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Focusing on quality-related complex industrial process performance monitoring, a novel multimode process monitoring method
is proposed in this paper. Firstly, principal component space clustering is implemented under the guidance of quality variables.
Through extraction of model tags, clustering information of original training data can be acquired. Secondly, according to
multimode characteristics of process data, the monitoring model integrated Gaussian mixture model with total projection to latent
structures is effective after building the covariance description form.The multimode total projection to latent structures (MTPLS)
model is the foundation of problem solving about quality-related monitoring for multimode processes. Then, a comprehensive
statistics index is defined which is based on the posterior probability of the monitored samples belonging to each Gaussian
component in the Bayesian theory. After that, a combined index is constructed for process monitoring. Finally, motivated by the
application of traditional contribution plot in fault diagnosis, a gradient contribution rate is applied for analyzing the variation of
variable contribution rate along samples. Our method can ensure the implementation of online fault monitoring and diagnosis for
multimode processes. Performances of the whole proposed scheme are verified in a real industrial, hot strip mill process (HSMP)
compared with some existing methods.

1. Introduction

With modern industrial processes getting increasingly com-
plex and large, prevention monitoring and fault diagnosis
have become the key to ensure safe operation, improve
product quality, and gain economic benefits. Due to the
complex operation mechanism, sheer size, complex condi-
tions, chaotic environment, and vague boundary conditions
in complex industrial systems, it is quite tough to implement
effective process monitoring. As a result, the data-driven pro-
cess monitoring technology has become one of the research
hotspots in the field of fault diagnosis. The core idea of this
technique is to establish the data model by means of using
historical data, mining useful information, and getting the
features of normal and fault operation mode, so as to realize
process monitoring. In the last decades, basic multivariate
statistical monitoring techniques, such as principal compo-
nent analysis (PCA) and partial least squares (PLS), have been
established and successfully applied in practice [1].

However, PCA or PLS model is established with data
which follow the basis hypothesis of data subject to stable
single Gaussian mode. Due to the reasons of fluctuation of
raw materials, product specifications, and differences among
batches, process data show the characteristic of multimode
in actual industrial processes especially for batch processes.
Considering the problems existing in the multimode pro-
cess, traditional fault detection methods and their improved
algorithms are difficult to be applied directly; otherwise, the
performance of data model in process monitoring will be
reduced.

Many scholars have studied a lot andmade some progress
on those problems [1]. Hwang andHan proposed a hierarchi-
cal clustering based on the PCAmodelingmethod [2]. Lane et
al. proposed a pooled principal component analysis method
[3]. However, the ensemble modeling methods, in which
the common feature of subspace in each mode is extracted
as a unified model, are unable to fully or accurately depict
all operation models. Particularly, when there are many
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differences among variousmodes, themodel characterization
in their methods is often biased. Chen and Liu used the
heuristic smoothing clustering algorithm to classify data
automatically, which can get multiple operating modes [4].
Zhao et al. applied multiple PCA and multiple PLS method
to fault monitoring for multimode processes [5], in which
the similarity index between different operating models was
established and used to analyze the shift between the models.
In view of stage division, Doan and Srinivasan modeled dif-
ferent stages of the process, respectively, for fault monitoring
[6]. Dealing with the multimode problem of the process,
the former divided the process data using the clustering
method and then established independent models, so as to
make fault monitoring more targeted. However, the above
independentmodelingmethods are often complex, have large
calculating quantity, and are usually based on the experience
of mode division. Whether the division is reasonable or
not will directly affect the quality of monitoring results.
All the above increase the difficulties of online monitor-
ing.

Considering the unique advantages in dealing with non-
Gaussian data, the Gaussian mixture model (GMM) has
not been explored in multimode process monitoring until
recently. Choi et al. integrated PCA and DA with GMM to
detect and isolate the faults in a process with nonlinearity,
multistates, or dynamics [7]. Yoo et al. applied a similar stra-
tegy intomultiway PCA tomonitor biological batch processes
[8]. However, these methods ignore the possibility that the
monitored sample may come from other Gaussian com-
ponents of lower posterior probabilities, which may lead
to biased monitoring results. Yu and Qin proposed a new
method that combines finite mixture Gaussian models with
Bayesian inference to characterize different operation modes
through Gaussian components and then realized fault detec-
tion [9]. In recent years, many scholars had proposed differ-
ent methods to solve multimode monitoring [9].

The main contribution of this paper is summarized as
follows. (1)An efficient method for multimode process mon-
itoring based on finite Gaussian mixture models is proposed.(2) A gradient contribution rate is proposed to measure the
contribution to the combined index and find out the variable
which should be in charge of the fault in quality.This rate can
better show the changes of variables contribution rate over
time after fault occurrence.

The remainder of this paper is organized as follows. In
Section 2, the descriptions of traditional PCAandPLSmodels
in covariance form are provided, and then the covariance
description form of the total projection to latent structures
(TPLS)model is derived.Multimode information is extracted
from the principal component space by GMM and a new
multimode total projection to potential structure (MTPLS)
model is established in Section 3. A unified monitoring
framework based on MTPLS in combination with Bayesian
inference is constructed and quality-related fault monitoring
is implemented using a combined index in Section 4. In
Section 5, a hot strip mill process is taken as an example to
verify the superiority of our new method in fault monitoring
and diagnosis over traditional methods.The conclusions and
future works are given in Section 6.

2. Multivariate Statistical Theory

2.1. PCA and Covariance Description Form. Principal com-
ponent analysis model is one of the most basic projection
models in multivariate statistical analysis. Let X ∈ R𝑁∗𝑚
be the dataset of 𝑚-dimensional process variables, where 𝑁
stands for the number of samples. Matrix X can be decom-
posed into a scorematrix and a loadingmatrix as follows [10]:

X = X̂ + E = TP𝑇 + E,
T = XP, (1)

where T ∈ R𝑁∗𝐴 and P ∈ R𝑚∗𝐴 stand for score matrix and
loadingmatrix, respectively, and𝐴 is the number of principal
components. The covariance matrix of normalized data can
be defined as follows:

ΣX ≈ 1𝑁 − 1X𝑇X. (2)

The PCA loading matrix P can be obtained by eigenvalue
decomposition on the covariance matrix ΣX.

