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A frequency-tunable half-wavelength dipole antenna is realized using an array of electrically actuated liquid-metal pixels. The
liquid-metal pixelated dipole antenna demonstrates frequency reconfigurability by switching between resonances at 2.51GHz,
2.12GHz, 1.85GHz, and 1.68GHz.

1. Introduction

Reconfigurable antennas offer an adaptive solution in a
dynamic communication environment, demonstrating the
ability to change radiation pattern, polarization, and opera-
tional frequency [1, 2]. Although reconfigurability is typically
achieved using PIN diodes [3], varactors [4], or MEMS
switches [5], liquid metal has also recently been shown to
implement reconfigurable antennas.

Recent demonstrations in liquid-metal reconfigurable
antennas include monopole [6, 7], dipole [8], planar
inverted F [9], Yagi-Uda [10–12], patch [13, 14], and slot
[15] antennas. Reconfigurability is achieved either by alter-
ing the physical dimensions of the radiating element with
liquid metal or by configuring an associated liquid-metal
parasitic element.

This paper achieves frequency reconfiguration using
liquid metal in the form of square pixels. Pixelated anten-
nas have been demonstrated before [16–19], but this is
the first paper to implement antenna pixelation using liquid
metal. To turn on a pixel, a discrete amount of liquid metal
is electrically actuated from a reservoir buried below the
antenna. To turn off a pixel, the liquid metal retreats to
the buried reservoir [20].

2. Design

2.1. Liquid-Metal Pixelated Dipole. The resonant frequency
of a half-wavelength dipole antenna depends on the elec-
trical length of the dipole arms. Using liquid-metal pixels
to adjust the dipole length results in discrete changes in
the antenna’s operating frequency. Figure 1 illustrates
the concept. The liquid-metal pixelated antenna is based
on the dimensions of a 64mm long baseline planar cop-
per dipole on a 0.787mm thick Duroid 5880 substrate,
shown in Figure 1(a). The liquid-metal pixelated antenna
shown in Figure 1(b) replaces a section of both dipole
arms with a 1× 4 pixel array. The walls of the pixel array
are made of polyimide. The top side of the array is cov-
ered in polystyrene, and the bottom side of the array is
covered in polydimethylsiloxane (PDMS). Adjacent pixels
on the top side are interconnected with stainless-steel
connectors embedded between the pixel walls. The pixel
array connects to the copper section of the antenna
through a soldered stainless-steel wire. This is necessary
as gallium-based liquid metals such as Galinstan [21]
used in this antenna amalgamates with copper, compromis-
ing actuation. Although Galinstan reacts with some mate-
rials, it has no known adverse effects on the human
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Figure 1: (a) Baseline planar dipole antenna to compare to liquid-metal pixelated equivalent. (b) Liquid-metal pixelated dipole prototype
filled with liquid metal. (c) Top side with zoom-in of pixels. The left pixel is in the “on” state, with liquid metal present and interfacing
with stainless steel placed within the walls between pixels. (d) Bottom side with zoom-in of pixels. The right pixel is in the “off” state.
(e) Side view.
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body [21]. The interface between the copper and pixel
array is covered in a watertight polymer, which is not
shown in Figure 1.

2.2. Liquid-Metal Pixel. A layout of a pixel is shown in
Figure 2. Liquid metal moves between the top and bottom
reservoirs by applying a voltage on the electrodes. Both
electrodes are fed through the bottom reservoir, which
is covered with a layer of PDMS. The electrodes are elec-
trically isolated from each other on the bottom side of
the pixel. A pixel is considered “on” when the liquid
metal is actuated to the top-side reservoir of the antenna.
The pixel is turned “off” when the liquid metal is actuated to
the bottom-side reservoir.

2.3. Liquid-Metal ActuationMechanism. Liquidmetal is actu-
ated by manipulating its surface tension using continuous
electrowetting (CEW) [22]. Liquid metal is immersed in a
1M solution of sodium hydroxide (NaOH), forming an
electrical double layer (EDL) at the metal-NaOH interface.
A voltage acting on the EDL creates a surface tension
imbalance on the liquid metal. This results in a pressure
differential, actuating the liquid metal. Figure 3 demonstrates

actuation in an early 4mm× 4mm liquid-metal pixel pro-
totype. A 1.2V square wave with a +1V DC offset is
applied to the electrodes to actuate the liquid metal from
a reservoir buried below. The liquid metal is then actuated
back to the reservoir by swapping the applied voltage
polarities on the electrodes.

