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Abstract. In this paper, we give twoweak conditions for a lower semi-continuous function
on the n-dimensional Euclidean space Rn to be a convex function. We also present some
results for convex functions, strictly convex functions, and quasi-convex functions.
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1. Introduction. Let E be a normed vector space over the real number system R1.
An extended-real-valued function f : E → [−∞,+∞] is said to be convex if for all
x,y ∈ E and all α,u,v ∈ R1 such that f(x) < u, f(y) < v , 0<α< 1,

f
(
αx+(1−α)y)<αu+(1−α)v. (1.1)

Let us recall the definitions of strictly convex functions and quasi-convex functions.

Definition 1.1. Let f be a function from E to R1.
(1) f is said to be strictly convex if

f
(
αx+(1−α)y)<αf(x)+(1−α)f(y) (1.2)

for every x ∈ E, y ∈ E, x ≠y , and α∈ (0,1).
(2) f is said to be quasi-convex if

f
(
αx+(1−α)y)≤max

{
f(x),f (y)

}
(1.3)

for any x,y ∈ E and α∈ [0,1]; and strongly quasi-convex if strict inequality holds for
all x,y ∈ E, x ≠y and α∈ (0,1).
(3) f is said to be strictly quasi-convex if

f
(
αx+(1−α)y)<max

{
f(x),f (y)

}
(1.4)

for all x,y ∈ E, f(x)≠ f(y), and α∈ (0,1).
Recall that, by definition, an extended-real-valued function f defined on a set S ⊂ E

is to be lower semi-continuous at a point x ∈ S if, for each λ ∈ R1, λ < f(x), there
exists a neighborhood U of x such that f(y) > λ for all y ∈ U . f : S → [−∞,+∞] is
said to be lower semi-continuous if f is lower semi-continuous at each point of S.
This paper is organized as follows. In Section 2, we review some basic results for

convex functions and lower semi-continuous functions. Section 3 gives two weak con-
ditions for a lower semi-continuous function to be a convex function and presents a
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result which provides an important connection between convex functions and strictly
convex functions. Some properties of quasi-convex functions, strongly quasi-convex
functions, and strictly quasi-convex functions are investigated in Section 4. The con-
cept of convexity is important for quantitative and qualitative studies in mathematical
programming involving convex functions. Our results are motivated by Yang [4, 5].

2. Preliminaries. First, we recall the following two properties which characterize
lower semi-continuous functions (see Tiel [3]).

Theorem 2.1. Let S ⊂ E. A function f : S → [−∞,+∞] is lower semi-continuous if
and only if, for every real number λ, the set {x ∈ S : f(x)≤ λ} is closed.

Theorem 2.2. Let S ⊂ E. A function f : S → [−∞,+∞] is lower semi-continuous if
and only if its epigraph epi(f ) = {(x,λ) ∈ S×R1 : f(x) ≤ λ} is closed (as a subset of
S×R1).

We recall the following:

Theorem 2.3. A function f : E → [−∞,+∞] is convex if and only if its epigraph
epi(f )= {(x,λ) : x ∈ E,λ∈ R1,f (x)≤ λ} is convex as a subset of E×R1.

Theorem 2.4. A function f : E→ (−∞,+∞] is convex if and only if

f
(
αx+(1−α)y)≤αf(x)+(1−α)f(y) (2.1)

for all x and y ∈ E and all α∈ (0,1).

It follows from Theorem 2.3 that f is convex if its epigraph is a singleton or an
empty set.

Definition 2.1. Let (x,s), (y,t) ∈ Rn+1, with x,y ∈ Rn and s, t ∈ R1. The line
segment [(x,s),(y,t)] (with endpoints (x,s) and (y,t)) is the segment {γ(x,s)+
(1−γ)(y,t) : 0 ≤ γ ≤ 1}. If (x,s) ≠ (y,t), the interior ((x,s),(y,t)) of [(x,s),(y,t)]
is the segment {γ(x,s)+ (1−γ)(y,t) : 0 < γ < 1}. In a similar way, we can define
[(x,s),(y,t)) and ((x,s),(y,t)].

3. Convex functions. This section gives some properties on convex functions and
strictly convex functions. Our results greatly simplify the criteria on convex functions
and strictly convex functions.
By using Theorems 2.2 and 2.3, one can prove the following two results which give

weak conditions for a lower semi-continuous function to be a convex function.

