
Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2012, Article ID 252979, 13 pages
doi:10.1155/2012/252979

Research Article
Accelerating Relevance-Vector-Machine-Based
Classification of Hyperspectral Image with Parallel
Computing

Chao Dong and Lianfang Tian

Key Laboratory of Autonomous Systems and Network Control of the Ministry of Education,
School of Automation Science and Engineering, South China University of Technology,
Wushan Road No.381, Tianhe District, Guangzhou 510641, China

Correspondence should be addressed to Chao Dong, dcauto@scut.edu.cn

Received 7 December 2011; Revised 23 February 2012; Accepted 23 February 2012

Academic Editor: Jyh Horng Chou

Copyright q 2012 C. Dong and L. Tian. This is an open access article distributed under the
Creative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

Benefiting from the kernel skill and the sparse property, the relevance vector machine (RVM) could
acquire a sparse solution, with an equivalent generalization ability compared with the support
vector machine. The sparse property requires much less time in the prediction, making RVM
potential in classifying the large-scale hyperspectral image. However, RVM is not widespread
influenced by its slow training procedure. To solve the problem, the classification of the
hyperspectral image using RVM is accelerated by the parallel computing technique in this paper.
The parallelization is revealed from the aspects of the multiclass strategy, the ensemble of multiple
weak classifiers, and the matrix operations. The parallel RVMs are implemented using the C
language plus the parallel functions of the linear algebra packages and the message passing
interface library. The proposed methods are evaluated by the AVIRIS Indian Pines data set on
the Beowulf cluster and the multicore platforms. It shows that the parallel RVMs accelerate the
training procedure obviously.

1. Introduction

Accompanying the rich spectral information that the hyperspectral imager collects, huge
amount of training samples are required to train the classifier precisely. The problem is well
known as the Hughes phenomena [1]. Collecting enough training samples is burdensome.
Therefore, designing the hyperspectral image classifiers that can deal with the small training
set became the theme in the past ten years. The solutions [2–10] can be divided into four
categories: (1) regularization of the sample covariancematrix; (2) feature extraction or feature
selection; (3) enlarging the training set by semisupervised learning; and (4) low complexity
classifiers, such as support vector machine (SVM). Benefiting from the kernel skills, SVM is
less affected by theHughes phenomena.Maximizing themargins of the class pairs guarantees

2 Mathematical Problems in Engineering

SVM low training error and good generalization ability. It has been proven that SVM is
superior to most supervised classifiers in classifying the hyperspectral image [7–10].

Sparse Bayesian learning-based classifiers, represented by relevance vector machine
(RVM), emerged in the remote sensing community since 2006 [11–13]. To avoid overfitting,
RVM constrains the predicting model by the automation relevance determination (ARD)
framework, which promises a sparse model. Compared with SVM, RVM could acquire
a much sparser model with equivalent generalization ability. The sparse property is
competitive in classifying the large-scale hyperspectral image, as it requires far less time for
prediction.

However, RVM is not widespread, due to its slow training procedure. In each iterative
step, RVM carries out transpose, multiplication, and inversion operations on an N × N
Hessian matrix, where N is the number of training samples. These operations are time
consuming when N is large, making it inefficient for the large-scale data set. To solve
the problem, Tipping and Faul proposed a fast marginal likelihood maximization method,
refreshing one coefficient at one time [14]. However, the fast method performs greedy search
and is easily stuck into suboptimal solutions. Lei et al. [15] avoided the expensive inversion of
the Hessian matrix, by substituting Broyden-Fletcher-Goldfarb-Shanno (BFGS) for iteratively
reweighed least squares (IRLSs). Seeger and Ribeiro applied RVM to the large text sets by the
ensemble, boosting, and incremental methods, which adopt divide-conquer-merge strategy
and enable RVM to process more than ten thousands training samples [16]. The divide-
conquer-merge strategy decreases the amount of training samples each weak RVM processes,
also helpful for accelerating the training procedure. Yang et al. proposed recursive Cholesky
decomposition for RVM and implement it on GPUs. The GPUs-based RVMwas proved to be
much faster for both single and double precision [17].