Based on the projection model, monitoring statistics
indexes 𝑇2 and SPE can be constructed. Let xnew ∈ 𝑅𝑚; the
indexes can be designed as follows:

𝑇2 = x𝑇newPΛ
−1P𝑇xnew ≤ 𝑇2𝛼 ,

SPE = 󵄩󵄩󵄩󵄩󵄩(I − PP𝑇) xnew󵄩󵄩󵄩󵄩󵄩2 ≤ 𝛿2𝛼, (3)

where Λ denotes the principal component covariance matrix
and 𝑇2𝛼 and 𝛿2𝛼 are the control limit with the confidence level
of 𝛼.

When the residual error is subject to normal distribution,
Jackson andMudholkar pointed out that the control limit can
be calculated as follows:

𝛿2𝛼 = 𝜃1(𝑐𝛼√2𝜃2ℎ20𝜃1 + 1 + 𝜃2ℎ0 (ℎ0 − 1)𝜃21 )
1/ℎ0 , (4)

where ℎ0 = 1 − 2𝜃1𝜃3/3𝜃21 , 𝜃𝑖 = ∑𝑚𝑗=𝐴+1 𝜆𝑖𝑗 (𝑖 = 1, 2, 3),𝑐𝛼 represents the threshold of standard normal distribution
under the confidence level of 𝛼, and 𝜆𝑗 represents the
eigenvalue of covariance matrix ΣX.

Similarly, in order to apply the sample covariance infor-
mation into the monitoring index, the principal component
covariance matrix can be expressed as

Λ = 1𝑁 − 1T𝑇T = 1𝑁 − 1P𝑇X𝑇XP = P𝑇ΣXP. (5)

2.2. PLS and Covariance Description Form. In the actual
industrial production, the changes of quality variables Y are
of more concern, especially for the faults which can cause
the change of quality variables. PLS model uses the quality
variables to guide the decomposition of sample space.



Journal of Control Science and Engineering 3

PLS decomposition of X and Y results in the following:

X = TP𝑇 + E,
Y = TQ𝑇 + F, (6)

where X ∈ R𝑁∗𝑚, Y ∈ R𝑁∗𝑙, and score matrix T can be
formulated with X as T = XR.

ParametermatrixR can be obtained by the loadingmatrix
P and weight matrix W in PLS iterative calculation, R =
W(P𝑇W)−1.

According to the iterative process of the PLS model,
Peng et al. proposed a model construction method using
data covariance information [11], in which the covariance
matrix of data was introduced into the iterative process, and
model parameter matrices can be obtained at the same time.
Compared with conventional PLS, the model construction
methodusing data covariance information reduced the calcu-
lation amount although the intrinsic properties essence was
not changed.

Different from the PCA projection model, the decompo-
sition structure of space X in PLS is defined by two matrices
P and R, and an oblique projection structure is induced in
input space. It is the quality that guides the decomposition
of sample space, so that the principal component space is
changed. The covariance matrix of the principal component
space can be expressed as

Λ = 1𝑁 − 1T𝑇T = 1𝑁 − 1R𝑇X𝑇XR = R𝑇ΣXR. (7)

Similar to PCA model monitoring, the monitoring sam-
ple statistics can be constructed by using the covariance
matrix of the above formula as follows:𝑇2 = x𝑇newRΛ

−1R𝑇xnew ≤ 𝑇2𝛼 ,
𝑄 = 󵄩󵄩󵄩󵄩󵄩(I − PR𝑇) xnew󵄩󵄩󵄩󵄩󵄩2 ≤ 𝛿2𝛼. (8)

The control limit of the residual statistic can be calculated
as follows:

𝛿2𝛼 = 𝑔𝜒2ℎ,𝛼, (9)

where 𝑔 = 𝑆/2𝜇, ℎ = 2𝜇2/𝑆, 𝜇 represents the sample mean
of residual statistic 𝑄, 𝑆 represents the sample variance of 𝑄,
and 𝑔𝜒2ℎ,𝛼 is the threshold of 𝜒2 variables with scale factor 𝑔
and free degree ℎ.
3. TPLS Monitoring Model

3.1. TPLS. PLS algorithmuses two variable spaces to describe
process change. However, the main component of samples
contains the part which is orthogonal to Y, and this part
cannot reflect the variations related to Y. On the other hand,
PLS decomposition structure makes the residual inX remain
very large, which is not suitable to be monitored by index 𝑄.
Therefore, Li et al. proposed a kind of total projection algo-
rithm [12], which is based on traditional PLS decomposition.
The original latent variable space is decomposed into one

subspace relevant to quality variables directly and another
subspace orthogonal to quality variables. At the same time,
the residual space is decomposed into subspaces with large
variance and residual subspace containing noise only, using
the PCA orthogonal projection technique.

By further decomposition, we can model X and Y as
follows:

X = X𝑦 + X𝑜 + X𝑟 + E𝑟,
Y = T𝑦Q

𝑇
𝑦 + F, (10)

where X𝑦 = T𝑦P𝑇𝑦 , X𝑜 = T𝑜P𝑇𝑜 , and X𝑟 = T𝑟P𝑇𝑟 . X𝑦 stands for
the part which is relevant to Y directly in X̂,X𝑜 stands for the
part which is orthogonal to Y in X̂, andX𝑟 stands for the part
with large variance component in E.

At the same time, based on the structure of PLS projec-
tion, Li et al. also performed a detailed analysis of the space
structure of TPLS and drew a good conclusion [12]. Similar
to PLS, TPLS also exhibits an oblique projection, but TPLS
projects x to four different spaces, which reflect different
relationship among quality variables.

