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An airfoil subjected to two-dimensional incompressible inviscid flow is considered. The airfoil is supported via a translational and
a torsional springs. The aeroelastic integro-differential equations of motion for the airfoil are reformulated into a system of six
first-order autonomous ordinary differential equations. These are the simplest and least number of ODEs that can present this
aeroelastic system. The differential equations are then used for the bifurcation analysis of an airfoil with a structural nonlinearity
in the pitch direction. Sample bifurcation diagrams showing both stable and unstable limit cycle oscillation are presented. The
types of bifurcations are assessed by evaluating the Floquet multipliers. For a specific case, a period doubling route to chaos was
detected, and mildly chaotic behavior in a narrow range of velocity was confirmed via the calculation of the Lyapunov exponents.
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1. Introduction

A great deal of qualitative information can be obtained
about wing flutter by studying the aeroelasticity of a simple
two degree-of-freedom-system (DOF). The system, shown
in Figure 1, consists of a rigid two-dimensional airfoil
supported by torsional and translational springs. The trans-
lational and torsional springs are representative of the wing’s
flexural and torsional stiffnesses, respectively. The airfoil is
subjected to two-dimensional incompressible inviscid flow.
This model has been used frequently by researchers to obtain
a better understanding of flutter [1–6].

The model is an extreme simplification of a wing. Despite
this simplification, the underlying dynamics of the model
could still be quite complicated if a structural nonlinearity is
taken into account. The nonlinear dynamic behavior of this
model has been investigated by several researchers, and limit
cycle and chaotic oscillations have been detected for veloci-
ties below the linear flutter speed [1–4]. Previously, in order
to take the advantages of available nonlinear dynamics tech-
niques for the analysis of this simplified aeroelastic system,
the governing integro-differential equations were converted
to eight first-order ordinary differential equations (ODE)
[5]. The reformulated equations are autonomous ODEs,
that is, they do not depend explicitly on the independent

variable τ. The bifurcation analysis was then performed for
the airfoil containing a 0.5 degree freeplay nonlinearity in
the pitch stiffness. Sedaghat et al. [6] also converted the
governing equations into eight nonautonomous ODEs and
used normal form theory (NFT) to predict and characterize
limit cycle oscillations (LCO) of the system.

In the present analysis, the integro-differential equations
are further simplified to a set of six autonomous first-order
ODEs. The new set of equations are much simpler than
the previously presented equations [5, 6]. A bifurcation
analysis is also performed for the airfoil containing a cubic
nonlinearity in the pitch stiffness. Both defect-controlled and
collocation methods are employed for the analysis [7, 8].

2. Derivation of ODEs from
Integro-Differential Equations

The equation of motion for the two-dimensional airfoil
shown schematically in Figure 1 may be written in nondi-
mensional form as [5],
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Figure 1: Schematic of the airfoil.

where ξ = h/b and ()′ denote differentiation with respect
to nondimensional time τ; F(ξ) and M(α) are nonlinear
functions representing the restoring force and moment in
the plunge and pitch directions, respectively, normalized
with respect to the linear stiffnesses (in the case of a linear
system simply M(α) = α and F(ξ) = ξ); p and r are the
nondimensional aerodynamic force and moment defined as

p(τ) = − L

mV 2/b
, r(τ) = − Mα

mV 2r2
α
. (2)

Other parameters are defined in the nomenclature.
For incompressible flow the aerodynamic force and

moment may be obtained for any arbitrary motion of the
airfoil [9], giving

L(τ) = πρbV 2[ξ′′(τ)− ahα′′(τ) + α′(τ) + 2(XTM)],
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(4)

It is convenient to convert these integro-differential equa-
tions into a set of ordinary differential equations. The
conversion could simply be accomplished if the approximate
formula for the Wagner function is considered,

