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The increasing applications of surface-enhanced Raman scattering (SERS) has led to the development of various SERS-active
platforms (SERS substrates) for SERS measurement. This work reviews the current optimization techniques available for
improving the performance of some of these SERS substrates. The work particularly identifies self-assembled-monolayer- (SAM-)
based substrate modification for optimum SERS activity and wider applications. An overview of SERS, SAM, and studies involving
SAM-modified substrates is highlighted. The focus of the paper then shifts to the use of SAMs to improve analytical applications
of SERS substrates by addressing issues including long-term stability, selectivity, reproducibility, and functionalization, and so
forth. The paper elaborates on the use of SAMs to achieve optimum SERS enhancement. Specific examples are based on novel
multilayered SERS substrates developed in the author’s laboratory where SAMs have been demonstrated as excellent dielectric
spacers for improving SERS enhancement more than 20-fold relative to conventional single layer SERS substrates. Such substrate
optimization can significantly improve the sensitivity of the SERS method for analyte detection.

1. Introduction

There is a great interest in the development of SERS-based
analytical techniques for real-time monitoring of intracel-
lular events due to the advantages SERS has compared
to other commonly used optical techniques in biological
analyses. SERS provides narrow spectral bands, thereby
allowing multiplex detection of analytes in complex sampling
environments. It also has potential for quenching auto-
fluorescence that can interfere with SERS measurements.
SERS is the enhancement of Raman intensity of analytes
which are in close proximity to nanoscaled roughened metal-
lic surfaces (normally referred to as SERS substrates) [1, 2].
The ratio of such Raman scattering intensities of a given
number of analyte molecules to the intensities of the same
number of molecules in the absence of the SERS substrates
is the SERS enhancement factor (EF) [3]. SERS EF is a
widely accepted parameter for estimating the SERS activity of
the SERS substrates, with larger SERS EFs indicating highly
SERS-active substrates. While the commonly reported SERS

EFs can range from 106 to 108, SERS EF can reach 1014

on certain special substrates, making SERS capable of single
molecule detection [4–6].

In recent years, SERS has been demonstrated as a
powerful tool for a wide range of analyses. Critical to the
quality of the SERS analyses is the characteristic of the SERS
substrates on which the SERS is conducted. As a result of
this, the development and optimization of the SERS substrate
for routine analytical purposes has become a very attractive
area of research. In this paper, the recent development
on SERS substrates involving the use of SAMs for various
forms of modifications is discussed. The discussion begins
with an overview of SERS and its analytical importance,
followed by the identification of a broad category of
SERS substrates that are commonly employed for SERS
measurements. A brief description of SAM and how it
features in SERS is given. The main subject for the paper
then focuses on the use of thiolated organic molecules for
the optimization of SERS. The discussion on SAM-based
optimization of SERS will involve the modification of the
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SERS-active surface with SAMs to improve selectivity, long-
term stability, reproducibility, substrate functionalization,
and so forth. The paper will also discuss the SAM-based
multilayer SERS substrate optimization for the enhancement
of SERS activity. The area of SERS substrate development is
extensive and cannot be exhausted in this paper. Therefore,
the paper will focus on some of the most commonly used
SERS substrates which include metal colloids and metal-
coated nanostructures.

2. Overview of SERS

Raman spectroscopy has various analytical applications,
especially in research fields requiring high analyte specificity,
because it is capable of providing molecular structural
information about analytes of interest without the need for
exogenous labels. Additionally, as a result of the weak Raman
scattering of water, Raman spectroscopy can be applied to
aqueous complex biological samples with little or no sample
preparation, making it an ideal analytical tool for moni-
toring biomolecules within individual living cells. However,
Raman lacks the sensitivity for the detection of analytes at
ultratrace level due to extremely small Raman cross-section.
In 1974, Fleischmann and coworkers observed very intense
Raman scattering of pyridine adsorbed on electrochemically
roughened silver electrodes, which was attributed to the
large surface area of the roughened electrode [7, 8]. Later,
Jeanmaire and Van Duyne and Albrecht and Creighton
working independently observed that the enhanced Raman
scattering on the roughened surface exceeds what is expected
from the increase in surface area arising from the roughening
of the electrode. Their work led to the proposal of SERS
mechanisms (broadly categorized as electromagnetic (EM)
and chemical mechanisms) to explain the enhancement of
Raman scattering on roughened metal surfaces [9, 10]. Thus,
the phenomenon of achieving enhanced Raman scattering
on specialized surfaces became known as SERS. Importantly,
it became clear that other metals including gold and copper
can be used as SERS-active surfaces [11, 12]. By using SERS,
it is now possible to achieve high sensitivity in addition to
the various Raman advantages, making SERS a powerful tool
for a broad range of analyses. In recent years, SERS has
been applied in biomedical research, defense and security,
diseases diagnosis and prevention, single-cell analysis, and
for quantitative detection of analytes in various samples [13–
26].