For a new measurement of sample xnew, the correspond-
ing score and residual part can be calculated as follows [12]:

t𝑦new = Q𝑇𝑦QR
𝑇xnew,

t𝑜new = P𝑇𝑜 (PR𝑇 − P𝑦R
𝑇
𝑦) xnew,

t𝑟new = P𝑇𝑟 (I − PR𝑇) xnew,
x𝑟𝑟new = (I − P𝑟P

𝑇
𝑟 ) (I − PR𝑇) xnew.

(11)

Compared with PLS, TPLS model is easy to be explained
and suitable for process monitoring. Similar to PLS in
monitoring strategy, TPLS uses two statistic indexes𝑇2 and𝑄
in process monitoring. In TPLS,X𝑦,X𝑜, andX𝑟 represent the
main variation in the process, and thus they are suitable for𝑇2 statistic, and E𝑟 represents the residual part of the process
which is suitable to be monitored by using statistic 𝑄.
3.2. The Covariance Description of TPLS. The four spaces in
TPLS can get a more detailed description of the different
relationships betweenX and quality variablesY. Based on the
covariance matrix of the PLS model, the parameter matrices
P, Q, and W will be obtained. Then, parameter matrix R is
calculated by R = W(P𝑇W)−1.

Combining with the covariance description form of PCA
and PLS model, we can do space decomposition in the
following form.

In PCA decomposition of Ŷ, characteristic vectors of the
covariance matrix ΣŶ are extracted to construct Q𝑦. ΣŶ can
be expressed as

ΣŶ = 1𝑁 − 1 Ŷ𝑇Ŷ = QR𝑇ΣXRQ
𝑇. (12)

Similarly, in PCA decomposition of X̂𝑜 and E, we can
extract characteristic vectors of each covariance matrix to
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form a loading matrix in corresponding space. Covariance
matrices can be expressed as

ΣX̂𝑜 = 1𝑁 − 1 (X̂ − T𝑦P
𝑇
𝑦)𝑇 (X̂ − T𝑦P

𝑇
𝑦)

= ΣX̂ − ΣX̂ŶQ𝑦P𝑇𝑦 − P𝑦Q
𝑇
𝑦ΣŶX̂ + P𝑦Q

𝑇
𝑦ΣŶQ𝑦P

𝑇
𝑦 ,

ΣE = 1𝑁 − 1 (X − X̂)𝑇 (X − X̂)
= ΣX − ΣXRP𝑇 − ΡR𝑇ΣX + ΣX̂,

(13)

where

ΣX̂ = PR𝑇ΣXRP
𝑇,

ΣX̂Ŷ = PR𝑇ΣXRQ
𝑇,

ΣŶX̂ = QR𝑇ΣXRΡ
𝑇.

(14)

According to the score and the residual structure model
of new measurement samples, let

R𝑇𝑦 = Q𝑇𝑦QR
𝑇,

R𝑇𝑜 = P𝑇𝑜 (PR𝑇 − P𝑦R
𝑇
𝑦) ,

R𝑇𝑟 = P𝑇𝑟 (I − PR𝑇) .
(15)

It can be easily proved that this form is equivalent to the
standard one.

The following part shows the calculation process of TPLS
model using covariance information.

Covariance Description Form of TPLS Algorithm. Obtain ΣX
and ΣXY:

(1) Use GMM-PLS algorithm, and obtain parameter
matrix: P = [p1, . . . , p𝐴] ∈ 𝑅𝑚∗𝐴,W = [𝑤1, . . . , 𝑤𝐴] ∈𝑅𝑚∗𝐴,Q = [q1, . . . , q𝐴] ∈ 𝑅𝑙∗𝐴, R = W(P𝑇W)−1.

(2) Calculate PCA decomposition of Ŷ: do an eigenvalue
decomposition onΣŶ; obtain the loadingmatrixQ𝑦 =[q𝑦1, . . . , q𝑦𝐴𝑦] ∈ 𝑅𝑚∗𝐴𝑦 and principal component
number: 𝐴𝑦 = rank(Q).

(3) P𝑇𝑦 = (Q𝑇𝑦ΣŶQ𝑦)−1Q𝑇𝑦ΣŶX̂.
(4) Calculate PCAdecomposition of X̂𝑜: do an eigenvalue

decomposition onΣX̂𝑜 ; obtain the loadingmatrixP𝑜 =[p𝑜1, . . . , p𝑜𝐴𝑜] ∈ 𝑅𝑚∗𝐴𝑜 and principal component
number: 𝐴𝑜 = 𝐴 − 𝐴𝑦.

(5) Calculate PCA decomposition of E = X − X̂: do
an eigenvalue decomposition on ΣE; obtain loading
matrix P𝑟 = [p𝑟1, . . . , p𝑟𝐴𝑟] ∈ 𝑅𝑚∗𝐴𝑟 and principal
component number 𝐴𝑟: based on the PCA method.

4. Multimode Process Monitoring and
Fault Diagnosis

4.1. Mode Division of Principal Components. According to
industrial process data with the characters of multimode, we
need to determine a mixed model based on historical data
firstly and then design amonitoring framework. Considering
covariance information required for the statistical model,
multimode modeling data can be processed by GMM. It is
the assumption that data are made up of different Gaussian
distributions. That is, for any sample data x, it is possible
to take a certain probability from 𝐾 different Gaussian
distributions. As a result, global probability distribution can
be expressed by themixedmodel of the𝐾Gaussian elements.
It can be expressed as

𝑝 (x | 𝜃) = 𝐾∑
𝑖=1

𝑤𝑖𝑝 (x | 𝜃𝑖) , (16)

where 𝐾 is the number of mixture components, 𝑤𝑖 denotes
the weight of the 𝑖th Gaussian component, and ∑𝐾𝑖=1 𝑤𝑖 = 1,
𝜃𝑖 = {𝜇𝑖,Σ𝑖} represents the statistical parameters. Parameters
estimation usually adopts EM iterative algorithm. The corre-
sponding multivariate Gaussian density function for the 𝑖th
component is given by

𝑝 (x | 𝜃𝑖)
= 1(2𝜋)𝑚/2 󵄨󵄨󵄨󵄨Σ𝑖󵄨󵄨󵄨󵄨1/2 exp [−12 (x − 𝜇𝑖)𝑇 Σ𝑖−1 (x − 𝜇𝑖)] . (17)