φ(τ) = l − ae−bτ − ce−dτ . (5)

where l = 1, a = 0.165, b = 0.0455, c = 0.335 and d = 0.3.
Previously [5], using this approximate formula, the

aeroelastic equations (1) and (3) have been transformed
into eight autonomous first-order ODEs by twice integration
of the equations. Also, in [6] the aeroelastic equations are
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Figure 2: The real part of the eigenvalues as a function of U for the
linearized system.

transformed into eight nonautonomous ODEs via intro-
ducing 4 auxiliary variables for the integral terms, which
is equivalent to ten autonomous ODEs. The auxiliary
variables in Refeence [6] are y1 =

∫ τ
0e
−b(τ−σ)α(σ)dσ , y2 =∫ τ

0e
−d(τ−σ)α(σ)dσ , y3 = ∫ τ

0e
−b(τ−σ)ξ(σ)dσ , and y4 =∫ τ

0e
−d(τ−σ)ξ(σ)dσ . In the present analysis, the equations are

converted into six autonomous ODEs with a better selection
of two auxiliary variables as
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The following two auxiliary differential equations could then
be constructed:
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Figure 3: (a) Bifurcation diagrams showing both stable and unstable solutions for pitch motion, (b) expanded view of partial region from
(a). •, stable fixed point; ◦, unstable fixed point; —, stable limit cycle; - - -, unstable limit cycle.
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By inspection, the differential equations (7) can be written in
the following simple forms
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By substituting y1 and y2 from (6) into (3), the aerodynamics
terms p(τ) and r(τ) become
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After some algebra the equations of motion (1) are reformu-
lated into the following second-order differential equations:
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(10)

These two second ODEs are much simpler than the set
of ODEs presented in the previous publications [5, 6]. An
important point to note regarding these equations is that all
the coefficients are functions of airfoil and air parameters,
and they are independent of time. Therefore, the reformu-
lated equations are nonlinear autonomous ODEs and they
do not depend explicitly on the independent variable τ. The
reformulated equations (10) are then transformed into six
first-order autonomous ODEs, in order to be able to analyze
them using well-known analytical or numerical methods.

The above set of ODEs are either analyzed using colloca-
tion method via AUTO software package [8] or integrated
numerically using defect-controlled method. The defect-
controlled method employed here is an 8th-order Runge-
Kutta method [7], which is known to be a reliable tool
for detecting chaotic oscillations. The approximate Floquet



4 International Journal of Aerospace Engineering

Unit circle

Pitchfork
bifurcation

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

Im
ag

in
ar

y
pa

rt
of

Fl
oq

u
et

m
u

lt
ip

lie
rs

0 0.2 0.4 0.6 0.8 1 1.2

Real part of Floquet multipliers

(a)

Torus
bifurcation

Torus
bifurcation

Unit circle

−0.4

−0.2

0

0.2

0.4

Im
ag

in
ar

y
pa

rt
of

Fl
oq

u
et

m
u

lt
ip

lie
rs

0 0.2 0.4 0.6 0.8 1 1.2

Real part of Floquet multipliers

(b)

Figure 4: The variation of Floquet multipliers around two points in Figure 3; (a) pitchfork bifurcation point 2, (b) bifurcation into torus
point 7.
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Figure 5: Comparison of the bifurcation diagrams obtained via the
defect-controlled method and AUTO. •, defect-controlled results;
—, AUTO (stable solutions).

multipliers are obtained by applying a standard eigenvalue
routine to the approximation to the linearized Poincaré map.

3. Bifurcation Analysis Taking into Account
a Cubic Nonlinearity in Pitch Stiffness

The linear flutter velocity U∗, is first obtained by setting
F(ξ) = ξ, and M(α) = α in (10) and solving the resultant
eigenvalue problem. Stability of the linear system depends
on the six eigenvalues of the system. The linearized set
of equations is solved for the following parameters; ω =
0.2, μ = 100, ah = −0.5, xα = 0.25, rα = 0.5. Figure 2 shows
the variation with nondimensional velocity, U , of the real

part of the eigenvalues obtained for this set of parameters.
Eigenvalues with large negative real parts are not shown in
the figure.

