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By establishing a new proper variational framework and using the critical point theory, we
establish some new existence criteria to guarantee that the 2nth-order nonlinear difference
equation containing both advance and retardation with p-Laplacian Δn(r(t − n)ϕp(Δnu(t − 1))) +
q(t)ϕp(u(t)) = f(t, u(t + n), . . . , u(t), . . . , u(t − n)), n ∈ Z(3), t ∈ Z, has infinitely many homoclinic
orbits, where ϕp(s) is p-Laplacian operator; ϕp(s) = |s|p−2s(1 < p < ∞) r, q, f are nonperiodic in
t. Our conditions on the potential are rather relaxed, and some existing results in the literature are
improved.

1. Introduction

In this paper, we shall be concerned with the existence of homoclinic orbits of the nonlinear
difference equation

Δn(r(t − n)ϕp(Δnu(t − 1))
)
+ q(t)ϕp(u(t))

= f(t, u(t + n), . . . , u(t), . . . , u(t − n)), n ∈ Z(3), t ∈ Z,
(1.1)

where Δ is the forward difference operator defined by Δu(t) = u(t + 1) − u(t),Δ2u(t) =
Δ(Δu(t)). ϕp(s) is p-Laplacian operator ϕp(s) = |s|p−2s(1 < p < ∞). As usual, we say that
a solution u(t) of (1.1) is homoclinic (to 0) if u(t) → 0 as t → ±∞. In addition, if u(t)/≡ 0, then
u(t) is called a nontrivial homoclinic solution. It is well known that homoclinic orbits play an
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important role in analyzing the chaos of dynamical systems; we refer the interested reader to
[1–15].

We may think of (1.1) as being a discrete analogue of the 2nth-order differential equa-
tion

[
r(t)ϕp

(
x(n)

)](n)
+ q(t)ϕp(x) − f(t, x(t + n), . . . , x(t), . . . , x(t − n)) = 0, t ∈ R. (1.2)

If p = 2, (1.1) reduces to the following equation:

Δn(r(t − n)Δnu(t − n)) + q(t)u(t) = f(t, u(t + n), . . . , u(t), . . . , u(t − n)), n ∈ Z(3), t ∈ Z.
(1.3)

Recently, Chen and Tang [2] applied the critical point theory to prove the existence of homo-
clinic solutions for (1.3).

In some recent papers [1, 2, 8, 9, 16–18], the authors studied the existence of periodic
and homoclinic solutions of second-order nonlinear difference equation by using the critical
point theory. These papers show that the critical point method is an effective approach
to the study of periodic solutions of second-order difference equations. Compared to one-
order or second-order difference equations, the study of higher-order equations has received
considerably less attention (see, e.g., [2, 3, 19–21] and references contained therein). But to
the best knowledge of the authors, results on existence of homoclinic solutions of (1.1) have
not been found in the literature.

Motivated by the recent papers [2, 5, 14, 22], the aim of this paper is to consider prob-
lem (1.1) in a more general sense. More exactly our results represent the extensions to equa-
tions with p-Laplacian. Throughout the paper, for a function G, we let G′

i(x1, x2, . . . , xi, . . . ,
xn) denote the partial derivative of G on the i variable.

2. Main Results

Theorem 2.1. Assume that q and F satisfy the following assumptions:

(r) For every t ∈ Z, r(t) > 0;

(q) For every t ∈ Z, q(t) > 0, and lim|t|→+∞q(t) = +∞;

(F1) There exists a functional F(t, xn(t), . . . , x0(t)) which is continuously differentiable in the
variable from xn to x0 for every t ∈ Z and satisfy

0∑

i=−n
F ′
2+n+i(t + i, xn+i, . . . , xi) = f(t, xn, xn−1, . . . , x0, x−1, . . . , x−n),

∣∣f(t, xn, xn−1, . . . , x0, x−1, . . . , x−n)
∣∣ = o

(
n∑

i=−n
|xi|p−1

)
, as

n∑

i=−n
|xi|p−1 −→ 0,

|F(t, xn, . . . , x0)| = o

(
n∑

i=−n
|xi|p

)
, as

n∑

i=−n
|xi|p −→ 0

(2.1)

uniformly in t ∈ Z \ J , where J is defined in (F2);
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(F2) F(t, xn, . . . , x0) = W(t, x0) − H(t, xn, . . . , x0), for every t ∈ Z, W,H are continuously
differentiable in x0 and xn, . . . , x0, respectively. Moreover, there is a bounded set J ⊂ Z

such that

H(t, xn, . . . , x0) ≥ 0; (2.2)

(F3) There is a constant μ > p such that

0 < μW(t, x0) ≤ W ′
2(t, x0)x0, ∀(t, x0) ∈ Z × (R \ {0}); (2.3)

(F4) H(t, 0, . . . , 0) ≡ 0, and there is a constant � ∈ (p, μ) such that

0∑

i=−n
H ′

2+n+i(t, xn, . . . , x0)x−i ≤ �H(t, xn, . . . , x0); (2.4)

(F5) There exists a constant b > 0 such that

H(t, xn, . . . , x0) ≤ bγ�, for t ∈ Z, γ > 1, (2.5)

where γ = (
∑n

i=0|xi|p)1/p.
(F6) F(t,−xn, . . . ,−x0) = F(t, xn, . . . , x0), for all (t, xn, . . . , x0) ∈ Z × R

n+1.