According to the rule of Bayes inference, the posterior
probability of x belonging to the 𝑖th Gaussian component is

𝑝 (𝜃𝑖 | x) = 𝑤𝑖𝑝 (x | 𝜃𝑖)∑𝐾𝑘=1 𝑤𝑘𝑝 (x | 𝜃𝑘) . (18)

However, due to factors such as production flow, batch,
and specification, the quality variables of the final products
have some certain degree of difference in real production
processes. It may be the root cause that process data is with
multimode and multistage features. Therefore, considering
that the PLS algorithm is with the space decomposition under
guidance of quality variables, this paper first performs mode
division with principal component space T and acquires
the mode label 𝐶𝑘 of t𝑖. This method carried out with the
projection of training data can highlight the influence of
quality variables better.

Based on advantages of GMM in processing multimode
problems, we deal with principal components matrix T with
GMM for acquiring∑𝐾𝑖=1 𝑤𝑡𝑖 = 1 and 𝜃𝑡𝑖 = {𝜇𝑡𝑖,Σ𝑡𝑖}. The total
number of estimated parameters is𝐾((1/2)𝐴2+(3/2)𝐴+1)−1,
where 𝐴 is the number of the principal components. Usually,𝐴 is far less than process variables number 𝑚, which can
reduce the number of estimated parameters greatly and speed
up the calculation.

After mode division, principal component space model
based on GMM is established, where each Gauss component
corresponds to different mode characteristics. For training
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samples, x𝑖 can be divided into the modes whose principal
variable belongs to

𝐶𝑘 = 𝑃 (𝜃𝑡𝑘 | t𝑖) = 𝑤𝑡𝑘𝑝 (t𝑖 | 𝜃𝑡𝑘)∑𝐾𝑖=1 𝑤𝑡𝑖𝑝 (t𝑖 | 𝜃𝑡𝑖) . (19)

Taking process variables 𝑥 ∈ 𝑅𝑚 and output variables y ∈
R𝑙 into account, we construct a new vector zwhich stands for
the process information as follows:

z = [x
y
] ∈ R(𝑚+𝑙). (20)

Assuming that variable z is satisfied with mixed Gauss
distribution, the distribution parameters 𝜃𝑖 = {𝜇𝑖,Σ𝑖} can be
acquired by mean(z) and cov(z) directly; prior probabilities𝜔𝑖 are the same as principal space distribution 𝜔𝑡𝑖.
ΘGMM = {{𝑤1,𝜇(1)𝑧 ,Σ(1)𝑧 } , . . . , {𝑤𝐾,𝜇(𝐾)𝑧 ,Σ(𝐾)𝑧 }} . (21)

Divide 𝜇(𝑘)𝑧 and Σ(𝑘)𝑧 into the forms of [11]

𝜇(𝑘)𝑧 = [[
𝜇(𝑘)𝑥

𝜇(𝑘)𝑦

]] ,
Σ(𝑘)𝑧 = [[

Σ(𝑘)𝑥 Σ
(𝑘)
𝑥𝑦

Σ(𝑘)𝑦𝑥 Σ
(𝑘)
𝑦

]] .
(22)

As above, it can be noted that mode classification will be
under the guidance of quality variables. Then, because the
number of principal components is far less than that of pro-
cess variables, this has a great advantage in the treatment of
estimated parameters calculation. In addition, after the mode
division of original training data, multimode information
such as covariance matrices can be directly calculated, which
reduce the amount of calculation and improve calculation
accuracy.

4.2. Multimode TPLS Based Fault Detection. According to
the principle of building PLS and TPLS, the essence is to
use data information, variance, and covariance to represent
process characteristics. As far as PLS is concerned, the
modeling process is to maximize the covariance of linear
combinations of process variables and quality variables, so
the modeling process can be converted into a covariance
form through the initial data X and Y. Therefore, in order
to adapt to the multimode characteristic of industrial process
data better, we can extend multivariate statistical methods to
multimode scope by covariance strategy which will improve
the performance of the monitoring model.

Based on the above analysis, we can make a rational
division of training data to obtain themultimode information
in the process of fault monitoring. When the sample is
collected and is ready for being monitored, it can be divided
into corresponding models with the probability, using Bayes
classification ability under the data pretreatment. Then, we
can calculate the monitoring statistic of the sample to justify

whichmode it belongs to.We treat the posterior probability of
the monitoring sample belonging to each Gauss component
as the membership degree of the corresponding model.

By using data information of probability 𝑤𝑖 and parame-
ters 𝜃 to monitor the process, the comprehensive monitoring
index is constructed, which can be used to monitor the fault
reasonably.

For a new monitoring sample xnew ∈ R𝑚, the probability
of sample data belonging to different modes is 𝑃(𝜃𝑘 | xnew).
4.3. Comprehensive Monitoring Index. According to PCA
decomposition of Ŷ in TPLS, T𝑦 = ŶQ𝑦, the covariance
matrix of principal components in spaceX𝑦 can be expressed
as [13]

Λ𝑦 = 1𝑁 − 1T𝑇𝑦T𝑦 = 1𝑁 − 1Q𝑇𝑦Ŷ𝑇ŶQ𝑦 = Q𝑇𝑦ΣŶQ𝑦. (23)

Available by Ŷ = TQ𝑇 and T = XR,

Λ𝑦 = Q𝑇𝑦QR
𝑇ΣXRQ

𝑇Q𝑦 = R𝑇𝑦ΣXR𝑦. (24)

In the same way, the covariance matrices of principal
components in spaces X𝑜 and X𝑟 can be done as in the above
proof:

Λ𝑜 = R𝑇𝑜ΣXR𝑜,
Λ𝑟 = R𝑇𝑟 ΣXR𝑟. (25)

In order to realize the multimode fault monitoring, the
monitoring index based on the MTPLS model is obtained by
using the probability information and Bayesian inference:𝑇2𝑦new(𝑘)

= (xnew − 𝜇(𝑘)𝑥 )𝑇R𝑦(𝑘)Λ−1𝑦(𝑘)R𝑇𝑦(𝑘) (xnew − 𝜇(𝑘)𝑥 ) ,
𝑄𝑟new(𝑘) = 󵄩󵄩󵄩󵄩x𝑟𝑟new󵄩󵄩󵄩󵄩2

= 󵄩󵄩󵄩󵄩󵄩(I − P𝑟(𝑘)P
𝑇
𝑟(𝑘)) (I − P(𝑘)R

𝑇
(𝑘)) (xnew − 𝜇(𝑘)𝑥 )󵄩󵄩󵄩󵄩󵄩2 .