The nonlinear set of ODEs are used for bifurcation anal-
ysis of the system taking into account a cubic nonlinearity
of the form M(α) = 0.1α + 40α3 in the pitch direction and
linear stiffness in plunge. The fixed points of the system can
be calculated by setting all speeds and accelerations to zero in
(10). In addition, the auxiliary variables y1 and y2 are set to
zero as they are functions of speeds and accelerations.

This yields

(
ω

U

)2

ξ(τ) +
2l
μ
α(τ) = 0,

(
−2U2l(ah + 0.5)

μr2
α

)
α(τ) =M(α).

(11)

For ah = −0.5, the only real solution is α = ξ = 0.
A bifurcation diagram showing both stable and unstable
solutions is presented in Figure 3. As shown, the origin
(α = ξ = 0) is a stable fixed point until U/U∗ = 0.217,
point 1. At this point a supercritical Hopf bifurcation occurs,
destabilizing the origin, and giving rise to a stable limit cycle.
This stable periodic solution becomes unstable through a
pitchfork bifurcation at point 2, and it changes its direction at
the limit or turning point 3. Decreasing U/U∗, the periodic
solution remains unstable until it reaches a second turning
point (point 5) where it restabilizes. It then remains stable
for velocities greater than the linear flutter speed.

Another unstable periodic branch starts at point 2 and
changes its direction and becomes stable at a limit point
6. This branch becomes unstable after a bifurcation to an



International Journal of Aerospace Engineering 5

1

2

3

4

5

8

0

2

4

6

8

10
P

it
ch

am
pl

it
u

de
,α

(d
eg

)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

U/U∗

(a)

3

5

6

7

8

9

10

11

12

4

3

4

5

6

7

8

P
it

ch
am

pl
it

u
de

,α
(d

eg
)

0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55

U/U∗

(b)

Figure 6: (a) Bifurcation diagrams showing both stable and unstable solutions for pitch motion, (b) expanded view of partial region from
(a); μ = 200 and M(α) = 0.01α + 50α3; •, stable fixed point; ◦, unstable fixed point; —, stable limit cycle; - - -, unstable limit cycle.
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Figure 7: Comparison of the bifurcation diagrams obtained via the
defect-controlled method and AUTO; •, defect-controlled results;
—, AUTO (stable solutions).

invariant torus at point 7, reaches the limit point 4, turns
back to a stable solution via another bifurcation into a torus
at point 8. Passing the limit point 9, this branch becomes
unstable and returns to point 2 where it started.

As explained above, a pitchfork bifurcation and two
bifurcations into torus were detected for this case. The
variations of Floquet multipliers around these bifurcation
points are shown in Figure 4. At point 2 of Figure 3, the
stable branch becomes unstable and two other unstable
branches start from this point. Also, Figure 4(a) shows that
at this point a Floquet multiplier crosses the unit circle at
+1. These are characteristic of a pitchfork bifurcation [10].
The variation of Floquet multipliers about point 7 is also
presented in Figure 4(b). In this case two complex conjugate
multipliers cross the unit circle; this means that the periodic
orbit looses its stability to the torus. The phenomenon of
bifurcation into a torus is sometimes called Hopf bifurcation
of periodic orbit, secondary Hopf bifurcation or generalized
Hopf bifurcation, and this bifurcation can lead to chaos
[10]. Although chaos was not obtained for this set of airfoil

parameters, changing the parameters can lead to chaos
through the torus bifurcations.

Figure 5 represents the bifurcation diagram obtained
using the defect-controlled method along with the stable
results given by AUTO presented in Figure 3. The results
of the defect-controlled method show the value of α when
α′ = 0 for the particular initial conditions given by α(0) = 7◦

and α′(0) = ξ′(0) = ξ(0) = 0; while AUTO results show
only the maximum value of the pitch angle, α. Both methods
predict the same magnitude of the stable limit cycle and the
same supercritical Hopf bifurcation point. Other tests using
the defect-controlled method for various initial conditions
show that both methods are also in agreement with the
location of the other bifurcation points. For regions where
more than one stable solution exists, the defect-controlled
scheme converges to one or another solution depending on
the initial conditions.