Theorem 3.1. Let f : Rn → [−∞,+∞] be lower semi-continuous and suppose that
there exists an α ∈ (0,1) such that for all x,y ∈ Rn, u,v ∈ R1 such that f(x) < u,
f(y) < v ,

f
(
αx+(1−α)y)<αu+(1−α)v. (3.1)

Then f : Rn→ [−∞,+∞] is convex.

Proof. By Theorem 2.3, it is sufficient to show that epi(f ) is convex as a subset of
Rn+1. By contradiction, suppose that there exist (x,λ1), (y,λ2)∈ epi(f ) (with x,y ∈
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Rn and λ1,λ2 ∈ R1) and α0 ∈ (0,1) such that

α0(x,λ1)+(1−α0)(y,λ2) ∉ epi(f ). (3.2)

Let x0 =α0x+(1−α0)y and λ0 =α0λ1+(1−α0)λ2, then (x0,λ0) ∉ epi(f ). Let

A= epi(f )∩[(x,λ1),(x0,λ0)
]

(3.3)

and

B = epi(f )∩[(x0,λ0),(y,λ2)
]
. (3.4)

Since f : Rn→ [−∞,+∞] is lower semi-continuous, by Theorem 2.2, epi(f ) is a closed
subset of Rn+1. Consequently, A and B are bounded and closed subsets of Rn+1, and
(x0,λ0) ∉ A, (x0,λ0) ∉ B. Thus, there exist (x̃,s) ∈ A and (ỹ,t) ∈ B, with x̃, ỹ ∈ Rn

and s,t ∈ R1, such that

min
a∈A

∥∥a−(x0,λ0)
∥∥= ∥∥(x̃,s)−(x0,λ0)

∥∥ (3.5)

and

min
b∈B

∥∥b−(x0,λ0)
∥∥= ∥∥(ỹ,t)−(x0,λ0)

∥∥, (3.6)

where ‖·‖ is the norm on Rn+1. Hence, we have

epi(f )∩((x̃,s),(x0,λ0)
]=∅, epi(f )∩[(x0,λ0),(ỹ,t)

)=∅. (3.7)

Therefore,

epi(f )∩((x̃,s),(ỹ,t))=∅. (3.8)

Noticing that x̃ ≠ ỹ and s ≠ t, and ((x̃,s),(ỹ,t))≠∅.
On the other hand, since (x̃,s), (ỹ,t) ∈ epi(f ), we have f(x̃) < s+ε, f(ỹ) < t+ε

for each ε > 0. Since α(s+ε)+(1−α)(t+ε) = αs+(1−α)t+ε, by the hypothesis of
the theorem, we have

f
(
αx̃+(1−α)ỹ)<αs+(1−α)t+ε. (3.9)

Since ε is an arbitrary positive real number, it follows that

f
(
αx̃+(1−α)ỹ)≤αs+(1−α)t. (3.10)

Hence,

α(x̃,s)+(1−α)(ỹ,t)∈ epi(f ) (3.11)

which contradicts (3.8). Thus, we conclude that epi(f ) is convex. This completes the
proof.

Theorem 3.2. Let f : Rn → (−∞,+∞] be lower semi-continuous. Then f is convex
if and only if, for all x1,x2 ∈ Rn, there exists an α ∈ (0,1) (α depends on x1,x2) such
that

f
(
αx1+(1−α)x2

)≤αf(x1)+(1−α)f(x2). (3.12)

Proof. Let f : Rn → (−∞,+∞] be convex. From Theorem 2.4, it follows that, for
all x1,x2 ∈ Rn, there exists an α∈ (0,1) such that (3.12) holds.
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For the converse part, by Theorem 2.3, it is sufficient to show that epi(f ) is convex
as a subset of Rn+1. By contradiction, suppose that there exist (x,λ1),(y,λ2)∈ epi(f )
(with x,y ∈ Rn and λ1,λ2 ∈ R1), and α0 ∈ (0,1) such that

α0(x,λ1)+(1−α0)(y,λ2) ∉ epi(f ). (3.13)

Let x0 =α0x+(1−α0)y and λ0 =α0λ1+(1−α0)λ2, then (x0,λ0) ∉ epi(f ). We follow
the proof of Theorem 3.1. Having defined A,B,(x̃,s),(ỹ,t), we find that

epi(f )∩((x̃,s),(ỹ,t))=∅. (3.14)

Notice that ((x̃,s),(ỹ,t))≠∅.
On the other hand, by the hypothesis of the theorem, for x̃, ỹ ∈ Rn, there exists an

α∈ (0,1) such that

f
(
αx̃+(1−α)ỹ)≤αf(x̃)+(1−α)f(ỹ). (3.15)

Since (x̃,s), (ỹ,t)∈ epi(f ), we have

f(x̃)≤ s and f(ỹ)≤ t. (3.16)

Combining (3.15) and (3.16), we obtain

f
(
αx̃+(1−α)ỹ)≤αs+(1−α)t. (3.17)

So, α(x̃,s)+ (1−α)(ỹ,t) ∈ epi(f ), which contradicts (3.14). Thus, we conclude that
epi(f ) is convex. This completes the proof.