3. SERS Substrates

The quest for standardized SERS substrates capable of rou-
tine SERS-based chemical analysis and the need for deeper
understanding of SERS have contributed largely to the
advances in SERS substrate development. As a result, since
the discovery of SERS, various techniques have been applied
for the fabrication of these substrates [27–29]. Progress in
SERS substrates development, which is not the focus of this
work, has been reviewed elsewhere [27, 30, 31], and therefore
only a brief overview will be discussed. Electrochemically
roughened metal electrodes were the earliest types of SERS

substrates. However, advances in nanofabrication have sig-
nificantly influenced SERS substrates development. Colloidal
metal nanoparticles are some of the commonly used SERS
substrates. They are normally used as suspensions and their
plasmonic properties can easily be modified using their sizes
and shapes in order to improve their SERS activities [2, 23,
32–36]. Although colloidal metal nanoparticles are notable
for high SERS activities at their junctions, they exhibit large
variations in SERS signals due to the random occurrence of
these junctions. To minimize such variations, the colloids
can sometimes be self-assembled on planar platforms to
create relatively regular junctions among the colloids [36–
39]. Nanolithographic methods are also commonly used
to fabricate highly ordered SERS substrates by forming
nanostructures directly on a small area of a solid support.
Such nanostructures can be achieved by selective etching of
the specialized surface using an ultraviolet light or electron
beam and then coating the etched surface with a SERS-active
metal film [40–42]. Orderly structured SERS substrates can
also be derived through a method commonly referred to
as nanosphere lithography. In this method, metal films are
deposited (using either physical or chemical means) on
nanospheres arranged on a solid support. The removal of
the nanospheres leaves a regular array of nanostructures,
forming the SERS substrates [43–45]. While lithographically
produced SERS substrates are highly reproducible, they are
difficult and time consuming to produce in mass quantities.

A highly ordered SERS substrate which can easily be pro-
duced in mass quantities is based on nanostructures arranged
on solid planar support followed by the deposition of a thin
layer of metal film on the nanostructures. Unlike nanosphere
lithography, it is the metal-coated nanostructures that are
used as the SERS substrates, normally referred to as metal
film on nanostructures (MFONs). A schematic representa-
tion of MFON substrates fabrication is shown in Figure 1.
Other unique features of these types of SERS substrates
include a combination of the advantages of 3D nanosized
metal colloids for probing microsampling environments and
the highly ordered and regularly arranged nanostructures
on solid platforms for reproducible SERS measurements.
Thus, as shown in Figure 1, the metal-coated nanostructured
platform can be used as a planar SERS substrate for routine
SERS analyses [30, 46, 47]. Importantly, the individual metal
film-coated nanospheres can also be used as sensor supports
for SERS-based bio-nanosensors, which will be discussed
later [19, 26].

4. Self-Assembled Monolayers

Although SERS substrates with very large SERS EFs have
demonstrated the high sensitivity of SERS-based analysis,
the bare substrates lack the selectivity that will allow their
use in complex samples. However, by using SAMs to modify
substrates, it is possible to make the SERS substrates selective
as well as tailor other desirable qualities that allow them to
be used for various analytical purposes. SAMs are derived
from the adsorption of organic molecules onto surfaces of
metals, metal oxides, semiconductors, and other platforms,
to form a thin layer. SAMs can affect the interface properties
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Figure 1: A flow diagram of MFON fabrication.

in many ways including insulation of conducting surfaces,
creating hydrophobic surfaces, allowing them to be used for
the modification and study of interfacial phenomena [48–
51]. There are widespread examples of SAMs with equally
widespread uses. However, this paper will focus on SAMs
involving thiol-modified organic molecules (e.g., alkylthiols)
that have been specifically employed in SERS to improve the
SERS substrates characteristics. An idealized representation
of molecules used for SAM formation is shown schematically
in Figure 2. A typical example of a molecule used for SAM
formation is made up of a thiol group, which attaches to the
substrates, and the hydrocarbon tail which can be varied in
order to vary the thickness of the SAM. An essential part of
the molecule is the terminal functional group which can be
varied in order to confer a specific surface chemistry to suit
the intended application of the monolayer.