(26)

Similarly,𝑇2𝑜new(𝑘)
= (xnew − 𝜇(𝑘)𝑥 )𝑇R𝑜(𝑘)Λ−1𝑜(𝑘)R𝑇𝑜(𝑘) (xnew − 𝜇(𝑘)𝑥 ) ,

𝑇2𝑟new(𝑘)
= (xnew − 𝜇(𝑘)𝑥 )𝑇R𝑟(𝑘)Λ−1𝑟(𝑘)R𝑇𝑟(𝑘) (xnew − 𝜇(𝑘)𝑥 ) .

(27)

The threshold can be inferred by the setting in standard
TPLS.

In summary, we make use of covariance information
mainly to calculate and then to achieve process monitoring
in MTPLS. Compared with standard TPLS, the covariance
model is more suitable for monitoring multimode processes
and making full use of data information in the process of
model construction and fault monitoring. Avoiding direct
classification on data, the covariancemodel reduces the effect
of classification on the final performance monitoring of the
process.
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4.4. Quality-Related Combined Index. In TPLS based process
monitoring, space X𝑦 represents the change part related to
quality variable, while space E𝑟 represents the uncertain parts
related to quality variable. They reflect two different kinds of
quality-related faults.Therefore, it is necessary to observe two
subspaces at the same time. In practice, a unified monitoring
index is more popular than the two separate ones. In PCA
based fault detection, Yue and Qin proposed a combined
index [14]. Li et al. proposed a combined one for TPLS based
process monitoring [12]. Similarly, a combined index which
incorporates 𝑇2𝑦 and 𝑄𝑟 is proposed in a way as follows:

𝜑𝑦 = 𝑇2𝑦𝛿𝑦 + 𝑄𝑟𝛿𝑟𝑟 = x𝑇Φx, (28)

where

Φ = R𝑦Λ−1𝑦 R𝑇𝑦𝛿𝑦 + (I − RP𝑇) (I − P𝑟P𝑇𝑟 ) (I − PR𝑇)𝛿𝑟𝑟 . (29)

𝜁2 is the threshold of this combined index which can be
obtained by approximate distribution 𝜁2 = 𝑔𝜒2ℎ,𝛼. It is
supposed that there is no fault in the process when the
monitoring result is 𝜑𝑦 < 𝜁2.

Scale factor 𝑔 and free degree ℎ are calculated in

𝑔 = tr (SΦ)2
tr (SΦ) ,

ℎ = [tr (SΦ)]2
tr (SΦ)2 ,

(30)

where S = cov(x) = ΣX, which is the covariance matrix
of process variable x. Using this combined index, we can
simultaneously monitor the anomalies in the two subspaces
and thus monitor the faults associated with the quality
variables Y.

4.5. Gradient Contribution Rate for Fault Diagnosis. It is
necessary to isolate the faulty variables after a fault is detected.
As a common fault separation method, the contribution plot
assumes that the variables which have greater contribution
to the monitoring statistics are very likely to be faulty vari-
ables. According to the description framework of complete
decomposition of contribution proposed by Alcala and Qin,
contribution to the combined index can be described as the
following form [15]:

con t𝑖 = (𝛾𝑖x)2 = (𝜉𝑇𝑖 Φ1/2x)2 ,
index = 󵄩󵄩󵄩󵄩󵄩Φ1/2x󵄩󵄩󵄩󵄩󵄩2 = 𝑚∑

𝑖=1

con t𝑖, (31)

where 𝛾𝑖 represents the 𝑖th row of matrix Φ1/2, 𝜉𝑖 represents
the 𝑖th row of identity matrix, and 𝑚 represents the number
of variables in one sample.

Traditional contribution plot method is used for analyz-
ing a specific sample when the fault is detected, which shows

the contribution value of each variable to one monitoring
index in bar chart. After that, the variables with greater con-
tribution will be selected as the possible cause of fault.
Westerhuis et al. put forward a generalized contribution to
statistics form and a method of obtaining the control limits
for variable contributions [16]. Choi et al. proposed specific
statistical methods to set the upper limit of the variable
contribution to the four monitoring statistics [7]. Li et al.
proposed a kind of contribution plot based on TPLS, which
describes the contribution of all variables tomonitoring index𝑇2𝑦 and 𝑄𝑟 in a unified way [12].

For the fault diagnosis method based on traditional con-
tribution figure for one single sample after fault occurrence,
there are some flaws that cannot well describe fault source
and the change of other malfunction variables caused by fault
source. In order to combine the idea of analyzing the con-
tribution rate of faulty variables along the time coordinates
with the change of the variable itself, reducing the impact of
variable magnitude of value on the contribution rate, we refer
to the gradient contribution rate to solve the fault variable
analysis.

First, we introduce a mathematical symbol ⊙ and a scale
factor vector k = [V1, . . . , V𝑚]𝑇, where ⊙ indicates element
product. x⊙k = [x1V1, . . . , x𝑖V𝑖, . . . , x𝑚V𝑚]𝑇, and x𝑖V𝑖 indicates
the change of variable x𝑖. As can be segmented, if V𝑖 > 1, then|x𝑖V𝑖| > |x𝑖|; if V𝑖 = 1, then x𝑖V𝑖 = x𝑖; if V𝑖 < 1, then |x𝑖V𝑖| < |x𝑖|.
So, equation 𝜑(k ⊙ x)|k=1𝑚 = 𝜑(x) can be established.