Recent development of the multicore platform and the low-cost clusters makes
parallel computing popularized in the hyperspectral remote sensing community. Plenty
of the classification, unmixing and anomaly detection algorithms have been parallelized
successfully [18–20]. Those cases motivate us to accelerate RVM with parallel computing. In
this paper, we design three parallel implementations of RVM. The parallelization is revealed
from the aspects of matrix operation, multiclassifier strategy, and divide-conquer-merge
strategy. The parallel RVMs are tested on the multicore platform and the cluster, acquiring
an obvious gain in efficiency.

2. Relevance Vector Machine Classifier

For the training samples {xn}Nn=1 and the class labels {tn}Nn=1, RVM uses the linear combination
of the kernel functions K(·, ·) to describe the input-to-output relationship

y(x;ω) =
N∑

n=1

ωnK(x, xn) +ω0, (2.1)

and the Bernoulli distribution to construct the probability density function

p(t | ω) =
N∏

n=1

yn
tn(1 − yn)

1−tn . (2.2)

Mathematical Problems in Engineering 3

The symbols in (2.1) ∼ (2.2) are ω = (ω0, . . . , ωN)T , t = (t1, . . . , tN)T , and yn = σ{y(xn;ω)}.
σ(y) is the sigmoid function

σ
(
y
)
=

1
(1 + e−y)

, (2.3)

mapping y(xn;ω) into [0, 1]. To ensure the generalization ability, the weights ω are
constrained by

p(ω | α) =
N∏

n=0

N
(
ωn | 0, α−1n

)
. (2.4)

Then, the posterior probability density function p(ω | t,α) can be obtained by the Bayes’ rule

p(ω | t,α) = p(t | ω)p(ω | α)
p(t | α) . (2.5)

Maximizing (2.5), the optimized ω can be found as follows.

Serial Binary RVM Classification

(1) Initialize ω and α.

(2) Fix α and update ω with

g = ∇ω log p(ω | t,α)|ωMP
= ΦT (t − y) −Aω,

H = ∇ω∇ω log p(ω | t,α)|ωMP
= −

(
ΦTBΦ +A

)
,

(2.6)

ωnew
MP ← ωold

MP −H−1g. (2.7)

The details ofΦ, A, and B could be found in [11].

(3) Fix ω and update α with

αnew
n =

1 − αold
n Σnn

(ωnew
MP)2

n

, (2.8)

where Σ = −H−1.
(4) Repeat step (2) ∼ (3) until convergence.
(5) Classify the test samples with the estimated model.

3. Parallel Optimization

RVM is a binary classifier. To deal with the multiclass problem, either One Against One
(OAO) or One Against ALL (OAA) should be used. The multiclass RVM consists of

4 Mathematical Problems in Engineering

multiple independent binary classifiers and could be processed by multiple processing units
simultaneously. In [16], Seeger and Ribeiro applied RVM to the large-scale text set with
the ensemble, boosting, and incremental methods. They divided the standard RVM into
multiple independent local RVMs. The idea was adopted by us for parallelization in this
paper. RVM could also be accelerated by parallelizing the expensivematrix operations in (2.6)
∼ (2.8). More complicated parallelization could be realized by combing the aforementioned
strategies.

The parallel RVMs in this letter focus on the training phase. The test phase is not
emphasized due to two reasons. First, with an equivalent amount of training and test
samples, the optimization of ω and α is far slower than the prediction of the test samples.
Secondly, even if tens of thousands of test samples are involved, the prediction of each test
sample is always independent. This is a typical data parallel problem. It could be easily
solved by dividing the test set into multiple subsets, predicted by multiple processing units
simultaneously.