5. SAMs Applications in SERS

SAMs applications in SERS are diverse and include surface
chemistry and substrates modifications. The unique attribute
of SAMs to affect surfaces and the SERS ability to probe
surface chemistry has been exploited as investigative tools
in various ways. For example, SAM has been used to verify
the EM mechanisms of SERS [52, 53]. Halas et al. used
various lengths of labeled DNA self-assembled on SERS
substrate as molecular rulers to investigate the EM field effect
on SERS. By varying the lengths of SAMs and measuring
Raman intensities of the Raman labels positioned at the tail
ends of these rulers, it was observed that the shorter chains
showed more intense Raman scattering. This was because
the labels attached to the shorter chains were nearer to the
metal surface and therefore exhibited better interaction with
the EM field relative to the longer chain lengths [50, 53–55].
Conversely, SERS has been applied to study SAMs including
verifying the mechanism of thiol-metal surface interaction
[54, 56–59]. By doing Raman and SERS measurements of
several alkylthiols, it was found that the S–H vibration at
2575 cm−1 was absent when the molecules adsorbed on
the metal surface. However, the Raman band at 200 cm−1

associated with Ag–S vibrations appeared, confirming the
formation of SAM via the cleavage of the S–H bond. Another
confirmation of the formation of SAM on SERS substrates
is the high intensity of the C–S band at 650 cm−1 due to its
proximity to the SERS-active surface [54, 60].

The most widespread application of SAMs in SERS is
their use for SERS substrates modification as shown in

Terminal functional 
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Figure 2: Schematic representation of the individual molecules ad-
sorbed on metal substrate to form SAM.
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Figure 3: Schematic representation of the SERS-based immuno-
nanosensor via –COOH– terminated SAM for label-free protein de-
tection.

Figure 3. Metal colloids are often protected with SAMs in
order to preserve the integrity of the particles and prevent
them from aggregating. SAMs have been shown to influence
the absorption characteristics of metal colloids. Thus, SAMs
can be used to controllably tailor the wavelength of surface
plasmon absorption of substrates to match the excitation
wavelength, thereby improving the SERS activity of the
metal colloids [50, 61]. Functionalization of SERS substrates
has been seen as a means of improving analyte specificity
and reducing random adsorption of untargeted molecules.
SAMs have been employed as cross-linkers primarily to aid
functionalization of SERS substrates [55, 62–65]. Used in
this way, SAMs with specially functionalized tail groups can
be immobilized on the bare SERS substrate before attaching
recognition elements for specific analytes [19, 66]. Culha
et al. have used SAM-modified SERS platforms as models
for gene diagnostics. In these models, the tail functional
group of 1-mercaptohexane was modified with Rhodamine
B-labeled single-stranded DNA complementary to breast
cancer gene (BRCA1). To prevent the long HS–(CH2)6–
ssDNA-RhB strands from folding, they were interspaced with
6-mercaptohexanol. The SAM-modified SERS platform was
capable of specifically detecting the breast cancer gene by
complementary paring [62]. SERS substrates have also been
functionalized via SAMs for label-free detection of proteins
in modeled environments at physiological concentrations. As
shown in Figure 3, the SERS-active nanoparticles which were
derived from MFON SERS substrates were first immobilized
with carboxylic acid-terminated SAMs. Molecules of anti-
human insulin (IgG) were then bound to the SAM via
the commonly used EDC chemistry to develop SERS-based
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immuno-nanosensors. The immuno-nanosensors were then
used to detect insulin in cell lysates at a concentration of
10 μg/mL [25, 67, 68].

Applications SAMs in the optimization of SERS substrate
have been done specifically to improve various substrates
characteristics, including long-term stability, analyte selec-
tivity, and precision across the sampling volume. Due to
their unique abilities of influencing interfacial properties of
substrates, SAMs can be used to modify the affinity of SERS
substrates towards specific analytes, thereby improving their
selectivity. For instance, SAM-modified SERS substrates have
been used to partition analyte from known matrices and
concentrate them on the SERS substrate for detection [69–
71]. Such substrates have been used as SERS platforms for the
detection of polycyclic aromatic hydrocarbons (PAHs). PAHs
adsorbed on the bare gold SERS-active surface are known to
undergo surface-induced decomposition due to the catalytic
properties of the roughened gold surface. By modifying the
surface with 1-propanethiol, it was possible to selectively
concentrate PAHs on the substrate, reduce decomposition,
and improve reproducibility and stability [72]. Apart from
improving selectivity, SAMs have been used to increase the
long-term stability of the substrates by means of partial
coverage of the SERS-active surface with the SAM [73].