It can be seen from the first-order Taylor series expansion
of 𝜑(k ⊙ x) near k = 1𝑚 that

𝜑 (x ⊙ k) ≈ 𝜑 (x) + 𝑚∑
𝑖=1

𝜕𝜑 (x ⊙ k)𝜕V𝑖
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨k=1𝑚 (V𝑖 − 1) . (32)

Based on the above conclusion, the contribution rate may
be defined as follows.

For amonitoring sample x,𝐶(x, 𝑖) ≜ |(𝜕𝜑(x⊙k)/𝜕V𝑖)|k=1𝑚 |
indicates the contribution rate of the 𝑖th variable to index 𝜑.

As described above, the contribution rate represents
the gradient of each variable to detection index under the
same abnormal changes. Variables which are with great
contribution will be considered with great influence to index𝜑, the same to quality variable.

For a new monitoring sample xnew, the contribution rate
of the 𝑖th variable can be calculated as󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 𝜕𝜑 (xnew ⊙ k)𝜕V𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨k=1𝑚
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 . (33)

As a result, the gradient contribution rate based on
comprehensive monitoring index 𝜑𝑦 can be expressed as
follows:

𝐶 (xnew, 𝑖) =
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝜕 (𝜉𝑇𝑖 Φ1/2 (xnew ⊙ k))2𝜕V𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨k=1𝑚
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨= 󵄨󵄨󵄨󵄨󵄨2𝜉𝑇𝑖 Φ1/2xnewxnew,𝑖󵄨󵄨󵄨󵄨󵄨 ,

(34)

where xnew,𝑖 represents the value of the 𝑖th variable in moni-
toring sample xnew.
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Figure 1: Schematic diagram of the proposed PLS-MTPLS and Bayesian-based process monitoring and diagnosis method.

Due to the diffusion effect of fault, the method of setting
absolute control limits using absolute value of variable contri-
bution for fault diagnosis is not with good effect. Therefore,
we use relative contribution rate; namely,

𝐶𝑟 (xnew, 𝑖) = 𝐶 (xnew, 𝑖)∑𝑚𝑖=1 𝐶 (xnew, 𝑖) , (35)

where relative contribution rate satisfies
𝑚∑
𝑖=1

𝐶𝑟 (xnew, 𝑖) = 1. (36)

As described above, in index 𝜑𝑦 based quality-related
fault diagnosis, the contribution rate can reflect contribution
gradients of variables to the monitoring index. Therefore,
those variables which have a larger contribution rate are able
to affect combined index and quality variables significantly.

4.6. Framework of Fault Detection and Diagnosis. The sche-
matic diagram of the proposed process monitoring and diag-
nosis is shown in Figure 1. Detailed procedures formultimode
process detection can be summarized below:

(1) Collect a set of historical training data under all
possible operating modes and determine the number
of modes.

(2) Use EM algorithm to learn the Gaussian mixture
model of principal component space and estimate the
model parameter setΘT based on the iterative steps.

(3) Do multimode division and multimode information
acquisition of process data according to 𝐶𝑘. Then, for
each monitored sample xnew, compute its posterior
probabilities belonging to all Gaussian components
through Bayesian inference strategy.

(4) Calculate local monitoring statistics for the moni-
tored sample xnew within each Gaussian component
and integrate them into the comprehensive indexwith
probabilities.

(5) Integrate the quality-relatedmonitoring statistics into
a quality-related combined index 𝜑𝑦.

(6) Specify a confidence level (1−𝛼)100%for determining
control threshold 𝜁2 and generate themonitoring plot
for all the monitored samples.

(7) Detect the abnormal operating condition at the mon-
itored samples satisfying 𝜑𝑦 > 𝜁2 which is helpful for
fault diagnosis.

(8) Calculate the relative contribution rate of variables to
the combined index 𝜑𝑦 before and after fault occur-
rence and generate the contribution rate plot for fault
diagnosis analysis.

5. Application to HSMP

5.1. Hot Strip Mill Process. HSMP (hot strip mill process)
is an extremely complex industrial production process. In
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the process of production, improving the quality of products
can bring about higher economic and social benefits for
the factory. Typical HSM machine production line is mainly
composed of reheating furnace, roughing mill, transfer table,
crop shear, finishing mill group, run-out table cooling, and
coiler. Figure 2 shows the whole process flow chart. The
reheating furnace can ensure the temperature of the strip
reaches 1200 degrees Celsius before roughing mill. A slab of
thickness of 100∼200mm is sent to the roughing mill group
after cutting off the scales, eventually forming 28∼45mm
thick middle slab through several times of rolling. Through
the transport of transfer table and in turn with insulation
cover, crop shear, and high pressure water descaling, the slab
runs into seven stands of finishing mill group. In order to
enhance the performance of the final product, the steel plate
needs to go through laminar cooling. This paper focuses on
fault monitoring in the part of finishing mill process (FMP).

As shown in Figure 2, FMP consists of seven stands. Every
stand contains two working rolls and backup rolls, which are
driven by their own power drive units. The distance between
two working rolls is called roll gap, which can be adjusted
by the hydraulic device. A detailed structure diagram of the
finishing roll is shown in Figure 3. This means that the strip

will go through all the seven stands during the finishing mill
process.

In whole FMP, it is noted that the stands are actually not
working independently but are coupled with each other by
different control schemes. The thickness in the exit of the
last stand is the key factor which directly affects the quality
of products. Whole finishing mill process is controlled by
automatic thickness control system. It can be seen that there is
an obvious hysteresis control of the exit thickness. Not until
the abnormal value of the exit thickness is detected, caused
by some fault of front stands, can the thickness control system
be started.Therefore, establishing real-time acquisition of the
relationship between the process variables and exit thickness
and then monitoring the thickness by real-time measuring
process variables become very meaningful [14].