Then (1.1) possesses an unbounded sequence of homoclinic solutions.

Theorem 2.2. Assume that r, q, and F satisfy (r), (q), (F1), (F3)–(F5) and the following assumption:

(F2′) F(t, xn, . . . , x0) = W(t, x0) − H(t, xn, . . . , x0), for every t ∈ Z, W,H are continuously
differentiable in x0 and xn, . . . , x0, respectively, and

|F(t, xn, . . . , x0)| = o
(
γp
)

as γ −→ 0, (2.6)

where γ = (
∑n

i=0|xi|p)1/p uniformly in t ∈ Z.

Then (1.1) possesses an unbounded sequence of homoclinic solutions.

Theorem 2.3. Assume that r, q, and F satisfy (r), (q), (F1) and satisfy the following assumptions:

(F7) For any t ∈ Z,

F(t, xn, . . . , x0) ≥ F(t, x0) ≥ 0; (2.7)
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(F8) For any r > 0, there exist a = a(r), b = b(r) > 0, and ν < p such that

(

p +
1

a + b
(∑n

i=0|xi|p
)ν/p

)

F(t, xn, . . . , x0)

≤
0∑

i=−n
F ′
2+n+i(t, xn, . . . , x0)x−i, ∀t ∈ Z,

(
n∑

i=0
|xi|p

)1/p

≥ r;

(2.8)

(F9) For any t ∈ Z

lim
s→+∞

[
s−pmin

|x|=1
F(t, sx)

]
= +∞. (2.9)

Then there exists an unbounded sequence of homoclinic solutions for (1.1).

3. Preliminaries

To apply critical point theory to study the existence of homoclinic solutions of (1.1), we shall
state some basic notations and lemmas, which will be used in the proofs of our main results.

Let

S = {{u(t)}t∈Z
: u(t) ∈ R, t ∈ Z},

E =
{
u ∈ S :

∑

t∈Z

[|r(t − 1)Δnu(t − 1)|p + q(t)|u(t)|p] < +∞
} (3.1)

and for u ∈ E, let

‖u‖ =

{
∑

t∈Z

[|r(t − 1)Δnu(t − 1)|p + q(t)|u(t)|p]
}1/p

. (3.2)

Then E is a uniform convex Banach space with this norm.
Let I : E → R be defined by

I(u) =
1
p
‖u‖p −

∑

t∈Z

F(t, u(t + n), . . . , u(t)). (3.3)

If (q) and (F1) hold, then I ∈ C1(E,R) and one can easily check that

〈
I ′(u), v

〉
=
∑

t∈Z

[
r(t − 1)|Δnu(t − 1)|p−2Δnv(t − 1) + q(t)|u(t)|p−2v(t)

−f(t), u(t + n), . . .u(t), . . . u(t − n)v(t)
]
, ∀u, v ∈ E.

(3.4)
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By using

Δnu(t − 1) =
n∑

k=0

(−1)k
(
n

k

)

u(t + n − k − 1), (3.5)

we can compute the partial derivative as

∂I(u)
∂u(t)

= Δn(r(t − n)ϕp(Δnu(t − 1))
)
+ q(t)ϕp(u(t)) − f(t, u(t + n), . . . , u(t), . . . , u(t − n)).

(3.6)

So, the critical points of I in E are the solutions of (1.1)with u(±∞) = 0.

Lemma 3.1 (see [12]). Let E be a real Banach space and I ∈ C1(E,R) satisfy (PS)-condition with I
even. Suppose that I satisfies the following conditions:

(i) I(0) = 0;

(ii) There exist constants ρ, α > 0 such that I|∂Bρ(0) ≥ α;

(iii) For each finite dimensional subspace E′ ⊂ E, there is r = r(E′) > 0 such that I(u) ≤ 0 for
u ∈ E′ \ Br(0), where Br(0) is an open ball in E of radius r centered at 0.

Then I possesses an unbounded sequence of critical values.

Lemma 3.2. For u ∈ E,

β‖u‖p∞ ≤ β‖u‖plp ≤ ‖u‖p, (3.7)

where β = inft∈Zq(t).

Lemma 3.3. Assume that (F3) holds. Then for every (t, x) ∈ Z×R, s−μW(t, sx) is nondecreasing on
(0,+∞).

The proof of Lemmas 3.2 and 3.3 is routine and so we omit it.

4. Proofs of Theorems

Proof of Theorem 2.1. It is clear that I(0) = 0. Our proof is devided into three steps.