One major drawback of SERS is its lack of reproducibility
due to the random distribution of the SERS hot spots
across the substrate surface. SAMs have been used as forms
of internal standards to account for the variations in the
SERS signals [74–81]. In one such study, SERS intensities
of analytes were taken on SERS substrates modified with
labeled SAMs. It was assumed that both the labeled SAM and
the analyte experienced the same excitation and substrate
conditions during a particular SERS measurement. For this
reason, although the SERS intensities of the analytes varied
from spot to spot on the SERS substrates, ratios of the
labeled SAM intensity to the analyte intensity did not vary
significantly. Thus, the SAM is used in this case as an
internal standard to normalize the SERS intensity of the
analytes. Despite these optimization processes, there are
issues concerning the reduction of the SERS effect on the
analyte due to the coverage of the SERS active platforms with
SAM, effectively reducing the sensitivity of SAM-modified
SERS substrates [52].

6. SAM Multilayer SERS Substrate Optimization

With the increasing potential application of SERS, the search
for optimized SERS substrates that lack the limitations of
most conventional SERS substrates has become a priority.
In 2005, Cullum’s group discovered that MFON SERS
substrates can be optimized to achieve larger SERS EFs
by using SERS substrates based on multiple layers of
SERS-active surfaces separated by dielectric spacers (i.e.,
metal oxide) [82]. As shown in Figure 4, the first reported
multilayer SERS substrate consisted of multiple layers of
silver film separated by silver oxide. Using the multilayer
geometry, SERS substrates can be optimized without making
the SERS-active surface less accessible to analytes. Although
it has generally been observed that SERS enhancement is

1st metal film
Dielectric spacer 2nd metal film 

Silica sphere

Support

Figure 4: An idealized multilayer SERS substrate.

significantly affected by the dielectric constant around the
SERS substrate, how this observation relates to the multilayer
SERS enhancement is still under investigation. However, it is
thought that the optimum interaction of the EM fields gener-
ated on the multiple SERS-active surfaces largely contributed
to the observed multilayer SERS enhancement. Additionally,
the results of the multilayer SERS studies suggested that
efficient separation of the SERS-active surfaces, the type of
dielectric spacer used, and the thickness of this spacer can
significantly affect the multilayer SERS enhancement [83,
84]. For this reason, our laboratory has been investigating
other forms of dielectric spacers (e.g., polymers, silica,
and SAMs) and SERS-active metal films for the systematic
multilayer SERS optimization [84, 85].

Systematic optimization of multilayer SERS requires con-
trol of the dielectric spacer and a thorough understanding
of its effect on the SERS enhancement. Since 2007, data
gathered on the optimization of multilayer SERS using SAMs
as the main dielectric spacers have generated interesting
yet nonsystematic results. To provide a more systematic
evaluation, SAMs have recently been employed to vary
spacer thickness and dielectric constant in a more controlled
fashion, based on the choice of the hydrocarbon chain
length and tail functional group, respectively. To form SAM
multilayer SERS substrates, a single-layer MFON, referred
to as single film on nanostructure (SFON), was immersed
in 1 mM solutions containing the appropriate alkylthiol for
SAM formation. The substrate was retrieved and rinsed
to remove unattached molecules of the spacers. After the
removal of the unattached molecules, a second layer of metal
film was deposited to form dual-layer SERS substrate as
shown in Figure 4, with the SAM as the dielectric spacer. The
procedure can be repeated to form multiple layers of SERS-
active surfaces. In first reported results of SAM multilayer
SERS enhancement, SAMs were formed on gold-coated
SFON substrates. Another layer of gold was then deposited
on these SAMs. A solution of Rhodamine 6G was drop-
coated and measured on this substrate. For comparison,
SERS measurement of the same concentration of the model
analyte was done on a SFON SERS substrate with the
amount of SERS-active metal film equal to the total amount
of metal film deposited on the multilayer substrates. As
shown in Figure 5, a 4-layered SERS substrate having 11-
mercaptoundecanoic acid as the dielectric spacer exhibited
SERS EF of (1.15± 0.06) × 106 which is more than a 15-fold
increase over the SERS EF ((7.4 ± 0.6) × 104) of optimized
SFON substrates. Various studies conducted confirmed that
SAM multilayer SERS can be used to optimize SERS activities
[86]. In a similar study, SAM multilayer SERS enhancement
was also applied to SERS nanoprobes, showing that SAM



Journal of Nanotechnology 5

102

100

98

96

SE
R

S 
in

te
n

si
ty

 (
a.

u
.)