5.2. Fault Detection Simulation Analysis. Production speci-
fication can be determined by different thicknesses of the
steel strip in HSMP which should meet different industrial
demands. We select the steel plate data of two specifications
for modeling: one is the thickness of 2.70mm and the other is
3.95mm. The sampling interval for the variable is 0.01 s and
4000 samples are used for training modeling.

In the actual finishing mill process, we can collect the
data information including roll gap, milling force between
working rolls, and bending force in every stand. Generally
speaking, the exit thickness has more relationships with roll
gap andmilling force thanwith bending force. Using data col-
lected under normal operating conditions, GMM iterative
learning is performed in principal component space which
is under the guidance of quality variables. With the model
division result, the process of multimode parameters calcu-
lation of the original data is carried out. Figure 4 shows the
clustering distribution of two kinds of normal production. In
this part, the clustering numbers are 𝐾1 = 3 and 𝐾2 = 5
which are fixed according to Yu et al.The𝐾-means algorithm
is applied to roughly calculate 𝜇𝑘𝑖 . Randomly initialize the
value ofΣ𝑘𝑖 before GMM iterative learning.Then, we establish
the proposed PLS-MTPLS model. Variables concerned in
FMP are as follows.

Process Variables

x1 ∼ x7: average gap of 𝐹𝑖 stand, 𝑖 = 1, . . . , 7, 𝜇m
x8 ∼ x14: the force between supporting and working
roll in 𝐹𝑖 stand, 𝑖 = 1, . . . , 7, KN
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x15 ∼ x20: the bending force in the working roll of 𝐹𝑖
stand, 𝑖 = 1, . . . , 7, KN

Quality Variable

y: thickness of strip at the exit of FMP, mm

For different types of faults that may occur in FMP, we
select three encountered faults as a detected object in this
section which are shown in Table 1.

According to the exit thickness value of the strip steel
under three types of fault condition, it is obvious that fault
1 and fault 3 are quality-related, while fault 2 is quality-
unrelated. As Figures 6 and 9 show, themethod based onPLS-
MTPLS gives a higher fault detection rate for fault 1 and fault
3. And for the quality-unrelated fault 2, PLS-MTPLS inherits
the effect of space division in traditional TPLS method,
making the monitoring index 𝑇𝑦2 which is directly related to
the quality have a relatively low rate of false alarm.

To examine the advantages of our proposed approach,
a comparison research has been done using two evaluating
indexes: FDR and FAR.
FAR

= Number of samples (𝜑𝑦 > 𝜁2 | quality is normal)
total fault − free samples

,
FDR

= Number of samples (𝜑𝑦 > 𝜁2 | quality is faulty)
total faulty samples

.
(37)

False detection rates and false alarm rates are counted for
three types of fault and statistical results are shown in Table 2.
It shows that PLS-MTPLS method performs better.

Fault 1 represents the failure of hydraulic roll gap control
structure. Fault occurs at about 20 s, namely, the 2000th
monitoring sample. The values of roll gap x4 in the fourth
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Figure 6: Detection result of fault 1.

Table 1: Faults that occurred in FMP.

Fault number Fault description Duration Type
1 Malfunction of gap control loop in 𝐹4 stand 20 s–30 s Quality-related
2 Fault of roll bending force measuring sensor in 𝐹5 stand 10 s–20 s Quality-unrelated
3 10% stiction of the cooling valve between 𝐹2 and 𝐹3 stands 10 s–20 s Quality-related
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Figure 7: Diagnosis result of fault 1.

stand are directly affected, and then the sampling values of
milling force x11 in the fourth stand have also been affected.

Because of the influence of feedback control system, roll gaps
and milling forces will be changed in the following stands,
and then finally the exit thickness is affected. As shown in
Figure 5, there is a delay for change of exit thickness value,
namely, quality variables with respect to fault occurrence. But
for fault detection results, as shown in Figure 6, there is almost
no delay. From the point of view of this analysis, detection
results can be a good reference for field staffs, in order to take
response measurements timely.

Figure 7 gives the observation of change of relative
contribution rate for fault 1. As is shown, we can clearly
see that many contribution rate values of related variables
have changed since the 2000thmonitoring sample.When the
fault is detected, according to the observation of relative con-
tribution rate, variable x4 which has the largest relative con-
tribution rate is diagnosed firstly. As a result, we can conclude
that roll gap of 𝐹4 stand is the source of fault. At the same
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Table 2: Detection performance comparison.

Fault number Type MPLS (𝑇2) TPLS (𝜑𝑦) MTPLS (𝑇𝑦2) MTPLS (𝜑𝑦) PLS-MTPLS (𝑇𝑦2) PLS-MTPLS (𝜑𝑦)
1 FDR 0.7968 0.8977 0.8620 0.9995 0.9435 0.9995
2 FAR 0.3357 0.4335 0.1335 0.2610 0.0080 0.2605
3 FDR 0.7780 0.8510 0.8848 0.9729 0.9092 0.9735
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Figure 8: Detection result of fault 2.

time, variables x11 and x5 ∼ x7 are subsequently diagnosed
which are affected by the fault source, thereby causing fault
propagation. Figure 7 shows curves of variables change in real
data of fault source variable and variables affected. The diag-
nostic analysis is in accordancewith the actual production sit-
uation. As a result, the relative contribution rate can not only

diagnose fault variables, but also show the order of fault vari-
ables transmission. Then, it can help in finding out the real
source of fault with causal relationship among these variables.

Fault 2 represents the fault of sampling value of bending
force in 𝐹5 stand, which is a kind of step transition. When
the fault occurs, the value of variable x18 will increase greatly.
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Figure 9: Detection result of fault 3.
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Figure 10: Diagnosis result of fault 3.

Then, with feedback regulation of automatic control system,
the bending force value in 𝐹6 and 𝐹7 stands will be changed
correspondingly. But this kind of fault will only cause the
change of strip plate, not thickness as shown in Figure 8.