Step 1 (PS Condition).
Assume that {uk}k∈N

⊂ E is a sequence such that {I(uk)}k∈N
is bounded and I ′(uk) → 0

as k → +∞. Then there exists a constant c > 0 such that

|I(uk)| ≤ c,
∥∥I ′(uk)

∥∥
E∗ ≤ �c for k ∈ N. (4.1)
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From (2.2), (2.3), (2.4), (4.1), (F3), and (F4), we obtain

pc + pc‖uk‖ ≥ pI(uk) −
p

�

〈
I ′(uk), uk

〉

=
� − p

�
‖uk‖p − p

∑

t∈Z

[
W(t, uk(t)) − 1

�
W ′

2 (t, uk(t))uk(t)
]

+ p
∑

t∈Z

H(t, uk(t + n), . . . , uk(t))

− p

�

∑

t∈Z

0∑

i=−n
H ′

2+n+i(t + i, uk(t + n + i), . . . , uk(t + i))uk(t)

=
� − p

�
‖uk‖p − p

∑

n∈Z

[
W(t, uk(t)) − 1

�
W ′

2(t, uk(t))uk(t)
]

+ p
∑

t∈Z

H(t, uk(t + n), . . . , uk(t))

− p

�

∑

t∈Z

0∑

i=−n
H ′

2+n+i(t, uk(t + n), . . . , uk(t))uk(t − i)

≥ � − p

�
‖uk‖p, k ∈ N.

(4.2)

By (4.2), there exists a constant A > 0 such that

‖uk‖ ≤ A for k ∈ N. (4.3)

It can be assumed that uk ⇀ u0 in E. For any given number ε > 0, by (F1), we can choose
ζ > 0 such that

∣∣f(t, u(t + n), . . . , u(t), . . . , u(t − n))
∣∣

≤ εξp−1 for t ∈ Z\J, (u(t+n), . . . , u(t), . . . , u(t−n))∈R
n+1,

(4.4)

where ξ = (
∑n

i=−n|u(t + i)|p)1/p ≤ ζ.
Since q(t) → ∞, we can also choose an integer Π > max{|k| : k ∈ J} such that

q(t) ≥ (2n + 1)Ap

ζp
, |t| ≥ Π. (4.5)

By (4.2) and (4.4), we have

|uk(t)|p =
1

q(t)
q(t)(uk(t))p ≤ ζp

(2n + 1)Ap
‖uk‖p ≤ ζp

2n + 1
for |t| ≥ Π, k ∈ N. (4.6)
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Since uk ⇀ u0 in E, it is easy to verify that uk(t) converges to u0(t) pointwise for all t ∈ Z, that
is

lim
k→∞

uk(t) = u0(t), ∀t ∈ Z. (4.7)

Hence, we have by (4.6) and (4.7)

|u0(t)|p ≤ ζp

2n + 1
for |t| ≥ Π. (4.8)

It follows from (4.7) and the continuity of f(t, u(t + 1), . . . , u(t), . . . , u(t − n)) on u(t + 1),
. . . , u(t), . . . , u(t − n) that there exists k0 ∈ N such that

Π∑

t=−Π

∣∣f(t, uk(t + n), . . . , uk(t), . . . , uk(t − n))−f(t, u0(t + n), . . . , u0(t), . . . , u0(t − n))
∣∣<ε

for k ≥ k0.

(4.9)

On the other hand, it follows from (F1), (2.4), (4.2), (4.4), (4.6), and (4.8) that

∑

|t|>Π

∣∣f(t, uk(t + n), . . . , uk(t), . . . , uk(t − n)) − f(t, u0(t + n), . . . , u0(t), . . . , u0(t − n))
∣∣

× |uk(t) − u0(t)|

≤
∑

|t|>Π

(∣∣f(t, uk(t + n), . . . , uk(t), . . . , uk(t − n))
∣∣

+
∣∣f(t, u0(t + n), . . . , u0(t), . . . , u0(t − n))

∣∣
)
× (|uk(t)| + |u0(t)|)

≤ ε
∑

|t|>Π

[(
n∑

i=−n
|uk(t + i)|p−1

)

+

(
n∑

i=−n
|u0(t + i)|p−1

)]

(|uk(t)| + |u0(t)|)

≤ (2n + 1)ε
∑

t∈Z

(
|uk(t)|p−1 + |u0(t)|p−1

)
(|uk(t)| + |u0(t)|)

≤ (4n + 2)ε
∑

t∈Z

(|uk(t)|p + |u0(t)|p
)

≤ (4n + 2)ε
β

(
Ap + ‖u0‖p

)
.

(4.10)

Since ε is arbitrary, combining (4.9) with (4.10), we get

∑

t∈Z

∣∣f(t, uk(t + n), . . . , uk(t), . . . , uk(t − n)) − f(t, u0(t + n), . . . , u0(t), . . . , u0(t − n))
∣∣

|uk(t) − u0(t)| −→ 0 as k −→ ∞.