3.1. Parallelizing the Multiclass Strategy

RVM deals with the multiclass problem by OAO or OAA. OAO is preferred, as it processes
less training samples in each class pair [12]. Suppose there are C classes; the multiclass RVM
by OAO consists of (C − 1)C/2 uncorrelated binary RVMs. This is a typical task parallel
problem and we name the parallel implementation pRVM-MultiClass for short. Load balance
must be carefully handled for pRVM-MultiClass.With OAO, the class pairs may differ greatly
in the amount of the training samples. The varieties will cause great difference between
the CPU time consumptions of the class pairs. Load balance could not be promised if the
class pairs are evenly distributed in the parallel environment. To solve the problem, pRVM-
MultiClass is organized in the master-slave model. All the class pairs reside in the master
and wait to be sent to one idle slave. Each slave is a binary RVM. The master continuously
sends the unprocessed class pairs to the idle slaves until the entire class pairs have been sent
out. The slaves request new class pair from the master once it is idle. The results of the slaves
are collected and synthesized by the master for the classification map. The detail of pRVM-
MultiClass is given in Figure 1.

3.2. Parallelizing Multiple Weak RVMs

RVM is extended to process the large-scale text data sets with the incremental, boosting, and
ensemble methods [16]. All these methods are based on the divide-conquer-merge strategy.
The entire training set is split into multiple small subsets. Each subset is used to train a
weak RVM and classify the test set. The weak RVMs cause a decrease in precision, compared
with the serial RVM. The loss could be compensated by the integration methods, such as
majority voting. The ensemble method has been proven to be superior to the rest [16].
Thus, it is used to construct the weak classifiers in this paper and we named the parallel
implementation pRVM-Ensemble. Figure 2 shows the flow of pRVM-Ensemble. Each process
randomly extracts p% training samples from each class to train a local RVM. The class labels
of test set are inferred by the weak RVMs, respectively, and then enhanced using majority
voting.

pRVM-Ensemble is influenced by two parameters, the sampling rate p and the number
of weak classifiersM. Suppose that the training set consists ofN samples and the serial RVM

Mathematical Problems in Engineering 5

Slave
process 1

Slave

process 2

Slave
process 3

Slave

process 4

Slave
process 5

Slave
process 6

Slave

Send

Request

Se
nd

Req
ues

t

Send Request

Send

Request

Send

Request

SendRequest

Send

Request

Master process

Work pool empty ?

Yes

Quit
signal

No
Unprocessed

Send to idle slave

Wait slave to return

class pair

process K

Figure 1: The flow of pRVM-MultiClass.

consumes Ts seconds. With large N, Ts is mainly occupied by the inversion of the Hessian
matrix H in (2.7), who’s complexity is O(N3). Ignoring the minor parts, the complexity of
the weak RVM could be approximated by O(p3N3). Therefore, the speedup ratio of pRVM-
Ensemble is

r =
Ts

M × p3Ts/K
=

K

p3 ×M, (3.1)

where K is the number of processes. Small p and M guarantee high speedup ratio, at the
cost of losing accuracy. On the contrary, the misclassifications are decreased with a relatively
low efficiency. Suppose that M weak RVMs hold M copies of the entire training set and
are distributed to M processes. In this extreme case, the efficiency and precision are not
improved by pRVM-Ensemble. Fine tune of the parameters is necessary, to balance the trade-
off between efficiency and precision.

3.3. Parallelizing the Matrix Operations

RVM is occupied by the matrix operations in (2.6) ∼ (2.8), especially the expensive inversion
of the Hessian matrix H. It could be easily accelerated by substituting the parallel matrix

6 Mathematical Problems in Engineering

Process 1

Weak RVM

Randomly sample
Sampling rate p%

Weak RVM

Process 2

Weak RVM

Voting

Classification result

Training setX

Process M

Figure 2: The flow of pRVM-Ensemble.

functions for the serial ones. We named the parallelization RVM-MatOp. The parallel
functions have been realized in many parallel linear algebra packages, such as Intel’s Math
Kernel Library (MKL) and Automatically Tuned Linear Algebra Software (ATLAS). The
packages provide optimized matrix multiplication and inversion functions for the large-scale
matrices. Although not developed by us, RVM-MatOp is emphasized for two reasons. First,
the parallel matrix functions are implicitly controlled by the well-developed packages. The
researchers could easily implement pRVM-MatOp on the multicore platforms, even if not
familiar with parallel computing. Second, pRVM-MatOp could be combined with pRVM-
MultiClass and pRVM-Ensemble for better efficiency. This will be discussed in Section 3.4.