18001600140012001000800600400

Raman shift (cm−1)

SAM multilayer
SERS substrate

SFON

Rh 6G

Figure 5: SERS spectra of 1 μM Rhodamine 6G measured on SFON
and SAM multilayer SERS substrates. Insert is the schematic of SAM
multilayer SERS substrates.

multilayer SERS can be applied to different types of SERS
substrates [86, 87].

Following that observation, a comprehensive investi-
gation on the SAM multilayer SERS substrates enhance-
ment was performed. The results of these studies con-
firmed current mechanistic understandings of the multilayer
SERS enhancement phenomenon. For instance, they clearly
revealed the need for the formation of a compact and
uniform dielectric spacer for achieving multilayer SERS
enhancement. This is because multilayer SERS substrates
made from orderly packed SAMs showed larger SERS
enhancement relative to those made from SAM with con-
siderable defect sites. That is, when the adjacent SERS-active
surfaces are well separated with minimum points of direct
contact, it leads to the optimum interaction of the EM fields
generated on the SERS-active surfaces and enhances the
SERS activity beyond what is expected of conventional SERS
substrates. SAM multilayer SERS substrates clearly indicated
that SAM can be used to improve the SERS EFs of SERS
substrates, thus offering even higher sensitivity for SERS-
based analyses. Importantly, the achievable SAM multilayer
SERS enhancement can be systematically controlled based
on several factors that include the structure of the SAMs
and the condition under which the SAMs were formed.
Figure 6 shows that the SAM multilayer SERS enhancement
can be varied by varying the hydrocarbon chain length of
the alkylthiol used to form the SAM dielectric spacer. In
this case three types of carboxylic-acid-terminated alkylthiols
having 2, 11, or 16 carbon atoms in their hydrocarbon
chain lengths were used as dielectric spacers. When benzoic
acid was analyzed on these SAM multilayer SERS substrates,
there was chain length-dependent SERS enhancement. The
chain length-dependent SERS enhancement was attributed
to the more uniform SAM formed by the longer hydrocarbon
chains [85, 86, 88].

Apart from the hydrocarbon chain length, it was shown
that terminal functional group can be used to vary the dielec-
tric constant of the dielectric spacer and hence control

the SERS enhancement. The conditions under which the
SAM dielectric spacers are deposited on substrate were also
used to control the SERS enhancement. For example, the
solvent used for SAM preparation can significantly affect the
orderly packing of the SAM. Polar solvents which exhibit
less attractive interactions toward the nonpolar hydrocarbon
chain can lead to an orderly packed SAM and therefore
larger SERS enhancement. The result shown in Figure 7 is
spectra of 1, 2-Bis(2-pyridyl)ethylene (BPE) measured on
SAM multilayer SERS substrates which were fabricated using
the same amount of SERS-active metal film and type of
SAM dielectric spacer. However, the pH under which the
monolayers were formed was varied. The variation of the
pH had a tremendous effect on the SAM multilayer SERS
enhancement. Apparently, the carboxylic acid-terminated
SAM dielectric spacer used in this case formed more car-
boxylate ions under basic conditions. As result, there were
relative repulsive interactions among the carboxylate ions,
leading to defects in the dielectric spacer which affected
the SERS enhancement. This became obvious when alkyl-
terminated SAM used in similar study showed no preference
to the pH condition in terms of the SERS enhancement
[85, 88, 89].

SAM multilayer SERS offers other unique characteristics
which can be exploited to improve analytical capabilities of
SERS. As indicated by the arrows in the spectra in Figure 6,
the SERS fingerprint of the underlying SAM appears together
with the SERS bands of the analyte (benzoic acid). This
suggests that the SAM can be used as an internal standard
to normalize the SERS intensity of the analytes, thereby
improving SERS signal reproducibility. SAM multilayer SERS
offers another unique advantage of substrate modification
relative to other SAM-modified SERS substrates. That is,
SAM multilayer fabrication involves the capping of the
SAM with SERS-active metal films. Thus, the entire SERS-
active surface is still accessible to the analyte, making SAM
multilayer SERS substrate more sensitive relative to other
SAM-modified substrates. In effect, it has been shown that
multilayer SERS substrate can be greatly optimized in a
predictive manner by appropriate choice of the SAM chain
length, the tail terminal group, and the solvent used for SAM
formation [85, 86].

