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Aiming at the irregularity of nonlinear signal and its predicting difficulty, a deep learning prediction model based on extreme-
point symmetric mode decomposition (ESMD) and clustering analysis is proposed. Firstly, the original data is decomposed by
ESMD to obtain the finite number of intrinsic mode functions (IMFs) and residuals. Secondly, the fuzzy 𝑐-means is used to cluster
the decomposed components, and then the deep belief network (DBN) is used to predict it. Finally, the reconstructed IMFs and
residuals are the final prediction results. Six kinds of prediction models are compared, which are DBN prediction model, EMD-
DBN prediction model, EEMD-DBN prediction model, CEEMD-DBN prediction model, ESMD-DBN prediction model, and the
proposed model in this paper. The same sunspots time series are predicted with six kinds of prediction models. The experimental
results show that the proposed model has better prediction accuracy and smaller error.

1. Introduction

At present, there are still many difficulties in predicting non-
linear signal such as sunspots and underwater acoustic signal.
Sunspots are the basic parameters of the solar activity level.
They are closely related to the geomagnetic disturbance and
ionospheric electron concentration. Prediction of sunspots
is an important part of spatial forecast which can pro-
vide important reference information for communication,
navigation, and positioning. Some scholars have conducted
extensive research on the theory of forecasting [1, 2]. In the
time-frequency signal analysis, the commonly used method
is Fourier transform which is mainly mapping the time
domain signal to the frequency domain energy spectrum
space, but Fourier transform only applies to the stationary
signal. Artificial neural network has the characteristics of
independent learning compared with the previous regression
analysis which is especially suitable for nonlinear signal
processing. However, due to the limitation of synchronous
instantaneous input, the time cumulative effect of continuous
signal cannot be reflected, and the prediction accuracy is
low [3]. Wavelet neural network is combined with the char-
acteristics of artificial neural network and wavelet analysis
which has been widely applied to the processing of nonlinear

signal. Li and Wang [1] propose the prediction model based
on complementary ensemble empirical mode decomposition
andwavelet neural network. Although its prediction accuracy
is improved to a certain extent, there is room for further
improvement.The emergence of empirical mode decomposi-
tion [4] (EMD) provides an idea for the processing of nonlin-
ear signal. It does not need to select a basis function, but it is
difficult to determine the number of screenings and there are
many defects in Hilbert spectral analysis. The extreme-point
symmetric mode decomposition [5–7] (ESMD) method is a
further improvement of the EMD, whose envelope interpola-
tion from extreme points of the original external changes to
internal upper and lower extreme symmetric interpolation.
The residual modal component is optimized by the least
squares method, which has the characteristics of adaptive
global to determine the number of screenings. ESMD uses
the direct interpolation (DI) method, which is different from
Fourier transform only by the idea of transformation of the
integral algorithm. In view of the advantages of ESMD, this
paper selects the ESMDmethod to decompose the nonlinear
time series. Then, fuzzy 𝑐-means [8, 9] clustering analysis
is used to aggregate the data of the same membership to
facilitate the prediction analysis of the model. Finally, the
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deep belief network [10–13] (DBN) is trained to achieve the
expected output value, and then the predicted output value is
reconstructed to obtain the final predicted value.

2. ESMD Method

ESMD is a newdevelopment of theHilbert-Huang transform,
and its algorithm is as follows:

(1) Find all the extreme points (maximum and min-
imum) of the data 𝑍 and record them as 𝑋 ={𝑥1, 𝑥2, . . . , 𝑥𝑛} ∈ 𝑅𝑝𝑛.

(2) Connect the adjacent poles with lines, and the mid-
point is recorded as 𝐵𝑖 (𝑖 = 1, 2, . . . , 𝑛 − 1).

(3) Supplement the left and right border midpoint 𝐵0, 𝐵𝑛
by certain methods.

(4) Use the obtained 𝑛 + 1 midpoints to construct 𝑝 bar
differential lines and calculate their mean curves𝑋 ={𝑥1, 𝑥2, . . . , 𝑥𝑛} ∈ 𝑅𝑝𝑛.