3.4. Hybrid Parallel RVM

The parallel implementations could be further optimized by combination. pRVM-Ensemble
uses OAO to deal with the multiclass problem in each weak RVM. Combining the multiclass
parallel strategy with the local weak RVMs can accelerate pRVM-Ensemble. In addition,
pRVM-MultiClass and pRVM-Ensemble consist of multiple standard binary RVMs. They
are also tortured by the expensive matrix operations in (2.6) ∼ (2.8). Therefore, pRVM-
MatOp could be combined with pRVM-MultiClass and pRVM-Ensemble to optimize the
binary RVMs. More complex case is the combination of three parallel implementations. The
ensemble skill is used to decompose the serial RVM into multiple independent subtasks,
the multiclass parallel strategy optimizes the local weak RVMs, and the binary RVMs are
accelerated by the parallel matrix functions. However, the efficiency might be decreased by
too complex parallel strategy. The ideal case is the combination of pRVM-MatOpwith pRVM-
MultiClass or pRVM-Ensemble. RVM is first globally separated into multiple uncorrelated
subtasks by the multiclass or ensemble skill. Then the parallel matrix functions are used to
optimize the local subtasks. The hybrid structure is popular in parallel programming and
suitable to be implemented on the cluster of multicore computers.

Mathematical Problems in Engineering 7

(a) Pseudo-color image, bands 24-12-5

C1
C2
C3
C4

C5

C6
C7
C8
C9

(b) The distribution of nine typical
classes

Figure 3: Pseudo-color image and classes distribution of the Indian Pine test site.

4. Experiments

To evaluate the proposed methods, we carried out several experiments on the data acquired
by Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) over Indian Pines test site in
1992 [21]. The test site covers a 145 × 145 region and 220 bands ranging from 0.4 to 2.5μm.
It contains sixteen different land covers, some of which are hard to separate. Seven classes
were discarded for the insufficient labeled samples. The rest nine classes had 8489 samples
and were divided into the training and test sets. The details of the data set are in Figure 3 and
Table 1.

The algorithms were implemented with the C language, based on the Matlab code
of Tipping. The RBF kernel was adopted. The width of RBF was optimized by 5-fold cross-
validation and grid search for the serial RVM. The best width was directly used in the parallel
RVMs. We focused on the efficiency of RVMs with the best width and ignored the cost of
optimizing the parameter.

4.1. Evaluating pRVMs on the Beowulf Cluster

First, we evaluated the parallel RVMs on a sixteen-node Beowulf cluster, running on the
CentOS Linux operating system. The nodes are connected by the Gigabit Ethernet. Each
node contains one 2GHz AMD processor and 1GB memory. pRVM-MultiClass and pRVM-
Ensemble were explicitly parallelized with the message passing interface (MPI). The matrix
functions are from Basic Linear Algebra Subprograms (BLASs) and Linear Algebra Package
(LAPACK). The scalable LAPACK (ScaLPACK) library provided pRVM-MatOp with the
parallel matrix functions in the cluster environment. For better performance, we compiled
the parallel RVMs with the optimized BLAS package ATLAS.

8 Mathematical Problems in Engineering

Table 1: Number of samples in training and test sets.

Class Name Training Test Total
C1 Corn-notill 632 633 1265
C2 Corn-min 364 364 728
C3 Grass/Pasture 224 225 449
C4 Grass/Trees 335 336 671
C5 Hay-windrowed 228 228 456
C6 Soybeans-notill 425 424 849
C7 Soybeans-min 1133 1135 2268
C8 Soybeans-clean 289 288 577
C9 Woods 614 612 1226

Total 4244 4245 8489

Table 2: The time cost (in seconds) of parallel RVMs on cluster, with entire training set.