Remark 3.1. We point out that there are functions, which are not lower semi-
continuous and satisfy the conditions of Theorem 3.2 (i.e., the weak conditions that
a lower semi-continuous function on Rn is a convex function) but not convex. For
example, consider the function f : R1→ R1 defined by

f(x)=



1
4 , ifx < 0;
1
2 +x, ifx ≥ 0.

(3.18)

Proof. (a) f is not lower semi-continuous since the set {x ∈ R1 : f(x) ≤ 1/4} is
not a closed subset of R1.
(b) To show that f satisfies the conditions of Theorem 3.1, it suffices to show that,

for all x1 < 0, x2 ≥ 0, there exists an α∈ (0,1) (α depends on x1, x2) such that

f
(
αx1+(1−α)x2

)≤αf(x1)+(1−α)f(x2). (3.19)

Let x1 < 0 and x2 ≥ 0, then there exists an α∈ (0,1) (α depends on x1,x2) such that
αx1+(1−α)x2 < 0. Thus,

f
(
αx1+(1−α)x2

)= 1
4 . (3.20)

Moreover, since f(x1)= 1/4 and f(x2)= (1/2)+x2 ≥ 1/2,

αf(x1)+(1−α)f(x2) > 1
4α+ 1

4 (1−α). (3.21)

Combining (3.20) and (3.21), we obtain (3.19).
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(c) Finally, let us show that f is not a convex function. If x1 = −1/5, x2 = 1/2, and
α= 1/3, then

αf(x1)+(1−α)f(x2)= 1
3 · 14 + 2

3 ·1 (3.22)

and

f
(
αx1+(1−α)x2

)= 1
2 + 4

15 = 23
30 . (3.23)

(3.22) and (3.23) imply that

αf(x1)+(1−α)f(x2) < f
(
αx1+(1−α)x2

)
, (3.24)

which completes the proof.

Corollary 3.1. Let f : Rn→ (−∞,+∞] be lower semi-continuous. Then f is convex
if and only if there exists an α∈ (0,1) such that, for all x1, x2 ∈ Rn,

f
(
αx1+(1−α)x2

)≤αf(x1)+(1−α)f(x2). (3.25)

Recall that a function f : I → R1, where I is a (closed, open or half-open, finite or
infinite) interval in R1, is called midpoint convex if, for all x1,x2 ∈ I,

f
(
1
2x1+ 1

2x2

)
≤ 1

2f(x1)+ 1
2f(x2). (3.26)

It is known that if f : I → R1 is continuous andmidpoint convex, then f : I → R1 is convex
(see Theorem 1.10 in Tiel [3]). The following corollary generalizes this known fact.

Corollary 3.2. Let f : Rn→ (−∞,+∞] be lower semi-continuous. Then f is convex
if and only if, for all x1,x2 ∈ Rn,

f
(
1
2x1+ 1

2x2

)
≤ 1

2f(x1)+ 1
2f(x2). (3.27)

Theorem 3.3. Let f : Rn → R1 be convex. If there exists an α∈ (0,1) such that, for
every pair of distinct points x1,x2 ∈ Rn, the strict inequality

f
(
αx1+(1−α)x2

)
<αf(x1)+(1−α)f(x2) (3.28)

holds true, then f : Rn→ R1 is strictly convex.