(4.11)
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Using the Hölder’s inequality

ac + bd ≤ (ap + bp)1/p(cq + dq)1/q, (4.12)

where a, b, c, d are nonnegative numbers and 1/p + 1/q = 1, p > 1, it follows from (3.3) and
(3.4) that

〈
I ′(uk) − I ′(u0), uk − u0

〉

=
∑

t∈Z

|r(t − 1)Δnuk(t − 1)|p−2(Δnuk(t − 1),Δnuk(t − 1) −Δnu0(t − 1))

+
∑

t∈Z

q(t)|uk(t)|p−2(uk(t), uk(t) − u0(t))

−
∑

t∈Z

|r(t − 1)Δnu0(t − 1)|p−2(Δnu0(t − 1),Δnuk(t − 1) −Δnu0(t − 1))

−
∑

t∈Z

q(t)|u0(t)|p−2(u0(n), uk(t) − u0(t))

−
∑

t∈Z

(
f(t, uk(t + n), . . . , uk(t), . . . , uk(t − n))

−f(t, u0(t + n), . . . , u0(t), . . . , u0(t − n)), uk(n) − u0(n)
)

= ‖uk‖p + ‖u0‖p −
∑

n∈Z

|r(t − 1)Δnuk(t − 1)|p−2(Δnuk(t − 1),Δnu0(t − 1))

−
∑

t∈Z

q(t)|uk(t)|p−2(uk(t), u0(t))

−
∑

t∈Z

|r(t − 1)Δnu0(t − 1)|p−2(Δnu0(t − 1),Δnuk(t − 1))

−
∑

t∈Z

q(t)|u0(t)|p−2(u0(t), uk(t))

−
∑

t∈Z

(
f(t, uk(t + n), . . . , uk(t), . . . , uk(t − n))

−f(t, u0(t + n), . . . , u0(t), . . . , u0(t − n)), uk(n) − u0(n)
)

≥ ‖uk‖p + ‖u0‖p −
(
∑

t∈Z

|r(t − 1)Δnu0(t − 1)|p
)1/p(∑

t∈Z

|r(t − 1)Δnuk(t − 1)|p
)1/q

−
(
∑

t∈Z

q(t)|u0(t)|p
)1/p(∑

t∈Z

q(t)|uk(t)|p
)1/q

−
(
∑

t∈Z

|r(t − 1)Δnuk(t − 1)|p
)1/p(∑

t∈Z

|r(t − 1)Δnu0(t − 1)|p
)1/q
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−
(
∑

t∈Z

q(t)|uk(t)|p
)1/p(∑

t∈Z

q(t)|u0(t)|p
)1/q

−
∑

t∈Z

(
f(t, uk(t + n), . . . , uk(t), . . . , uk(t − n))

−f(t, u0(t + n), . . . , u0(t), . . . , u0(t − n)), uk(t) − u0(t)
)

≥ ‖uk‖p + ‖u0‖p −
(
∑

t∈Z

[|r(t − 1)Δnu0(t − 1)|p + q(t)|u0(t)|p
]
)1/p

·
(
∑

t∈Z

[|r(t − 1)Δnuk(t − 1)|p + q(t)|uk(t)|p
]
)1/q

−
(
∑

t∈Z

[|r(t − 1)Δnuk(n − 1)|p + q(t)|uk(t)|p
]
)1/p

·
(
∑

t∈Z

[|r(t − 1)Δnu0(n − 1)|p + q(t)|u0(t)|p
]
)1/q

−
∑

t∈Z

(
f(t, uk(t + n), . . . , uk(t), . . . , uk(t − n))

−f(t, u0(t + n), . . . , u0(t), . . . , u0(t − n)), uk(t) − u0(t)
)

= ‖uk‖p + ‖u0‖p − ‖u0‖‖uk‖p−1 − ‖uk‖‖u0‖p−1

−
∑

t∈Z

(
f(t, uk(t + n), . . . , uk(t), . . . , uk(t − n))

−f(t, u0(t + n), . . . , u0(t), . . . , u0(t − n)), uk(t) − u0(t)
)

=
(
‖uk‖p−1 − ‖u0‖p−1

)
(‖uk‖ − ‖u0‖)

−
∑

t∈Z

(
f(t, uk(t + n), . . . , uk(t), . . . , uk(t − n))

−f(t, u0(t + n), . . . , u0(t), . . . , u0(t − n)), uk(t) − u0(t)
)
.

(4.13)

Since I ′(uk) → 0 as k → +∞ and uk ⇀ u0 in E, it follows from (4.11) and (4.13) that

〈
I ′(uk) − I ′(u0), uk − u0

〉 −→ 0 as k → ∞, (4.14)

which yields that ‖uk‖ → ‖u‖ as k → +∞. By the uniform convexity of E and the fact that
uk ⇀ u0 in E, it follows from the Kadec-Klee property that uk → u0 in E. Hence, I satisfies
(PS)-condition.



10 Abstract and Applied Analysis

Step 2 (Condition (ii) of Lemma 3.1).
By (F1), there exists η ∈ (0, 1) such that

|F(t, u(t + n), . . . , u(t))| ≤ 2−pβ
4p(n + 1)

n∑

i=0
|u(t + i)|p for t ∈ Z \ J,

(
n∑

i=0
|u(t + i)|p

)1/p

≤ η.