CPUs
pRVM-Ensemble with different p

pRVM-Multiclass pRVM-MatOp
20% 40% 60%

1 1720.1 9164.3 26510.1 3402.9 3402.9
2 867.5 4638.6 13320.2 1886.4 2705.9
4 449.8 2319.3 6811.2 1139.8 1413.6
8 235.7 1214.4 3409.9 834.6 737.5
16 121.1 616.6 1824.4 634.2 388.9

Table 2 shows the efficiency of the parallel RVMs. The serial RVM takes 3402.9 seconds.
pRVM-MultiClass and pRVM-MatOp are equal to the serial RVM, when one CPU is involved.
pRVM-Ensemble was tested with three different sampling rates, ranging from 20% to 60%.
M was set 32 for the load balance purpose. The CPU time of pRVM-Ensemble could be
estimated byM×p3 ×Ts, which is 871.1 seconds for p = 20%, 6969.1 seconds for p = 40%, and
23520.8 seconds for p = 60%. The approximations are on the same order of magnitude as the
measured values in Table 2. The time costs of the parallel RVMs decrease rapidly, when more
CPUs are involved.

Figure 4 plots the speedup ratio curves of the parallel RVMs. Benefiting from the
small sampling rate, pRVM-Ensemble acquires super linear speedup ratios when p = 20%.
The ratios drop beneath the ideal cases for the large p. The curve of pRVM-MultiClass
descends as the number of CPUs increases. With less than 16 CPUs, pRVM-MultiClass is
faster than pRVM-Ensemble (p = 40% and p = 60%). However, it falls beneath pRVM-
Ensemble (p = 40%)with 16 CPUs. The phenomenon is caused by the unbalanced class pairs
of the training set. Table 3 shows the time cost of training each class pair with the binary
RVM. Classes 3 and 5 have the least number of samples. They only take 6.3 seconds to train
a binary RVM. The features of class 7 and class 9 are quite similar. Additionally, they almost
have the most samples. It takes 575.3 seconds to train a binary RVM for them. Influenced by
the huge difference, the computing nodes could not acquire the same amount of tasks. The
load unbalanced problem could be eased by the master-slave model in Figure 1. However, it
could never be totally eliminated, especially when more CPUs are involved. pRVM-MatOp
is more effective than pRVM-MultiClass and pRVM-Ensemble (p = 40% and p = 60%). To
implement the parallel matrix functions in the cluster, ScaLPACK introduces extra overhead

Mathematical Problems in Engineering 9

 30

25

20

15

10

5

0

Sp
ee

d
up

 r
at

io

1 2 4 8 16

Number of CPUs

pRVM-MultiClass

Ideal curve
pRVM-MatOp

pRVM-Ensemble: p = 20 %
pRVM-Ensemble: p = 40 %
pRVM-Ensemble: p = 60 %

Figure 4: The speedup ratio curves of the parallel RVMs.

Table 3: The time cost of RVM for each class pair.

Class 2 3 4 5 6 7 8 9
1 51.2 37.7 50.7 38.8 63.5 269.1 45.8 284.9
2 13.7 35.9 15.1 26.7 178.9 17.3 189.5
3 11.3 6.3 17.5 148.6 9.1 36.1
4 12.4 23.2 163.0 15.3 41.4
5 19.6 163.6 11.1 102.4
6 197.1 20.4 249.5
7 141.6 575.3
8 119.3

on the network for data exchange, which causes a slight downtrend in the speedup ratio
curve of pRVM-MatOp. The downtrend will further increase with more CPUs.

Table 4 lists the overall classification accuracy of the parallel RVMs. pRVM-MultiClass
and pRVM-MatOp acquire the same accuracy as the serial, because they do not alter the
logic of the standard RVM. The training subsets of the weak RVMs are randomly sampled
in pRVM-Ensemble. It will cause the difference among the accuracies of the local classifiers.
When p equals 20%, the minimum accuracy of the weak RVMs is 81.67% and the maximal
value is 84.43%. There exists a gap of 2.76%. The gap is gradually decreased as the sampling
rate p increases. The ensemble accuracy after the majority voting is better than those (Min,
Max, and Aver) of the weak RVMs. It exceeds the serial when p = 60%. The accuracies do not
linearly increase with the sampling rate p for pRVM-Ensemble. The increment is 2.85%, when
p varies from 20% to 40%. It drops to 0.73% for the 40%–60% case. The increment is further
decreased to 0.19%, when p reaches 80%. However, it produces a huge growth of the time

10 Mathematical Problems in Engineering

Table 4: Overall classification accuracy of parallel RVMs on cluster, with entire training set.

p
pRVM-Ensemble

pRVM-MultiClass pRVM-MatOp
Min Max Aver Vote

20% 81.67% 84.43% 82.85% 87.94%

91.26% 91.26%40% 86.31% 88.55% 87.43% 90.79%
60% 88.36% 90.39% 89.28% 91.52%
80% 89.52% 90.86% 90.29% 91.71%

Table 5: Speedup ratios of parallel RVMs as data size varies, 16 CPUs involved.

