-p)$ (O) with $\hat{q} > 0$ $\hat{q} \in L^p/(r-p)$ (O) with $\hat{q} > 0$ such that *L*^{*r*}/^(*r*−*p*)(Ω) *with g* ≥ 0*,* \hat{g} ∈ *L*^{*r*/(*r*−*p*)}(∂Ω) *with* \hat{g} ≥ 0 *such that*

$$
\sum_{i=1}^{n} \int_{\Omega} A_i(x, u_1, \dots, u_n, \nabla u_1, \dots, \nabla u_n) \cdot \nabla v_i dx
$$
\n
$$
\leq \int_{\Omega} g \left(1 + \sum_{i=1}^{n} u_i \right)^{p-1} \left(\sum_{i=1}^{n} v_i \right) dx + \int_{\partial \Omega} \widehat{g} \left(1 + \sum_{i=1}^{n} u_i \right)^{p-1} \left(\sum_{i=1}^{n} v_i \right) d\sigma \qquad (A.5)
$$
\n
$$
\forall (v_1, \dots, v_n) \in (W^{1,p}(\Omega) \cap L^{\infty}(\Omega))^{n} \quad \text{with } v_i \geq 0,
$$

then $u_i \in L^\infty(\Omega)$ *as* $i = 1, \ldots, n$.

Remark A.5. If $\hat{g} \equiv 0$, we can suppose $r \in]p, \tilde{p}].$

Acknowledgment

This paper is supported by the Second University of Naples.

References

- 1 L. Toscano and S. Toscano, "On the solvability of a class of general systems of variational equations with nonmonotone operators," *Journal of Interdisciplinary Mathematics*, vol. 14, no. 2, pp. 123–147, 2011.
- [2] P. Drabek and S. I. Pohozaev, "Positive solutions for the p-Laplacian: application of the fibering method," *Proceedings of the Royal Society of Edinburgh. Section A. Mathematics*, vol. 127, no. 4, pp. 703–726, 1997.
- 3 S. I. Pohozaev and L. Veron, "Multiple positive solutions of some quasilinear Neumann problems," ´ *Applicable Analysis*, vol. 74, no. 3-4, pp. 363–390, 2000.
- [4] A. Anane, "Simplicité et isolation de la première valeur propre du p-laplacien avec poids," *Comptes Rendus des Seances de l'Acad ´ emie des Sciences. S ´ erie I. Math ´ ematique ´* , vol. 305, no. 16, pp. 725–728, 1987.
- 5 P. Tolksdorf, "Regularity for a more general class of quasilinear elliptic equations," *Journal of Differential Equations*, vol. 51, no. 1, pp. 126–150, 1984.
- [6] N. S. Trudinger, "On Harnack type inequalities and their application to quasilinear elliptic equations," *Communications on Pure and Applied Mathematics*, vol. 20, pp. 721–747, 1967.
- 7 P. Drabek, *Strongly Nonlinear Degenerated and Singular Elliptic Problems*, vol. 343 of *Pitman Research Notes in Math*, Longman, London, UK, 1996.

http://www.hindawi.com Volume 2014 Operations Research Advances in

http://www.hindawi.com Volume 2014

http://www.hindawi.com Volume 2014

http://www.hindawi.com Volume 2014

Algebra

Journal of
Probability and Statistics http://www.hindawi.com Volume 2014

Differential Equations International Journal of

^{Journal of}
Complex Analysis

Submit your manuscripts at http://www.hindawi.com

Hindawi

 \bigcirc

http://www.hindawi.com Volume 2014 Mathematical Problems in Engineering

Abstract and Applied Analysis http://www.hindawi.com Volume 2014

Discrete Dynamics in Nature and Society

International Journal of Mathematics and **Mathematical Sciences**

http://www.hindawi.com Volume 2014 - 2014 - 2014 - 2014 - 2014 - 2014 - 2014 - 2014 - 2014 - 2014 - 2014 - 2014

Journal of http://www.hindawi.com Volume 2014 Function Spaces Volume 2014 Hindawi Publishing Corporation New York (2015) 2016 The Corporation New York (2015) 2016 The Corporation

http://www.hindawi.com Volume 2014 Stochastic Analysis International Journal of

Optimization