(4.15)

Set

M = sup{W(t, u) | t ∈ J, u ∈ R, |u| = 1}, (4.16)

and δ = min{(β/(4pM + 1))(μ−p), η}. If ‖u‖ = β1/pδ := ρ, then by Lemma 3.2, |u(t)| ≤ δ ≤ η < 1
for t ∈ Z. By (4.16) and Lemma 3.2, we have

∑

t∈J
W(t, u(t)) ≤

∑

t∈J,u(t)/= 0

W

(
t,

u(t)
|u(t)|

)
|u(t)|μ

≤ M
∑

t∈J
|u(t)|μ

≤ Mδμ−p∑

t∈J
|u(t)|p

≤ Mδμ−p

β

∑

t∈J
q(t)|u(t)|p

≤ 1
4p

∑

t∈J
q(t)|u(t)|p.

(4.17)

Set α = βδp/2p. Hence, from (3.3), (4.15), (4.17), (q), (F1), and (F2), we have

I(u) =
1
p
‖u‖p −

∑

t∈Z

F(t, u(t + n), . . . , u(t))

=
1
p
‖u‖p −

∑

t∈Z\J
F(t, u(t + n), . . . , u(t)) −

∑

t∈J
F(t, u(t + n), . . . , u(t))

≥ 1
p
‖u‖p − 2−pβ

4p(n + 1)

∑

t∈Z\J

(
n∑

i=0
|u(t + i)|p

)

−
∑

t∈J
W(t, u(t))

+
∑

t∈J
H(t, u(t + n), . . . , u(t))

≥ 1
p
‖u‖p − β

4p

∑

t∈Z

|u(t)|p − 1
4p

∑

t∈J
q(t)|u(t)|p

≥ 1
p
‖u‖p − 1

4p

∑

t∈Z

q(t)|u(t)|p − 1
4p

∑

t∈J
q(t)|u(t)|p
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≥ 1
p
‖u‖p − 1

4p
‖u‖p − 1

4p
‖u‖p

=
1
2p

‖u‖p

= α.

(4.18)

equation (4.18)shows that ‖u‖ = ρ implies that I(u) ≥ α, that is, I satisfies assumption (ii) of
Lemma 3.1.

Step 3 (Condition (iii) of Lemma 3.1).
Let E′ be a finite dimensional subspace of E. Assume that dimE′ = m and u1, u2, . . . , um

is a base of E′.
For any u ∈ E′, there exist λi ∈ R, i = 1, 2, . . . , m such that

u(t) =
m∑

i=1

λiui(t) for t ∈ Z. (4.19)

Let

‖u‖∗ =
m∑

i=1

|λi|‖ui‖. (4.20)

It is easy to verify that ‖ · ‖∗ defined by (4.20) is a norm of E′. Since all the norms of a finite
dimensional normed space are equivalent, so there exists a constant d > 0 such that

‖u‖∗ ≤ d‖u‖∞ for u ∈ E′. (4.21)

Assume that

‖ui‖ = d, i = 1, 2, . . . , m. (4.22)

Since ui ∈ E, by Lemma 3.2, we can choose an integer Π1 > 0 such that

|ui(t)| <
η

m
, i = 1, 2, . . . , m, |t| > Π1, (4.23)

where η is given in (4.15). Set

Θ =

{
m∑

i=1

λiui(t) : λi ∈ R, i = 1, 2, . . . , m;
m∑

i=1

|λi| = 1

}

=
{
u ∈ E′ : ‖u‖∗ = d

}
. (4.24)
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Hence, for u ∈ Θ, let t0 = t0(u) ∈ Z such that

|u(t0)| = ‖u‖∞. (4.25)

Then, by (4.19)–(4.25), we have

d = d
m∑

i=1

|λi| =
m∑

i=1

|λi|‖ui‖ = ‖u‖∗

≤ d‖u‖∞ = d|u(t0)|

≤ d
m∑

i=1

|λi||ui(t0)|, u ∈ Θ.

(4.26)

This shows that |u(t0)| ≥ 1 and there exists i0 ∈ {1, 2, . . . , m} such that |ui0(t0)| ≥ 1/m, which,
together with (4.23), implies that |t0| ≤ Π1.

Set

τ = min{W(t, x) : |t| ≤ Π1, |x| = 1}. (4.27)

Since W(t, x) > 0 for all t ∈ Z and x ∈ R \ {0}, and W(t, x) is continuous in x, so τ > 0. It
follows from (4.27) and Lemma 3.3 that

Π1∑

n=−Π1

W(t, u(t)) ≥ W(t0, u(t0))

≥ W

(
t0,

u(t0)
|u(t0)|

)
|u(t0)|μ

≥
[
min
|x|=1

W(t0, x)
]
|u(t0)|μ

≥ τ for u ∈ Θ.