Data set Data size
pRVM-Ensemble with different p

pRVM-Multiclass pRVM-MatOp
20% 40% 60%

DS-A 848 (20%) 2.96 1.55 1.13 5.7 2.3
DS-B 1697 (40%) 11.91 3.31 1.36 5.2 4.7
DS-C 2546 (60%) 17.05 4.04 1.46 5.3 6.4
DS-D 3395 (80%) 26.13 5.45 1.82 5.6 7.9
DS-E 4244 (100%) 28.10 5.52 1.87 5.4 8.8

cost with so large p. Taking into consideration both efficiency and accuracy, the p = 20% and
p = 40% cases are preferred.

We also measure the performance of the parallel RVMs for different data sizes. Table 5
shows the speedup ratios of the parallel implementations, when 16 CPUs are involved.
The second column of the table gives the amount of samples used to train the classifiers.
The number in the parenthesis is the percentage of the used training samples, compared
with the entire training set in Table 1. The cost of the serial RVM does not linearly scale
with the number of training samples. Therefore, the speedup ratio of pRVM-Ensemble is
on a declining curve when the training set decreases. pRVM-MultiClass is stable when the
data size varies. The speedup ratio of pRVM-MatOp decreases obviously when less training
samples are used. It drops to 2.3 for the smallest data set DS-A. The reduction could be
explained from three aspects. First, the parallel matrix functions used in pRVM-MatOp are
designed for the large matrix, not suitable for too small data set. Second, the extra overhead
caused by the parallelization has a prominently negative impact for the small training set.
Third, pRVM-MatOp only parallelizes the matrix operations in (2.6) ∼ (2.8). For the small
data sets, the unparallelized parts could not be neglected. These factors greatly reduce the
efficiency of pRVM-MatOp, once the data size decreases. The experiment indicates that
pRVM-MultiClass is basically immune to the data size, but pRVM-Ensemble and pRVM-
MatOp are not suitable for too small data sets.

4.2. Evaluate pRVM-MatOp on Multicore Platform

pRVM-MatOp was also tested on two multicore platforms. One is a server with a two-core
Intel E5500 processor and 2GB memory. The other is a workstation with a four-core Intel
Q9400 CPU and 4GB memory. pRVM-MatOp is complied and linked with Intel’s complier
under Visual Studio 2008. The parallel matrix functions come from the MKL package. The
results are given in Table 6.

Mathematical Problems in Engineering 11

Table 6: The cost (seconds) and speedup ratio (in parenthesis) of pRVM-MatOp on multicore platforms.

Data set Data size
Two-core server Four-core workstation

1 Core 2 Cores 1 Core 4 Cores

DS-A 848 (20%) 21.5 16.5 (1.30) 22.7 15.2 (1.49)
DS-B 1697 (40%) 147.4 113.9 (1.29) 152.8 86.3 (1.77)
DS-C 2546 (60%) 409.7 312.3 (1.31) 427.4 207.5 (2.06)
DS-D 3395 (80%) 832.5 634.1 (1.31) 868.5 366.5 (2.37)
DS-E 4244 (100%) 1354.9 1028.3 (1.32) 1413.5 559.3 (2.53)