Proof. Assume that f : Rn→ R1 is a convex function which is not strictly convex.
Then there exist x,y ∈ Rn, x ≠y , and γ ∈ (0,1) such that

f
(
γx+(1−γ)y)= γf(x)+(1−γ)f(y). (3.29)

On the other hand, by the hypothesis of the theorem, we have

f
(
αx+(1−α)y)<αf(x)+(1−α)f(y). (3.30)

Let z = γx+(1−γ)y . From equality (3.29) and inequality (3.30), it is clear that γ ≠α.
(1) If 0< γ <α, let

z1 = γ
α
x+

(
1− γ

α

)
y. (3.31)
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Then z = γx+(1−γ)y can be rewritten as

z =αz1+(1−α)y. (3.32)

According to (3.28), we have

f(z) < αf(z1)+(1−α)f(y). (3.33)

Since f is convex, from (3.31), we obtain

f(z1) <
γ
α
f(x)+

(
1− γ

α

)
f(y). (3.34)

Combining (3.33) and (3.34), we obtain

f(z) < γf(x)+(1−γ)f(y) (3.35)

which contradicts (3.29).
(2) If α< γ < 1, that is

0<
γ−α
1−α < 1, (3.36)

let

z2 = γ−α
1−αx+ 1−γ

1−αy. (3.37)

Then z = γx+(1−γ)y can be rewritten as

z =αx+(1−α)z2. (3.38)

According to (3.28), we have

f(z) < αf(x)+(1−α)f(z2). (3.39)

Since f is convex, from (3.37), we obtain

f(z2) <
γ−α
1−αf(x)+ 1−γ

1−αf(y). (3.40)

Combining (3.39) and (3.40), we obtain

f(z) < γf(x)+(1−γ)f(y) (3.41)

which contradicts (3.29). This completes the proof.

According to Theorems 3.2 and 3.3, we have the following corollary.

Corollary 3.4. Let f : Rn → R1 be lower semi-continuous. If there exists an α ∈
(0,1) such that, for every pair of distinct points x1,x2 ∈ Rn,

f
(
αx1+(1−α)x2

)
<αf(x1)+(1−α)f(x2) (3.42)

holds true, then f : Rn→ R1 is strictly convex.

4. Quasi-convex functions. In this section, we give some properties on quasi-con-
vex functions, strongly quasi-convex functions, and strictly quasi-convex functions.



A NOTE ON CONVEX FUNCTIONS 531

Theorem 4.1. Let f : Rn → R1 be lower semi-continuous. Then f is quasi-convex if
and only if, for all x1,x2 ∈ Rn, there exists an α∈ (0,1) (α depends on x1,x2) such that

f
(
αx1+(1−α)x2

)≤max
{
f(x1),f (x2)

}
. (4.1)

Proof. It can be easily checked that f : Rn→ R1 is quasi-convex if and only if, for
every real number λ, the set {x ∈ Rn : f(x)≤ λ} is convex. In view of this observation,
it is sufficient to show that {x ∈ Rn : f(x)≤ λ} is a convex set for every real number
λ. By contradiction, suppose that there exists a real number λ∗ such that the set
Fλ∗ = {x ∈ Rn : f(x) ≤ λ∗} is not a convex set. Thus, there exist x,y ∈ Fλ∗ , and
α0 ∈ (0,1) such that α0x+(1−α0)y ∉ Fλ∗ . Let x0 = α0x+(1−α0)y , then x0 ∉ Fλ∗ .
Let

A= Fλ∗ ∩[x,x0] and B = Fλ∗ ∩[x0,y], (4.2)

where [x,x0]= {γx+(1−γ)x0 : 0≤ γ ≤ 1} and [x0,y]= {γx0+(1−γ)y : 0≤ γ ≤ 1}.
Notice that Fλ∗ = {x ∈ Rn : f(x) ≤ λ∗} is a closed set (by Theorem 2.1). Conse-

quently, A and B are bounded and closed subsets of Rn, and x0 ∉ A, x0 ∉ B. Thus,
there exist x̃ ∈A and ỹ ∈ B such that

min
a∈A

∥∥a−x0
∥∥= ∥∥x̃−x0

∥∥ (4.3)

and

min
b∈B

∥∥b−x0
∥∥= ∥∥ỹ−x0

∥∥, (4.4)

where ‖·‖ is the norm on Rn. Hence, we have

Fλ∗ ∩(x̃,X0]=∅ and Fλ∗ ∩[X0, ỹ)=∅. (4.5)

Therefore,

Fλ∗ ∩(x̃, ỹ)=∅. (4.6)

Notice that x̃ ≠ ỹ , and so (x̃, ỹ)≠∅.
On the other hand, by the hypothesis of the theorem, for x̃, ỹ ∈ Rn, there exists an

α∈ (0,1) such that

f
(
αx̃+(1−α)ỹ)≤max

{
f(x̃),f (ỹ)

}
. (4.7)