(4.28)

For any u ∈ E, it follows from (F5) that

Π1∑

t=−Π1

H(t, u(t + n), . . . , u(t))

=
∑

{
t∈Z(−Π1,Π1),(

∑n
i=0|u(t+i)|p)

1/p
>1
}
H(t, u(t + n), . . . , u(t))

+
∑

{
t∈Z(−Π1,Π1),(

∑n
i=0|u(t+i)|p)

1/p} ≤1
H(t, u(t + n), . . . , u(t))



Abstract and Applied Analysis 13

≤ b
∑

{
t∈Z(−Π1,Π1),(

∑n
i=0|u(t+i)|p)

1/p
>1
}

(
n∑

i=0
|u(t + i)|p

)�/p

+
Π1∑

t=−Π1

max
(∑n

i=0|u(t+i)|p)
1/p≤1

H(t, u(t + n), . . . , u(t))

≤ (n + 1)�/p+1b
∑

t∈Z

|u(t)|� +
Π1∑

t=−Π1

max
(∑n

i=0|u(t+i)|p)
1/p≤1

H(t, u(t + n), . . . , u(t))

≤ (n + 1)�/p+1β−�/pb‖u‖� +
Π1∑

t=−Π1

max
(∑n

i=0|u(t+i)|p)
1/p≤1

H(t, u(t + n), . . . , u(t))

= M1‖u‖� +M2,

(4.29)

where

M1 = (n + 1)�/p+1β−�/p b, M2 =
Π1∑

t=−Π1

max
(∑n

i=0|u(t+i)|p)
1/p≤1

H(t, u(t + n), . . . , u(t)). (4.30)

From (3.3), (3.7), (4.28), and (4.29), we have for u ∈ Θ and σ > 1

I(σu) =
σp

p
‖u‖p −

∑

t∈Z

F(t, σu(t + n), . . . , σu(t))

=
σp

p
‖u‖p −

∑

|t|>Π2

F(t, σu(t + n), . . . , σu(t)) −
∑

|t|≤Π2

F(t, σu(t + n), . . . , σu(t))

≤ σp

p
‖u‖p +

∑

|t|>Π2

n∑

i=0

βσp

4p(n + 1)
|u(t + i)|p −

∑

|t|≤Π2

F(t, σu(t + n), . . . , σu(t))

≤ σp

p
‖u‖p + σp

4p
‖u‖p −

∑

|t|≤Π2

F(t, σu(t + n), . . . , σu(t))

=
σp

p
‖u‖p + σp

4p
‖u‖p −

∑

|t|≤Π2

W(t, σu(t)) +
∑

|t|≤Π2

H(t, σu(t + n), . . . , σu(t))

≤ σp

p
‖u‖p + σp

4p
‖u‖p + σ�(M1‖u‖� +M2

) − τσμ

=
(cσ)p

p
+
cpσp

4p
+M1(cσ)� +M2σ

� − τσμ.

(4.31)
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Since μ > � > p, we deduce that there is σ0 = σ0(d,M1,M2, τ) = σ0(E′) > 1 such that

I(σu) < 0 for u ∈ Θ, σ ≥ σ0. (4.32)

That is

I(u) < 0 for u ∈ E′, ‖u‖ ≥ dσ0. (4.33)

This shows that (iii) of Lemma 3.1 holds. By Lemma 3.1, I possesses an unbounded sequence
{dk}k∈N

of critical values with dk = I(uk), where uk is such that I ′(uk) = 0 for k = 1, 2, . . .. If
{‖uk‖}k∈N

is bounded, then there exists B > 0 such that

‖uk‖ ≤ B for k ∈ N. (4.34)

By a similar fashion for the proof of (4.15), for the given η in (4.15), there exists Π3 > 0 such
that

|uk(t)| ≤ η for |t| ≥ Π3, k ∈ N. (4.35)

Thus, from (F2), (3.7), (4.34), and (4.35), we have

1
p
‖uk‖p = dk +

∑

t∈Z

F(t, uk(t + n), . . . , uk(t))

= dk +
∑

|t|>Π3

F(t, uk(t + n), . . . , uk(t)) +
Π3∑

t=−Π3

F(t, uk(t + n), . . . , uk(t))

≥ dk −
β

4p(n + 1)

∑

|t|>Π3

n∑

i=0
|uk(t + i)|p −

Π3∑

n=−Π3

H(t, uk(t + n), . . . , uk(t))

≥ dk − 1
4p

‖uk‖p −
Π3∑

n=−Π3

max
|uk |≤B/

√
β
|H(t, uk(t + n), . . . , uk(t))|.

(4.36)

It follows that

dk ≤ 5
4p

‖uk‖p +
Π3∑

t=−Π3

max
|uk |≤B/

√
β
|H(t, uk(t + n), . . . , uk(t))| < +∞. (4.37)

This contradicts the fact that {dk}k∈N
is unbounded, and so {‖uk‖}k∈N

is unbounded.

Proof of Theorem 2.2. In the proof of Theorem 2.1, the condition thatH(t, u(t+n), . . . , u(t)) ≥ 0
for (t, u(t+n), . . . , u(t)) ∈ J ×R

n+1, γ = (
∑n

i=0|u(t + i)|p)1/p ≤ 1 in (F1) is only used in the proofs
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of assumption (ii) of Lemma 3.1. Therefore, we only prove that assumption (ii) of Lemma 3.1
still holds using (F2’) instead of (F2). By (F2’), it follows that

|F(t, u(t + n), . . . , u(t))| ≤ 2−pβ
2p(n + 1)

(
n∑

i=0
|u(t + i)|p

)

for t ∈ Z,

(
n∑

i=0
|u(t + i)|p

)1/p

≤ η.