A bifurcation diagram was also constructed using AUTO
for the same airfoil but with μ = 200 and M = 0.01α + 50α3.
The bifurcation diagram and an expanded view of a partial
region are shown in Figure 6. Once again, the origin is stable
for low velocities; then, at U/U∗ = 0.15 it becomes unstable,
but in this case through a subcritical Hopf bifurcation. The
unstable limit cycle, which starts at point 1, gains stability at
the limit point 2. This branch of periodic solution looses its
stability at point 3 through a pitchfork bifurcation, to finally
become stable at the limit point 5. This branch is stable for
speeds much higher than the linear flutter boundary. Two
other unstable periodic solutions start at point 3 and become
stable at the limit points 6 and 9. Both branches of stable
limit cycle undergo cascades of period doubling bifurcations.
At first, period doubling bifurcations occur at points 7 and 8.
Stable period-two solutions start at these bifurcation points
to undergo further period doubling bifurcations at points
10 and 11. These period doubling bifurcations continue and
lead finally to chaotic oscillations. All the unstable branches
of the period doubling cascade end at point 4, which is an
intersection point with the main branch of periodic solution
1-2-3-4-5.
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Figure 8: (a) Time evolution of the Largest Lyapunov exponents, (b) variation of the largest Lyapunov exponent with U/U∗ for the same
airfoil as Figure 6.

The period doubling cascade leading to chaos was also
predicted in the defect-controlled results. To compare the
results obtained using two different methods, both the stable
results obtained using AUTO and the results obtained using
the defect-controlled method are presented in Figure 7. It
is clear that both methods are in excellent agreement in
the amplitude of pitch motion and the starting point of
the chaotic region. However, the results obtained via AUTO
not only give a more complete bifurcation diagram but also
verifies the route to chaos.

Lyapunov spectra were also calculated for the same
airfoil and nonlinearity as Figure 6. Figure 8(a) shows time
evolutions of the largest Lyapunov exponent at U/U∗ =
0.475 in the chaotic region, and U/U∗ = 0.5 in the periodic
region of Figure 6. A zero value for the largest Lyapunov
exponent at U/U∗ = 0.5 clearly indicates periodic motion;
while, a small positive exponent at U/U∗ = 0.475 indicates
mildly chaotic behavior of the airfoil motion at this airspeed.
In this paper “mildly chaotic” refers to a motion with small
positive Lyapunov exponent indicating small deviation from
periodic motion. The variation of the largest Lyapunov
exponent with respect to U/U∗ is also shown in Figure 8(b).
It is clear that for a narrow range of speed, 0.455 < U/U∗ <
0.485 approximately, there is a positive Lyapunov exponent
indicating mildly chaotic behavior. This is also in agreement
with the bifurcation diagrams obtained via both AUTO and
the defect-controlled method. In this paper ”mildly chaotic”
refers to a chaotic motion with a small positive Lyapunov
exponent.

4. Conclusions

Assuming the approximate exponential expressions for the
Wagner function, the aeroelastic equations of motion for

a two-DOF airfoil are conveniently transformed into a set
of six autonomous first-order ODEs; then, the equations
are analyzed using defect-controlled method and AUTO
software package. Bifurcations diagrams have been obtained
for the nonlinear system showing both stable and unstable
solutions such as fixed points or limit cycle oscillations.
Interesting bifurcation points and a period doubling route to
chaos are predicted via calculating Floquet multipliers and
Lyapunov exponents. The diagrams show that the system
can have several stable and unstable solutions for a set of
parameters. One may not be able to detect all the possible
solutions experimentally or using time marching methods,
unless one tries large number of initial conditions.