(5) Repeat the above steps until the number of screenings
reaches the preset maximum value; then the first
decomposed empirical mode is recorded as𝑀1.

(6) Repeat the above steps for 𝑍 − 𝑀1 to obtain𝑀2,𝑀3, . . . until the final margin 𝑅 only has a certain
number of poles.

(7) Let the maximum number of screenings 𝐷 process
and cycle of the above process in the integer interval𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑛} ∈ 𝑅𝑝𝑛 to get some components,
and then calculate the variance ratio 𝜎/𝜎0 and draw
it with the 𝐷 change map, where 𝜎 is the relative
standard deviation of 𝑍 − 𝑅 and 𝜎0 is the standard
deviation of the original data.

(8) Select the maximum number of screenings𝐷0 which
corresponded to the minimum variance ratio 𝜎/𝜎0 in
the interval [𝐷min, 𝐷max], and repeat the first six steps
to output the decomposition results.

3. Clustering Algorithm

The fuzzy clustering algorithm was originally proposed by
Dunn [14] and further introduced by Bezdek [15], which is
now being applied to many fields. Its operation steps can be
expressed as follows: the sample set 𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑛} ∈𝑅𝑝𝑛 is divided into 𝑐 class. Membership degree of any element𝑥𝑘 in the sample on the 𝑖 class is recorded as 𝑢𝑖𝑘. The fuzzy
membership matrix is used in the matrix after clustering,
which is recorded as 𝑈 = {𝑢𝑖𝑘} ∈ 𝑅𝑐𝑛 and satisfies the
following conditions:

𝑢𝑖𝑘 ∈ [0, 1] , ∀𝑖, 𝑘
0 < ∑
𝑘

𝑢𝑖𝑘 < 𝑛, ∀𝑖
∑
𝑖

𝑢𝑖𝑘 = 1, ∀𝑘.
(1)

The fuzzy 𝑐-means clustering is obtained by minimizing
the purpose function 𝐽𝑚(𝑈, 𝑉). The purpose function is as
follows:

𝐽𝑚 (𝑈, 𝑉) = 𝑛∑
𝑘=1

𝑐∑
𝑖=1

(𝑢𝑖𝑘)𝑚 𝑑2𝑖𝑘 (𝑥𝑘, V𝑖) , (2)

where 𝑈 = {𝑢𝑖𝑘} is the membership matrix, 𝑉 = {V1,
V2, . . . , V𝑐} ∈ 𝑅𝑝𝑐 represents 𝑐 clustering center point sets, and𝑚 ∈ [1,∞) is the weighted index. The fuzzy clustering is
transformed into hard mean clustering [14] when 𝑚 is 1. The
ideal range of𝑚 is [1.5, 2.5], usually𝑚 = 2.

The distance from the 𝑘th sample to the 𝑖th class center is
𝑑2𝑖𝑘 (𝑥𝑘, V𝑖) = 󵄩󵄩󵄩󵄩𝑥𝑘 − V𝑖

󵄩󵄩󵄩󵄩2𝐴 = (𝑥𝑘 − V𝑖)𝑇𝐴 (𝑥𝑘 − V𝑖) , (3)

where 𝐴 is the positive definite matrix of 𝑝 × 𝑝, special
conditions 𝐴 = 𝐼, and (3) is the Euclidean distance. FCM
[16] is achieved by continuously optimizing the objective
function. FCM algorithm process is as follows:

(1) Initialize the cluster center 𝑉 = {V1, V2, . . . , V𝑐}.
(2) Calculate membership matrix:

𝑢𝑖𝑘 = [[
𝑐∑
𝑗=1

[ 𝑑𝑖𝑘 (𝑥𝑘, V𝑖)𝑑𝑗𝑘 (𝑥𝑘, V𝑗)]
2/(𝑚−1)]]

−1

𝑘 = 1, 2, . . . , 𝑛. (4)

(3) Calculate the new cluster center:

V𝑖 = ∑𝑛𝑘=1 (𝑢𝑖𝑘)𝑚 𝑥𝑘∑𝑛𝑘=1 (𝑢𝑖𝑘)𝑚 𝑖 = 1, 2, . . . , 𝑐. (5)

(4) Repeat steps (2) and (3) until (2) reaches convergence.
When 𝑑𝑖𝑘(𝑥𝑘, V𝑖) = 0, a singular value is generated,
and membership cannot be calculated by (4). A class
of nonsingular values will appear when the member-
ship value is 0.The class of singular value appears, and
then the membership is calculated according to (1).