(4.38)

If ‖u‖ = β1/pη := ρ, then by Lemma 3.2 , |u(t)| ≤ η for t ∈ Z. Set α = βηp/2p. Hence, from (3.3),
(4.38), and Lemma 3.2, we have

I(u) =
1
p
‖u‖p −

∑

t∈Z

F(t, u(t + n), . . . , u(t))

≥ 1
p
‖u‖p − 2−pβ

2p(n + 1)

(
n∑

i=0
|u(t + i)|p

)

≥ 1
p
‖u‖p − 1

2p
‖u‖p

=
1
2p

‖u‖p

= α.

(4.39)

equation (4.39) shows that ‖u‖ = ρ implies that I(u) ≥ α, that is, assumption (ii) of Lemma 3.1
holds. The proof of Theorem 2.2 is completed.

Proof of Theorem 2.3. We first show that I satisfies condition (C). Assume that {uk}k∈N
⊂ E is

a (C) sequence of I, that is, {I(uk)}k∈N
is bounded and (1 + ‖uk‖)‖I ′(uk)‖ → 0 as k → +∞.

Then it follows from (3.3) and (3.4) that

C1 ≥ pI(uk) −
〈
I ′(uk), uk

〉

=
∑

t∈Z

[
0∑

i=−n
F ′
2+n+i(t, uk(t + n), . . . , uk(t))uk(t − i) − pF(t, uk(t + n), . . . , uk(t))

]

.
(4.40)

It follows from (F8) that there exists η ∈ (0, 1) such that (4.15) holds. By (F7) and (F8), we
have

0∑

i=−n
F ′
2+n+i(t, u(t + n), . . . , u(t))u(t − i) > pF(t, uk(t + n), . . . , u(t)) ≥ 0, (4.41)
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and for t ∈ Z,
∑n

i=0|u(t + i)|p ≥ ηp, we have

F(t, uk(t + n), . . . , uk(t)) ≤
⎡

⎣a + b

(
n∑

i=0
|u(t + i)|p

)ν/p
⎤

⎦

×
[

0∑

i=−n
F ′
2+n+i(t, uk(t + n), . . . , uk(t))uk(t − i) − pF(t, uk(t + n), . . . , uk(t))

]

.

(4.42)

It follows from (3.2), (3.3), (4.38), (4.40), (4.41), and (4.42) that

1
p
‖uk‖p = I(uk) +

∑

t∈Z

F(t, uk(t + n), . . . , u(t))

= I(uk) +
∑

t∈Z

(
(∑n

i=0|u(t+i)|p)
1/p≤η

)
F(t, uk(t + n), . . . , u(t))

+
∑

t∈Z

(
(∑n

i=0|u(t+i)|p)
1/p

>η
)
F(t, uk(t + n), . . . , u(t))

≤ I(uk) +
2−pβ

2p(n + 1)

∑

t∈Z

(
(∑n

i=0|u(t+i)|p)
1/p≤η

)
|uk(t + i)|p

+
∑

t∈Z

(
(∑n

i=0|u(t+i)|p)
1/p

>η
)

⎡

⎣a + b

(
n∑

i=0
|u(t + i)|p

)ν/p
⎤

⎦

×
[

0∑

i=−n
F ′
2+n+i(t, uk(t + n), . . . , uk(t))uk(t − i) − pF(t, uk(t + n), . . . , uk(t))

]

≤ C2 +
1
2p

‖uk‖2 +
∑

t∈Z

⎡

⎣a + b

(
n∑

i=0
|u(t + i)|p

)ν/p
⎤

⎦

×
[

0∑

i=−n
F ′
2+n+i(t, uk(t + n), . . . , uk(t))uk(t − i) − pF(t, uk(t + n), . . . , uk(t))

]

≤ C2 +
1
2p

‖uk‖p +
(
a + b‖uk‖ν∞

)∑

t∈Z

[
(∇W(n, uk(n)), uk(n)) − pW(n, uk(n))

]

≤ C2 +
1
2p

‖uk‖p + C1
(
a + b(n + 1)‖uk‖ν∞

)

≤ C2 +
1
2p

‖uk‖p + C1

{
a + β−ν/pb(n + 1)‖uk‖ν

}
, k ∈ N.

(4.43)

Since ν < p, it follows from (4.43) that {‖uk‖}k∈N
is bounded. Similar to the proof of

Theorem 2.1, we can prove that {uk} has a convergent subsequence in E. Hence, I satisfies
condition (C).