Fault 3 is a kind of fault in cooling valve between 𝐹2 and𝐹3 stands, which is usual in the process of finishing mill. It
will make the rolling force and roll gap in stands following𝐹3 stand be changed. Based on the monitoring results of
comprehensive index, fault 3 can be detected timely as shown
in Figure 9. The change of relative contribution rate is shown
in Figure 10. It can be noted that variable x3 is affected firstly,
followed by variable x10 and others. From the above analysis,
we can draw a conclusion that the fault diagnosis method
based on the relative contribution rate can be applied to FMP
effectively.

In this section, we focus on the research of exit thickness
of the strip. Twenty variables among measured variables in
FMP were selected for building PLS-MTPLS model. Based
on it, a kind of comprehensive monitoring index and a
kind of relative contribution rate were established for fault
monitoring and diagnosis, respectively, for three common
faults. Results of monitoring and diagnosis verified that

PLS-MTPLS has higher FDR and lower FAR than traditional
multivariate statistics methods shown in Table 2. In addition,
compared with MTPLS which clusters with original data
directly, this method is with better monitoring effects in
statistics 𝑇𝑦2 of principal component which can be seen in
Table 2.

6. Conclusion

In this paper, a new PLS-MTPLS method is proposed on the
basis of covariance descriptions of PCA and PLS algorithm
for multimode process monitoring. After mode division of
quality-related principal components, multimode informa-
tion is embedded into the monitoring model by integrating
GMM with TPLS, which avoids the direct use of process
training data for modeling. Based on the quality-related
multimode monitoring model PLS-MTPLS, a kind of com-
prehensive monitoring index is applied to execute real-time
online monitoring. Then, a combined index is constructed
for improving monitoring efficiency and extended to fault
diagnosis by relative gradient contribution rate calculation.

The efficiency and superiority of PLS-MTPLS are demon-
strated through application to the monitoring of HSMP. As
can be seen from the comparison and analysis, the proposed
approach can reduce computational complexity and be more
suitable for multimode processes.

Competing Interests

The authors declare that there are no competing interests
regarding the publication of this paper.

Acknowledgments

Thiswork is supported by theNational Natural Science Foun-
dation of China (NSFC) under Grants 61473033 and 61673032
and by BeijingNatural Science Foundation (4142035), China.



Journal of Control Science and Engineering 13

References

[1] L. H. Chiang, R. D. Braatz, and E. L. Russell, Fault Detection and
Diagnosis in Industrial Systems, Springer, London, UK, 2001.

[2] D.-H. Hwang and C. Han, “Real-time monitoring for a process
with multiple operating modes,” Control Engineering Practice,
vol. 7, no. 7, pp. 891–902, 1999.

[3] S. Lane, E. B. Martin, R. Kooijmans, and A. J. Morris, “Per-
formance monitoring of a multi-product semi-batch process,”
Journal of Process Control, vol. 11, no. 1, pp. 1–11, 2001.

[4] J. Chen and J. Liu, “Mixture principal component analysis
models for process monitoring,” Industrial and Engineering
Chemistry Research, vol. 38, no. 4, pp. 1478–1488, 1999.

[5] S. J. Zhao, J. Zhang, and Y. M. Xu, “Monitoring of processes
withmultiple operatingmodes throughmultiple principle com-
ponent analysis models,” Industrial and Engineering Chemistry
Research, vol. 43, no. 22, pp. 7025–7035, 2004.

[6] X.-T. Doan and R. Srinivasan, “Online monitoring of multi-
phase batch processes using phase-basedmultivariate statistical
process control,” Computers and Chemical Engineering, vol. 32,
no. 1-2, pp. 230–243, 2008.

[7] S.W. Choi, J. H. Park, and I.-B. Lee, “Processmonitoring using a
Gaussian mixture model via principal component analysis and
discriminant analysis,” Computers and Chemical Engineering,
vol. 28, no. 8, pp. 1377–1387, 2004.

[8] C. K. Yoo, K. Villez, I.-B. Lee, C. Rosén, and P. A. Vanrolleghem,
“Multi-model statistical process monitoring and diagnosis of
a sequencing batch reactor,” Biotechnology and Bioengineering,
vol. 96, no. 4, pp. 687–701, 2007.

[9] J. Yu and S. J. Qin, “Multiway gaussian mixture model based
multiphase batch process monitoring,” Industrial and Engineer-
ing Chemistry Research, vol. 48, no. 18, pp. 8585–8594, 2009.

[10] R. A. Johnson and D. W. Wichern, Applied Multivariate Statis-
tical Analysis, Prentice-Hall, New York, NY, USA, 1998.

[11] K. Peng, K. Zhang, B. You, and J. Dong, “Quality-related predic-
tion and monitoring of multi-mode processes using multiple
PLS with application to an industrial hot strip mill,” Neurocom-
puting, vol. 168, pp. 1094–1103, 2015.

[12] G. Li, S.-Z. Qin, Y.-D. Ji, and D.-H. Zhou, “Total PLS based con-
tribution plots for fault diagnosis,” Acta Automatica Sinica, vol.
35, no. 6, pp. 759–765, 2009.

[13] K. Zhang, H. Hao, Z. Chen, S. X. Ding, and K. X. Peng, “A
comparison and evaluation of key performance indicator-based
multivariate statistics process monitoring approaches,” Journal
of Process Control, vol. 33, pp. 112–126, 2015.

[14] H. H. Yue and S. J. Qin, “Reconstruction-based fault identi-
fication using a combined index,” Industrial and Engineering
Chemistry Research, vol. 40, no. 20, pp. 4403–4414, 2001.

[15] C. F. Alcala and S. J. Qin, “Reconstruction-based contribution
for process monitoring,” Automatica, vol. 45, no. 7, pp. 1593–
1600, 2009.

[16] J. A. Westerhuis, S. P. Gurden, and A. K. Smilde, “Generalized
contribution plots in multivariate statistical process monitor-
ing,” Chemometrics and Intelligent Laboratory Systems, vol. 51,
no. 1, pp. 95–114, 2000.



International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive  
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation 
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at
https://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer 
Engineering

Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation 
http://www.hindawi.com

Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling & 
Simulation 
in Engineering
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of  Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and 
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of