Nomenclature

ah: Nondimensional distance measured from airfoil
mid-chord to elastic axis

b: Semichord of airfoil
F: Nonlinear structural restoring force
h: Plunge motion of the airfoil
Iα: Mass moment of inertia about elastic axis
Kh: Linear structural stiffness in heave
Kα: Linear structural stiffness in pitch
L: Aerodynamic lift force
m: Mass of airfoil per unit span
M: Nonlinear structural restoring moment
Mα: Aerodynamic pitching moment about elastic axis
p: Nondimensional aerodynamic force
r: Nondimensional aerodynamic moment
rα: Nondimensional radius of gyration about elastic axis
U : Nondimensional free stream velocity, V/bωα
U∗: Nondimensional linear flutter velocity
V : Free stream velocity
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xα: Nondimensional distance from elastic axis to center
of mass

α: Pitch rotation of the airfoil
ζα: Viscous damping ratio in pitch
ζξ : Viscous damping ratio in heave
μ: Airfoil-air mass ratio, m/πρb2

ξ: Nondimensional heave displacement, h/b
τ: Nondimensional time, tV/b
ρ: Air density
φ: Wagner’s function
ωα: Uncoupled frequency in pitch,

√
Kα/Iα

ωξ : Uncoupled frequency in heave,
√
Kh/m

ω: Frequency ratio, ωξ/ωα

Acknowledgment

The authors would like to acknowledge the financial support
of the Natural Sciences and Engineering Research Council of
Canada.

References

[1] B. H. K. Lee and J. Desrochers, “Flutter analysis of a
two-dimensional airfoil containing structural nonlinearities,”
Aeronautical Report LR-618 27833, National Research Coun-
cil of Canada, 1987.

[2] S. J. Price, H. Alighanbari, and B. H. K. Lee, “The aeroelastic
response of a two-dimensional airfoil with bilinear and cubic
structural nonlinearities,” Journal of Fluids and Structures, vol.
9, no. 2, pp. 175–193, 1995.

[3] T. O’Neil and T. W. Strganac, “Aeroelastic response of a rigid
wing supported by nonlinear springs,” Journal of Aircraft, vol.
35, no. 4, pp. 616–622, 1998.

[4] I. Roberts, D. P. Jones, N. A. J. Lieven, M. di Bernado, and A. R.
Champneys, “Analysis of piecewise linear aeroelastic systems
using numerical continuation,” Proceedings of the Institution of
Mechanical Engineers, Part G, vol. 216, no. 1, pp. 1–11, 2002.

[5] H. Alighanbari and S. J. Price, “The post-Hopf-bifurcation
response of an airfoil in incompressible two-dimensional
flow,” Nonlinear Dynamics, vol. 10, no. 4, pp. 381–400, 1996.

[6] A. Sedaghat, J. E. Cooper, J. R. Wright, and A. Y. T.
Leung, “Prediction of non-linear aeroelastic instabilities,” in
Proceedings of the 22nd Congress of the International Council
of the Aeronautical Sciences (ICAS ’00), pp. 464.1–464.10,
Harrogate, UK, 2000.

[7] R. M. Corless, “Defect-controlled numerical methods and
shadowing for chaotic differential equations,” Physica D, vol.
60, no. 1–4, pp. 323–334, 1992.

[8] E. J. Doedel and J. P. Kernevez, “AUTO: software for con-
tinuation and bifurcation problems in ordinary differential
equations,” Applied Mathematics Report, California Institute
of Technology, 1986.

[9] Y. C. Fung, An Introduction to the Theory of Aeroelasticity,
Dover, New York, NY, USA, 1993.

[10] R. Seydel, From Equilibrium to Chaos, Elsevier, New York, NY,
USA, 1988.



International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2010

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive  
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation 
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at
http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer 
Engineering

Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation 
http://www.hindawi.com

Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling & 
Simulation 
in Engineering
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of  Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and 
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of