4. Forecasting Model

4.1. DBN Network Structure. DBN [17, 18] is organized by a
number of restrictedBoltzmannmachine (RBM)models.The
visual layer of the RBM model is similar to the input layer,
and the hidden layer is similar to the output layer. Learning
between layers and layers of a large numbers of RBMmodels
is used to end the final operation. The specific structure of
RBM model is shown in Figure 1. The unit of the visual layer
and the unit of the hidden layer can be interconnected with
each other. The elements inside the layers are not connected.
The units of the hidden layer can obtain a close correlation
between the units of the visual layer.

The core of DBN is restricted Boltzmann machine unit,
RBM is a typical artificial neural network, and it is a
special logarithmic linear Markova random field [19]. The
RBM model has three parameters: the offset vector 𝑉 =(𝑉1, 𝑉2, . . . , 𝑉𝑚) represents the offset of each node of the visual
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Figure 1: Network structure diagram of RBM.
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Figure 2: Deep belief network architecture.

layer, 𝐻 = (𝐻1, 𝐻2, . . . , 𝐻𝑛) represents the offset of each
node of the hidden layer, and 𝑤 represents the weight matrix
between the nodes of two layer. These three parameters
directly determine themodel to encode the𝑚dimension data
into 𝑛 dimension data; thus the conversion between features
is realized.

DBN is composed of a large number of RBM models
from the bottom to the top and the top of a layer of BP
neural network, which is shown in Figure 2.The bottom is the
sample input which is waiting for training. 𝑉0 and𝐻0 are the
nodes of RBM visual layer and hidden layer in the first layer,
respectively. 𝑤0 represents the weight between the visual and
hidden layers [20].

4.2. DBN Training Process

(1) The input sample is entered from the bottom level.

(2) The first RBM model was trained and then passed
to the second RBM model for training, followed by

continuous training until the training of the top of the
RBMmodel is also complete.

(3) After the training is completed, the training data can
supervise the operation and adopt themaximum like-
lihood estimation method to fine-tune the network
model.

(4) Finally, the BP model is used to fine-tune the model
parameters of the top layer so as tominimize the value
of the loss function.

4.3. The Training Method of Deep Learning

(1) Unsupervised Learning from Bottom Up (Pretraining).
Using unlabeled data to train each parameter hierarchically,
this is an unsupervised training method, which is the biggest
difference from the traditional neural network, and also can
be regarded as the process of feature learning. The first
layer is first trained with unlabeled data, and the first layer
parameters are obtained. The output of the first layer is used
as the input of the second layer, so as to train the second layers
and finally obtain the parameters of each layer.

(2) Top-Down Supervised Study (Tuning). After the first step
is completed, the network adopted discriminative training
using labeled data, and the error is transmitted from top to
bottom. The first step is similar to the random initialization
of the traditional neural network. The difference is that the
first step of deep learning is obtained through the study
of unlabeled data, rather than random initialization. So the
initial value is closer to the overall optimal, so the effect of
deep learning is mainly the pretraining of the first step.

4.4. ESMD and DBN Prediction Model Based on Clustering.
ESMD and DBN prediction model based on clustering is
proposed, whose structure is described as follows:

(1) The original sequence is decomposed by ESMD; then
the finite number of IMFs and residuals is obtained.

(2) The fuzzy 𝑐-means clustering analysis is performed
for each IMF component and residual; then the
frequency fluctuation rule is got.

(3) The DBN model is established for each IMF com-
ponent and residual, respectively; then the predicted
value of each component is obtained.

(4) Reconstruct IMF predicting value to obtain the final
predicting results.

5. Data Simulation and Analysis

The monthly mean total sunspot number from 1963 to 2012
was used as the original data. There are a total of 600 data
points shown in Figure 3.The original data is decomposed by
EMD and ESMD, respectively, shown in Figures 4 and 5.