Since x̃, ỹ ∈ Fλ∗ , we have

f(x̃)≤ λ∗ and f(ỹ)≤ λ∗. (4.8)

Combining (4.7) and (4.8), we obtain

f
(
αx̃+(1−α)ỹ)≤ λ. (4.9)

So, αx̃+(1−α)ỹ ∈ Fλ∗ , which contradicts (4.6). Thus, we conclude that Fλ∗ is convex.
This completes the proof.
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It can be easily checked that the function f : R1→ R1 defined by

f(x)=


1, if x = 0;

0, if x ≠ 0
(4.10)

is strictly quasi-convex, but not quasi-convex. This shows that a strictly quasi-convex
function is not necessary quasi-convex. Now, by using the technique of Yang [5, Thm.
1], we prove the following:

Theorem 4.2. Let f : Rn → R1 be strictly quasi-convex. If there exists an α ∈ [0,1]
such that, for all x1,x2 ∈ Rn,

f
(
αx1+(1−α)x2

)≤max
{
f(x1),f (x2)

}
. (4.11)

Then f : Rn→ R1 is quasi-convex.

Proof. By contradiction, suppose that there exist x,y ∈ Rn and γ ∈ [0,1] such
that

f
(
γx+(1−γ)y)>max

{
f(x),f (y)

}
. (4.12)

Without loss of generality, we may assume that f(x) < f(y). Let z = γx+(1−γ)y ,
then

f(z) >max
{
f(x),f (y)

}
. (4.13)

If f(x) > f(y), since f is strictly quasi-convex, we have f(z) < f(x), which contra-
dicts (4.13). If f(x)= f(y), then (4.13) implies that

f(z) > f(x)= f(y). (4.14)

According to (4.11), we have

f
(
αx+(1−α)y)≤max

{
f(x),f (y)

}
. (4.15)

From (4.14) and (4.15), it is clear that γ ≠α.
(1) If 0< γ <α, let

z1 = γ
α
x+

(
1− γ

α

)
y. (4.16)

Then, by (4.16), z = γx+(1−γ)y can be rewritten as

z =αz1+(1−α)y. (4.17)

According to (4.11), we have

f(z)≤max
{
f(z1),f (y)

}
. (4.18)

From (4.14) and (4.18), we obtain

f(z)≤ f(z1). (4.19)

Let

δ= 1−α
α

· γ
1−γ . (4.20)
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Since 0< γ <α< 1, it can be easily shown that

0< δ< 1. (4.21)

According to z = γx+(1−γ)y , (4.16), and (4.20), we have

z1 = δx+(1−δ)z. (4.22)

Since f is strictly quasi-convex, from (4.22), we obtain

f(z1) <max
{
f(x),f (z)

}= f(z) (4.23)

which contradicts (4.19).
(2) If α< γ < 1, that is

0<
γ−α
1−α < 1, (4.24)

let

z2 = γ−α
1−αx+ 1−γ

1−αy. (4.25)

Thus, z = γx+(1−γ)y can be rewritten as

z =αx+(1−α)z2. (4.26)

According to (4.11), we have

f(z)≤max
{
f(x),f (z2)

}
. (4.27)

Again, from (4.14) and (4.27), it follows that

f(z)≤ f(z2). (4.28)

Let

η= γ−α
1−α . (4.29)

Since 0 < α < γ < 1, it can be easily shown that 0 < η < 1. According to z = γx+
(1−γ)y , (4.25), and (4.29), we have

z2 = ηz+(1−η)y. (4.30)

Since f is strictly quasi-convex, from (4.30), we have

f(z2) <max
{
f(z),f (y)

}= f(z) (4.31)

which contradicts (4.28). This completes the proof.

Similarly, by applying the technique of Yang [5, Thms. 2,4], we have the following
results:

Theorem 4.3. Let f : Rn → R1 be quasi-convex. If there exists an α ∈ (0,1) such
that, for all x,y ∈ Rn, f(x)≠ f(y),

f
(
αx+(1−α)y)<max

{
f(x),f (y)

}
(4.32)

holds true, then f : Rn→ R1 is strictly quasi-convex.
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Theorem 4.4. Let f : Rn → R1 be quasi-convex. If there exists an α ∈ (0,1) such
that, for every pair of distinct points x,y ∈ Rn,

f
(
αx+(1−α)y)<max

{
f(x),f (y)

}
(4.33)

holds true, then f : Rn→ R1 is strongly quasi-convex.
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