The pixels built for the liquid-metal pixelated dipole
utilize a 3mm× 3mm design. The actuation voltage for this
design is a 30Hz 4V square wave with a +1V DC offset,
which induces a larger actuation force than the 1.2V actu-
ation voltage used in the 4mm× 4mm prototype pixel. The
larger force acting on a smaller body of liquid metal within
the pixel significantly increases actuation speeds, being able
to switch the pixel between the on and off states within
0.03 to 0.09 seconds.

3. Experimental Results

The antenna is tested by incrementally turning on one
pixel on each dipole arm and then measuring the resulting
resonance frequency and radiation pattern. The measured
resonance frequencies agree with simulated values obtained
from an ANSYS HFSS model (Table 1).
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Figure 2: Layout of pixel in the “off” state. (a) Top side of pixel. (b) Bottom side with liquid metal present. (c) Side view with liquid metal
residing on the bottom side. (d) Application of voltage on the electrodes moves the liquid metal from the bottom side to the top side.
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As expected, lengthening the dipole by adding liquid-
metal pixels on each arm decreases the resonant frequency
of the antenna. As the antenna becomes longer, the incre-
mental frequency shift decreases as the inverse square of
the antenna length, as expected from the derivative of
f = v/λ = v/2l:

df
dl

= −
v

2l2
, 1

where f is the frequency, l is the antenna length, and v is the
propagation velocity.

The frequency bandwidth and antenna efficiency of the
pixelated dipole antenna are compared to those of a planar
copper dipole antenna (Table 2). The performance of the
pixelated dipole does not deviate significantly from that of
the baseline planar copper dipole.

Table 1: Measured versus simulated resonance frequencies.

“On” pixels (per arm) 1 2 3 4

Measured (GHz) 2.51 2.12 1.85 1.68

Simulated (GHz) 2.43 2.08 1.88 1.78

Table 2: Baseline planar copper dipole versus pixelated dipole.

Parameter Bandwidth (%) Efficiency (%)

Planar copper 12.1 79.5

4 pixels 17.9 72.6

3 pixels 21.6 75.4

2 pixels 17.5 72.6

1 pixel 13.6 70.2

Electrodes

Channel

(a) (b)

(c) (d) (e) (f) (g) (h)

Figure 3: (a) Layout of the prototype pixel bottom side with an actuation circuit. (b) Fabricated pixel with an outlined pixel and electrodes.
Stainless-steel syringes (not shown) are used to puncture the PDMS. (c) Application of 1.2 V to actuate liquid metal from a reservoir buried
below. (d) Liquid metal actuating. (e) Completion of liquid-metal actuation. (f) Swapping voltage applied to electrodes. (g) Liquid metal
retreats to the reservoir below. (h) Completion of liquid-metal actuation.
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Figure 4: Measured copolarized (solid) and cross-polarized
(dashed) radiation patterns in the (a) E-plane and (b) H-plane.
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The measured radiation patterns are that of a typical
dipole antenna, with nulls at θ = 0° and 180° in the E-plane
and an omnidirectional pattern in the H-plane (Figure 4).
The variation in peak gain between the 1- and 4-pixel-per-
arm cases is approximately ±3 dB. The cross-polarization
ratio is between 10 and 20 dB.

The effect of pixelating the baseline dipole was also inves-
tigated. Figure 5 compares the measured radiation pattern of
the baseline planar copper dipole to that of a pixelated copper
equivalent. Both antennas are tested at 2.1GHz. This figure
shows that pixelation of the dipole antenna presented in this
paper has negligible effects on the radiation pattern at the
resonant frequency.

4. Conclusion

This paper demonstrates the first implementation of a
pixelated antenna using liquid metal. Pixels actuate liquid
metal with a 4V signal to increase the length of a dipole
antenna. This allows a pixelated dipole antenna to resonate
at 2.51GHz, 2.12GHz, 1.85GHz, and 1.68GHz. It has also
been found that pixelation of the dipole antenna presented
in this paper has negligible effects on the radiation pattern
at the resonant frequency.
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Figure 5: Comparison of baseline copper dipole and pixelated
copper equivalent: (a) E-plane and (b) H-plane.
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