Like the experiment of Table 5, we also extracted different amounts of samples from
the entire training set to assess the parallel matrix functions. The time costs with one core are
equal to those of the serial RVM on the platforms. As the data size decreases, the reduction
of the speedup ratio is not significant for the two-core platform. This is due to the too few
cores. However, on the four-core platform, more processing units are involved. The speedup
ratio decreases dramatically when the training set is small. This could also be explained from
the aforementioned three factors. For the large training set, the cost is decreased significantly.
Learning with the entire training samples, RVM is improved from 1354.9 seconds to 1028.3
seconds on two-core E5500 server. It acquires a 1.32 speedup ratio. The time is further
decreased from 1413.5 s to 559.3 s on the four-core Q9400 workstation, with a 2.53 speedup
ratio. The multicore platforms exchange the data with the internal bus, which is much faster
than the network of the cluster. Therefore, the parallel efficiencies (speedup ratio/CPUs) of
pRVM-MatOp on the multicore platforms are slightly better than the counterparts of the
cluster. Considering the limited computing resources of the multicore platforms, pRVM-
MultiClass and pRVM-Ensemble are not included in this part.

4.3. Further Discussion

The parallel implementations are summarized and compared in Table 7. pRVM-MatOp
and pRVM-MultiClass have the same logic as the serial RVM. Therefore, they could not
process the large-scale training set. pRVM-Ensemble solves the problem by splitting the large
training set into small subsets. pRVM-MatOp is controlled by the linear algebra packages.
The parallelization is implicit for the researcher, making pRVM-MatOp easy to use. pRVM-
MultiClass and pRVM-Ensemble are explicitly parallelized by the programmer with the
send, receive functions of the MPI library. Designing this kind of parallel algorithms is rather
difficult. Affected by the unbalanced class pairs, pRVM-MultiClass could not achieve load
balance. It further causes the poor scalability and low parallel efficiency. pRVM-Ensemble
is load balance as long as p and M are set properly. It is scalable and can achieve a high
parallel efficiency. The load balance of pRVM-MatOp is controlled by the linear algebra
packages. Its scalability and efficiency are also unsatisfactory, because of the extra overhead
and unparallelized nonmatrix operations.

Considering the easy-to-use characteristic, pRVM-MatOp is preferred when the
multicore platform is available. It could be easily realized and achieve a satisfactory speedup.
For the large-scale training set, pRVM-Ensemble on the cluster is highly recommended
because of its good scalability and high parallel efficiency.

12 Mathematical Problems in Engineering

Table 7: Characteristics of the parallel implementations.

pRVM-MatOp pRVM-MultiClass pRVM-Ensemble
Scale of the training set Small Small Large
Explicitly parallelized No Yes Yes
Easy to use Yes No No
Load balance Yes No Yes
Scalability Poor Poor Good
Parallel efficiency Low Low High

5. Conclusion

Parallel computing is used to accelerate RVM classification of the hyperspectral image in this
paper. The parallelization is discussed from the matrix operations, the multiclass strategy,
and the ensemble skill. Evaluated with the AVIRIS data, the parallel RVMs are proved to
be effective. The training procedure is accelerated when more cores or CPUs are involved.
Future improvements could be carried on by designing and evaluating the hybrid structure,
which is not included in the experiments due to the lack of the testing platform. RVM could
be parallelized by the multiclass or the ensemble skill in the global view and by the parallel
matrix functions in the local view. The hybrid structure is suitable for the cluster of the
multicore platforms, which is the trend of the supercomputer.

Acknowledgments

This work is supported by Fundamental Research Funds for Central Universities (no.
2012ZM0100), China Postdoctoral Science Foundation funded project (no. 20100480750), and
Key Laboratory of Autonomous Systems and Network Control, Ministry of Education.

References

[1] G. F. Hughes, “On the mean accuracy of statistical pattern recognizers,” IEEE Transactions on
Information Theory, vol. 14, pp. 55–63, 1968.

[2] J. P. Hoffbeck and D. A. Landgrebe, “Covariance matrix estimation and classification with limited
training data,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 18, no. 7, pp. 763–
767, 1996.

[3] C. Lee and D. A. Landgrebe, “Feature extraction based on decision boundaries,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 15, no. 4, pp. 388–400, 1993.

[4] B. C. Kuo and D. A. Landgrebe, “Nonparametric weighted feature extraction for classification,” IEEE
Transactions on Geoscience and Remote Sensing, vol. 42, no. 5, pp. 1096–1105, 2004.