In Figure 5, modal components IMF1∼IMF6 are shown
from top to bottom, and the instantaneous frequency of
modal components IMF3∼IMF6 is basically stable. The
modal components can achieve relatively high prediction
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Figure 3: Monthly mean total sunspot number in 1963–2012.
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Figure 4: The results of EMD decomposition.

results after they are decomposed and predicted. But IMF1∼
IMF2 are still quite complex compared to other components,
the instantaneous frequency is very large, and nonstationary
is strong. So the fuzzy 𝑐-means clustering analysis is per-
formed, and the results are shown in Figure 6.

The DBN structure contains two hidden layers. The
number of neurons is 2 and 12, and the learning rate is 1.
The DBN network includes two hidden layers. The number
of neurons is 20 and 10, the learning rate is 0.1, the cycle
number is set to 100, and the momentum is set to 0. After
the training is completed; each layer of the RBM model can
obtain initialization parameters which constitute the simplest
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Figure 5: The results of ESMD decomposition.
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Figure 6: Modal components after fuzzy clustering.

model of DBN.The prediction experimental steps are shown
in Figure 7.

The predicted results of ESMD-DBN prediction model
based on clustering are shown in Figure 8. The same
sunspot time series is predicted by DBN directly namedDBN
prediction. The same sunspot time series is decomposed,
respectively, by EMD, EEMD, CEEMD, and ESMD, and the
finite number of IMF components and residue are obtained.
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Figure 7: Steps of sunspot prediction based on DBN.
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The DBN model is established for each IMF component
and residue, respectively; then the predicted value of each
component is obtained. They were named, respectively, by
the predictionmodels of EMD-DBN, EEMD-DBN,CEEMD-
DBN, and ESMD-DBN.

The purple line in Figure 8 represents the predicted
number of sunspots and the blue line represents the practical
number of sunspots. It can be seen that the clustering ESMD-
DBN model proposed in this paper has good fitting to the
original data and can predict the number of sunspots well.
Figure 9 shows the comparison results of the prediction
models of DBN, EMD-DBN, EEMD-DBN, CEEMD-DBN,
and ESMD-DBN. In order to identify predicted results, local
predicted results are shown in Figure 10.

In order to verify the prediction result, the root mean
square error (RMSE) and the mean absolute percentage error
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Figure 9: Predicted results of sunspot numbers for each model.
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Figure 10: Local predicted results of sunspot numbers for each
model.

(MAPE) are used to measure the prediction performance.
The formulas are as follows:

RMSE = √ 1𝑛
𝑛∑
𝑖=1

[𝑥 (𝑖) − 𝑥 (𝑖)]2

MAPE = 1𝑛
𝑛∑
𝑖=1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑥 (𝑖) − 𝑥 (𝑖)𝑥 (𝑖)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 × 100%,

(6)

where 𝑛 is the number of sample datasets, 𝑥(𝑖) is the 𝑖th value
of the predicted data, and 𝑥(𝑖) is the 𝑖th value of the actual
data. Performance comparison of the six models is shown in
Table 1.
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Table 1: Performance comparison of the six models.

Models RMSE MAPE
DBN 8.4398 26.52%
EMD-DBN 5.8374 12.36%
EEMD-DBN 3.0837 7.58%
CEEMD-DBN 1.3405 3.67%
ESMD-DBN 1.0543 2.45%
The proposed model 0.8760 1.36%

As shown in Table 1, the RMSE and MAPE of the
proposed model are smaller than the other five models.
Therefore, the proposed model can predict sunspot number
and the trend of sunspot time series better, and it is an
effective prediction model.

6. Conclusions

In this paper, a deep learning prediction model based on
extreme-point symmetric mode decomposition and cluster-
ing analysis is proposed to predict the sunspot monthly
mean time series. Comparing with the other models such as
DBN, EMD-DBN, EEMD-DBN, CEEMD-DBN, and ESMD-
DBN, the RMSE and MAPE of the proposed model are the
smallest. The experimental results show that the proposed
model can improve the prediction precision and reduce the
error compared with other models in predicting the same
sunspot time series. It can also be applied to other fields
after conducting some modification and has high application
value.
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