Long-term stability (especially for silver-coated sub-
strates) and reproducibility have been the traditional issues
with SERS. The effect of the introduction of the dielectric
spacer between adjacent metal films on the substrate stability
was therefore considered in the multilayer substrates. Studies
conducted with both gold- and silver-coated multilayer SERS
substrates showed that the stability and reversibility of the
SERS substrates were largely dependent on the metal film
overlayer. Both SFON and multilayer substrates lost their
SERS activities over the same period of time in a similar man-
ner. It was also possible to reuse the both sets of substrates the
same number of times before losing significant level of SERS
signals. Thus, the introduction of the SAM dielectric spacer
does not significantly affect the long-term stability of the
multilayer SERS substrates [82, 86, 90]. It is widely accepted
that surface morphology of the substrate plays a significant
role in the SERS activity of the SERS substrates as well as the
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Figure 7: A comparison of the SERS intensities of 0.126 mM BPE
on –COOH– terminated SAM multilayer SERS substrates fabri-
cated in pH (a) 12, (b) 7.8, and (c) 2.

reproducibility of their SERS measurements. For the MFON
SERS substrates, the surface morphology depends on the
nanostructures beneath the metal film and the substructures
on these metal-coated nanostructures [91]. Studies have
shown that roughness due to the nanostructures was not
significantly affected by the introduction of the dielectric
spacers [86, 90]. For this reason, attention was given to the
effect of the dielectric spacer on the substructural features
on the individual nanostructures. AFM images of typical
SFON and SAM multilayer substrates in Figure 8 show the
substructures on the individual nanostructures. The rough-
ness values were estimated by drawing several horizontal

(a)

300 nm

0 nm

(b)

Figure 8: AFM images of (a) SFON and (b) octadecanethiol multi-
layer SERS substrates showing substructural features. The individ-
ual nanostructures were 390 nm in diameter and the scan size was
800 nm by 800 nm.

and vertical lines across these individual nanostructures. The
average roughness values for the SFON substrates and SAM
multilayer SERS substrate were 3.1 ± 0.6 and 2.8 ± 0.7,
respectively, showing that there was no significant effect on
the sub-structural features relative to the SFON substrates
irrespective of the introduction of the SAM. Remarkably, the
relative standard deviation of multilayer SERS measurement
was less than half that of the SFON substrates, indicating
an improvement in reproducibility. Although the reason
for the improved reproducibility is still being investigated,
multilayer SERS has clearly illustrated a number of improve-
ments that can be made on any SERS substrates. Thus, SERS
activity (i.e., enhancement factors) of SERS substrates can
be increased by as much as 20-fold and their reproducibility
improved by using multiple layers of SERS-active metal films
interspaced with appropriate dielectric spacers [89]. Using
an appropriate SAM, the SERS fingerprints of the dielectric
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spacer can serve as internal standards to minimize spot-to-
spot variation of SERS signals on a substrate. Importantly,
multilayer SERS has demonstrated that SERS substrate can
be optimized in various ways without compromising the
existing substrate qualities.

7. Conclusion

This paper provides an overview of the various ways by which
conventional SERS substrates can be optimized in order
to achieve enhanced analytical performance. SAMs play an
important role in SERS substrates optimization and adapta-
tion for various analytical purposes. Using SAM multilayer
SERS substrates, SERS can be optimized to provide SERS
enhancement about 20-fold larger than that derived from
conventional SERS substrates, thereby improving the sensi-
tivity of the SERS method of analysis. Apart from improving
SERS activity, SAMs can also be used to improve long-term
stability, reproducibility, and selectivity of the SERS sub-
strates. They provide excellent routes for functionalization
of SERS substrates and introduction of internal standard
for selective, specific, and reproducible analyte detection
in complex samples. The increasing research attention that
SERS is attracting is leading to the development of various
types of SERS-active platforms for SERS measurement.
However, the determining factor in the eventual application
of these platforms will be determined on the basis of how
their SERS activities can be optimized without losing other
desirable SERS substrates properties as well as how the
substrates can be tailored for specific applications.
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