It is obvious that I is even and I(0) = 0, and so assumption (i) of Lemma 3.1 holds.
The proof of assumption (ii) of Lemma 3.1 is the same as in the proof of Theorem 2.2.
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Finally, it remains to show that I satisfies assumption (iii) of Lemma 3.1. Let E′ be a
finite dimensional subspace of E. Since all norms of a finite dimensional normed space are
equivalent, so there is a constant d > 0 such that (4.21) holds. Assume that dimE′ = m and
u1, u2, . . . , um are the bases of E′ such that (4.22) holds. Let η, Π1, and Θ be the same as in the
proof of Theorem 2.1. Then (4.23), (4.25), and (4.26) hold. For the Π1 given in the proof of
Theorem 2.1. By (F9), there exists σ0 = σ0(d,Π1) > 1 such that

s−pmin
|x|=1

W(n, sx) ≥ (2d)p for s ≥ σ0

2
, n ∈ Z(−Π1,Π1). (4.44)

It follows from (F7), (F9), (3.3), and (4.44) that

I(σu) =
σp

p
‖u‖p −

∑

t∈Z

F(t, σu(t + n), . . . , σu(t))

≤ σp

p
‖u‖p − F(t0, σu(t0))

≤ σp

p
‖u‖p −min

|x|=1
F(t0, σ|u(t0)|x)

≤ (dσ)p

p
− (dσ)p|u(t0)|p

≤ (dσ)p

p
− (dσ)p

= − (dσ)
p

q
, u ∈ Θ, σ ≥ σ0.

(4.45)

We deduce that there is σ0 = σ0(d,Π1) = σ0(E′) > 1 such that

I(σu) < 0 for u ∈ Θ, σ ≥ σ0. (4.46)

That is

I(u) < 0 for u ∈ E′, ‖u‖ ≥ dσ0. (4.47)

This shows that condition (iii) of Lemma 3.1 holds. By Lemma 3.1, I possesses an unbounded
sequence {dk}k∈N

of critical values with dk = I(uk), where uk is such that I ′(uk) = 0 for
k = 1, 2, . . .. Since

1
p
‖uk‖p = dk +

∑

n∈Z

F(t, uk(t + n), . . . , uk(t)) ≥ dk (4.48)

and {dk}k∈N
is unbounded, it follows that {‖uk‖}k∈N

is unbounded. The proof is complete.
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5. Examples

In this section, we give some examples to illustrate our results.

Example 5.1. In (1.1), let q(t) → +∞ as |t| → +∞ and

F(t, u(t + n), . . . , u(t)) =

⎡

⎣|u(t)|4+|t| −
(

n∑

i=0

u2(t + i)

)(5+3|t|)/2(4+|t|)⎤

⎦. (5.1)

Let p = 2, μ = 4, � = 3, J = {−3,−2,−1, 0, 1, 2, 3} and

W(t, u(t)) = |u(t)|4+|t|, H(t, u(t + n), . . . , u(t)) =

(
n∑

i=0

u2(t + i)

)(5+3|t|)/2(4+|t|)
. (5.2)

Then it is easy to verify that all conditions of Theorem 2.1 are satisfied. By Theorem 2.1, (1.1)
has a nontrivial homoclinic solution.

Example 5.2. In (1.1), let r(t) > 0, q(t) → +∞ as |t| → +∞ and

F(t, u(t + n), . . . , u(t)) =

⎛

⎝
m1∑

k=1

ak|u(t)|μk −
m2∑

j=1

bj

(
n∑

i=0
|u(t + i)|p

)�j/p
⎞

⎠, (5.3)

where μ1 > μ2 > · · · > μm1 > �1 > �2 > · · · > �m2 > p, ak, bj > 0, k = 1, 2, . . . , m1; j = 1, 2, . . . , m2.
Let μ = μm1 , � = �1, and

W(t, u(t)) =
m1∑

k=1

ak|u(t)|μk , H(t, u(t + n), . . . , u(t)) =
m2∑

j=1

bj

(
n∑

i=0
|u(t + i)|p

)�j/p

. (5.4)

Then it is easy to verify that all conditions of Theorem 2.2 are satisfied. By Theorem 2.2, (1.1)
has a nontrivial homoclinic solution.

Example 5.3. In (1.1), let

F(t, u(t + n), . . . , u(t)) = q(t)
n∑

i=0
|u(t + i)|p ln

⎡

⎣1 +

(
n∑

i=0
|u(t + i)|p

)1/p
⎤

⎦, (5.5)

where q : Z → (0,∞) such that q(t) → +∞ as |t| → +∞. Since

0∑

i=−n
F ′
2+n+i(t, u(t + n), . . . , u(t))u(t − i)

= q(t)

⎡

⎣p
n∑

i=0
|u(t + i)|p ln

⎡

⎣1 +

(
n∑

i=0
|u(t + i)|p

)1/p
⎤

⎦ +

(∑n
i=0|u(t + i)|p)p+1/p

1 +
(∑n

i=0|u(t + i)|p)1/p

⎤

⎦
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≥
(

p +
1

1 +
(∑n

i=0|u(t + i)|p)1/p
)

F(t, u(t + n), . . . , u(t))

≥ 0, ∀(t, u(t + n), . . . , u(t)) ∈ Z × R
n+1.

(5.6)

This shows that (F8) holds with a = b = ν = 1. It is easy to verify that assumptions (q), (F1),
and (F7) of Theorem 2.3 are satisfied. By Theorem 2.3, (1.1) has an unbounded sequence of
homoclinic solutions.
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