[5] B. M. Shahshahani and D. A. Landgrebe, “Effect of unlabeled samples in reducing the small sample
size problem and mitigating the hughes phenomenon,” IEEE Transactions on Geoscience and Remote
Sensing, vol. 32, no. 5, pp. 1087–1094, 1994.

[6] Q. Jackson and D. A. Landgrebe, “An adaptive classifier design for high-dimensional data analysis
with a limited training data set,” IEEE Transactions on Geoscience and Remote Sensing, vol. 39, no. 12,
pp. 2664–2679, 2001.

[7] L. Bruzzone, M. Chi, and M. Marconcini, “Transductive SVM for semi- supervised classification
of hyperspectral data,” in Proceedings of the International Geoscience and Remote Sensing Symposium
(IGARSS ’07), pp. 164–167, Seoul, Korea, July 2005.

[8] Y. Bazi and F. Melgani, “Toward an optimal SVM classification system for hyperspectral remote
sensing images,” IEEE Transactions on Geoscience and Remote Sensing, vol. 44, no. 11, pp. 3374–3385,
2006.

Mathematical Problems in Engineering 13

[9] G. Camps-Valls and L. Bruzzone, “Kernel-based methods for hyperspectral image classification,”
IEEE Transactions on Geoscience and Remote Sensing, vol. 43, no. 6, pp. 1351–1362, 2005.

[10] F. Melgani and L. Bruzzone, “Classification of hyperspectral remote sensing images with support
vector machines,” IEEE Transactions on Geoscience and Remote Sensing, vol. 42, no. 8, pp. 1778–1790,
2004.

[11] M. E. Tipping, “Sparse Bayesian learning and the relevance vector machine,” Journal of Machine
Learning Research, vol. 1, no. 3, pp. 211–244, 2001.

[12] B. Demir and S. Ertürk, “Hyperspectral image classification using relevance vector machines,” IEEE
Geoscience and Remote Sensing Letters, vol. 4, no. 4, pp. 586–590, 2007.

[13] G. M. Foody, “RVM-based multi-class classification of remotely sensed data,” International Journal of
Remote Sensing, vol. 29, no. 6, pp. 1817–1823, 2008.

[14] M. E. Tipping and A. C. Faul, “Fast marginal likelihood maximization for sparse Bayesian models,”
in Proceeding of the 9th International Workshop on Artificial Intelligence and Statistics, C. M. Bishop and B.
J. Frey, Eds., Key West, Fla, USA, January 2006.

[15] Y. Lei, X. Q. Ding, and S. J. Wang, “Visual tracker using sequential Bayesian learning: discriminative,
generative, and hybrid,” IEEE Transactions on Systems, Man, and Cybernetics, Part B, vol. 38, no. 6, pp.
1578–1591, 2008.

[16] C. Silva and B. Ribeiro, “Towards expanding relevance vector machines to large scale datasets,”
International Journal of Neural Systems, vol. 18, no. 1, pp. 45–58, 2008.

[17] D. Yang, G. Liang, and D. D. Jenkins, “High performance relevance vector machine on GPUs,” in
Symposium on Application Accelerators in High Performance Computing, 2010.

[18] A. Plaza, D. Valencia, J. Plaza, and P. Martinez, “Commodity cluster-based parallel processing of
hyperspectral imagery,” Journal of Parallel and Distributed Computing, vol. 66, no. 3, pp. 345–358, 2006.

[19] A. Plaza, D. Valencia, J. Plaza, and C. I. Chang, “Parallel implementation of endmember extraction
algorithms from hyperspectral data,” IEEE Geoscience and Remote Sensing Letters, vol. 3, no. 3, pp.
334–338, 2006.

[20] S. A. Robila and L. G. MacIak, “Considerations on parallelizing nonnegative matrix factorization for
hyperspectral data unmixing,” IEEE Geoscience and Remote Sensing Letters, vol. 6, no. 1, pp. 57–61, 2009.

[21] AVIRIS NW Indiana’s Indian Pines 1992 Data Set, 1992, ftp://ftp.ecn.purdue.edu/biehl/MultiSpec/.

Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International
Journal of
Mathematics and
Mathematical
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of

